5-22 Find the limit, if it exists, or show that the limit does not exist.
9. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}$

Let $y=m x$. Then we approach $(0,0)$ along this hie.

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}} & =\lim _{x \rightarrow 0} \frac{x^{4}-4(m x)^{2}}{x^{2}+2(m x)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}\left(x^{2}-4 m^{2}\right)}{x^{2}\left(1+2 m^{2}\right)} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}-4 m^{2}}{1+2 m^{2}} \\
& =\frac{-4 m^{2}}{1+2 m^{2}}
\end{aligned}
$$

Since the limit depends on the slope of the line, we will get different limits for different lines through the origin.
E.g when $m=1$, ie, $y=x$,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}=\left.\frac{-4 m^{2}}{1+2 m^{2}}\right|_{m=1}=\frac{-4}{3}
$$

when $m=0$, ie, $y=0$,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}=\left.\frac{-4 m^{2}}{1+2 m^{2}}\right|_{m=0}=0
$$

18. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}}$
19. $\underset{(x, y) \rightarrow(0,0)}{\text { lvII }} \overline{x^{2}+y^{8}}$

Let $y=m x$. Then we apprach $(0,0)$ along the line $y=m x$ as follows

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}} & =\lim _{x \rightarrow 0} \frac{x(m x)^{4}}{x^{2}+(m x)^{8}} \\
& =\lim _{x \rightarrow 0} \frac{m^{4} x^{5}}{x^{2}\left(1+m^{8} x^{6}\right)} \\
& =\lim _{x \rightarrow 0} \frac{m^{4} x^{3}}{1+m^{8} x^{6}} \\
& =0
\end{aligned}
$$

So the limit exists for all hies.
After several trial and error, we found that for $x=y^{4}$,

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}} & =\lim _{y \rightarrow 0} \frac{y^{4} \cdot y^{4}}{y^{8}+y^{8}} \\
& =\lim _{y \rightarrow 0} \frac{y^{8}}{2 y^{8}} \\
& =\frac{1}{2}
\end{aligned}
$$

Hence, the limit does not exist.

25-26 Find $h(x, y)=g(f(x, y))$ and the set of points at which h is continuous.

$$
\text { 25. } \begin{aligned}
g(t) & =t^{2}+\sqrt{t}, \quad f(x, y)=2 x+3 y-6 \\
h(x, y) & =g(f(x, y)) \\
& =g(2 x+3 y-6) \\
& =(2 x+3 y-6)^{2}+\sqrt{2 x+3 y-6}
\end{aligned}
$$

$$
=(2 x+3 y-6)^{2}+\sqrt{2 x+3 y-6}
$$

This is continuous if $2 x+3 y-6 \geqslant 0$ since f is continuous for $x, y \in \mathbb{R}$. Hence, h is continuous on the set

$$
\left\{(x, y) \in \mathbb{R}^{2}: y \geqslant 2-\frac{2}{3} x\right\} .
$$

29-38 Determine the set of points at which the function is continuous.
29. $F(x, y)=\frac{x y}{1+e^{x-y}}$

The functoris $x y$ and $1+e^{x-y}$ are defined for all $x, y \in \mathbb{R}$ and $1+e^{x-y}$ is never zero for all $x, y \in \mathbb{R}$.
Hence, F is continuous in \mathbb{R}^{2}. ie. F is continuous evenfoohere.
37. $f(x, y)= \begin{cases}\frac{x^{2} y^{3}}{2 x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 1 & \text { if }(x, y)=(0,0)\end{cases}$

We suspect f might be discontinuous only at $(x, y)=(0,0)$ since f is defied everywhere except at $(x, y)=(0,0)$.
So we compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ to check. Here, we use the idea of the squeeze theorem.
Notice that

$$
\begin{array}{ll}
& x^{2} \leq 2 x^{2}+y^{2} \\
\Rightarrow \quad \text { for all } x, y \in \mathbb{R} \\
\Rightarrow & \frac{x^{2}}{2 x^{2}+y^{2}} \leq 1 \quad \text { for all } x, y \neq 0 \\
\rightarrow \quad\left|\frac{x^{2} y^{3}}{}\right| \leq\left|y^{3}\right| \text { for all } x, y \neq 0 .
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad\left|\frac{x^{2} y^{3}}{2 x^{2}+y^{2}}\right| \leq\left|y^{3}\right| \text { for all } x, y \neq 0 \\
& \Rightarrow \quad \lim _{(x, y) \rightarrow(0,0)}\left|\frac{x^{2} y^{3}}{2 x^{2}+y^{2}}\right| \leq \lim _{y \rightarrow 0}\left|y^{3}\right|=0
\end{aligned}
$$

Thus, by squeeze theorem

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{3}}{2 x^{2}+y^{2}}=0 \neq 1=f(0,0)
$$

Hence, f is contentions everywhere except at $(x, y)=(0,0)$. iv, f is continuous on the set

$$
\left\{(x, y) \in \mathbb{R}^{2}:(x, y) \neq[0,0)\right\}
$$

39-41 Use polar coordinates to find the limit. [If (r, θ) are polar coordinates of the point (x, y) with $r \geqslant 0$, note that $r \rightarrow 0^{+}$as $\left.(x, y) \rightarrow(0,0).\right]$
39. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$

$$
\begin{array}{r}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0^{+}} \frac{(r \cos \theta)^{3}+(r \sin \theta)^{3}}{(r \cos \theta)^{2}+(r \sin \theta)^{2}} \\
\quad=\lim _{r \rightarrow 0^{+}} \frac{r^{2}\left[r \cos ^{3} \theta+r \sin ^{3} \theta\right]}{r^{2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right]} \\
=\lim _{r \rightarrow 0^{+}}\left(r \cos ^{3} \theta+r \sin ^{3} \theta\right) \\
=0
\end{array}
$$

$x=r \cos \theta$ and $y=r \sin \theta$ and notice that $(x, y) \rightarrow(0,0)$ along the blue line $\Rightarrow \gamma \rightarrow 0^{+}$

