5–22 Find the limit, if it exists, or show that the limit does not exist.

9.
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - 4y^2}{x^2 + 2y^2}$$

Let $y = mx$. Then we approach $(o, 0)$ along this line.

$$\lim_{(x,y)\to(0,0)} \frac{x^4 - 4y^2}{x^2 + 2y^2} = \lim_{(x\to 0)} \frac{x^4 - 4(nx)^2}{x^2 + 2(nx)^2}$$

$$= \lim_{(x,y)\to(0,1)} \frac{x^2 - 4y^2}{x^2 + 2y^2}$$

$$= \lim_{(x\to 0)} \frac{x^2 - 4m^2}{x^2 (1 + 3m^2)}$$

$$= \lim_{(x\to 0)} \frac{x^2 - 4m^2}{1 + 3m^2}$$
Since the limit depends on the slope of the line, we will get different limits
for different lines through the origin.
E.g. ushen $m = 1$, i.e., $y = x$,

$$\lim_{(x,y)\to(0,n)} \frac{x^4 - 4y^2}{x^2 + 3y^2} = \frac{-4m^2}{1 + 2m^2}\Big|_{n=0} = -\frac{4}{3}$$
when $m = 0$, i.e., $y = 0$,

$$\lim_{(x,y)\to(0,0)} \frac{x^4 - 4y^2}{x^2 + 3y^2} = -\frac{-4m^2}{1 + 2m^2}\Big|_{n=0} = 0$$

-

. A . I . A . My as follows

18. $\lim_{(x, y) \to (0, 0)} \frac{xy^4}{x^2 + y^8}$

10.
$$\lim_{(x, y) \to (0, 0)} \overline{x^2 + y^8}$$

Let
$$y = mx$$
. Then we approach $(0,0)$ along the line $y = mx$ as follows:

$$\lim_{(x,y)\to(0,0)} \frac{xy^{4}}{x^{2}+y^{8}} = \lim_{x\to 0} \frac{x(mx)^{4}}{x^{2}+(mx)^{8}}$$

$$= \lim_{x\to 0} \frac{m^{4}x^{5}}{x^{2}(1+m^{8}x^{6})}$$

$$= \lim_{x\to 0} \frac{m^{4}x^{3}}{1+m^{8}x^{6}}$$

$$= 0$$
So the limit consts for all lines.
After several trial and error, we found that for $x = y^{4}$,

$$\lim_{(x,y)\to(0,0)} \frac{xy^{4}}{x^{2}+y^{8}} = \lim_{y\to 0} \frac{y^{4}\cdot y^{4}}{y^{8}+y^{8}}$$

Hence, the limit does not exist.

=

25–26 Find h(x, y) = g(f(x, y)) and the set of points at which *h* is continuous.

 $=\lim_{\substack{y\to 0\\y\to 0}}\frac{y^8}{2y^8}$

금

25.
$$g(t) = t^2 + \sqrt{t}$$
, $f(x, y) = 2x + 3y - 6$
 $h(x,y) = g(f(x,y))$
 $= g(2x + 3y - 6)$
 $= (2x + 3y - 6)^2 + \sqrt{2x + 3y - 6}$

$$= (2x+3y-6)^{2} + \sqrt{2x+3y-6}$$

This is continuous if $2x+3y-6 \ge 0$ since f is continuous for x, yek.
Hence, h is continuous on the set
 $\{(x,y) \in \mathbb{R}^{2}: y \ge 2 - \frac{2}{3} \times \frac{3}{2}$.

29–38 Determine the set of points at which the function is continuous.

29.
$$F(x, y) = \frac{xy}{1 + e^{x-y}}$$

The functions xy and $1 + e^{x-y}$ are defined for all $x, y \in \mathbb{R}$ and $1 + e^{x-y}$
is never zero for all $x, y \in \mathbb{R}$.
Hence, F is continuous in \mathbb{R}^2 is F is continuous everywhere.

37.
$$f(x, y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 1 & \text{if } (x, y) = (0, 0) \end{cases}$$

We suspect f night be discontinuous only at $(x \cdot y) = (0, 0)$ since f is defined everywhere except at $(x \cdot y) = (0, 0)$. So we compute $\lim_{(x,y) \to (0,0)} f(x \cdot y)$ to check. Here, we use the idea of the squeeze theorem. Notice that $\chi^2 \leq 2\chi^2 + y^2$ for all $x, y \in \mathbb{R}$

$$\Rightarrow \frac{\chi^2}{2x^2+y^2} \leq 1 \quad \text{for all } x_y \neq 0.$$

$$\Rightarrow \quad |\underline{\chi^2y^3}| \leq |y^3| \quad \text{for all } x_y \neq 0.$$

$$\Rightarrow \left| \frac{x^2 y^3}{2x^2 + y^2} \right| \leq \left| y^3 \right| \quad \text{for all } x, y \neq 0.$$

$$\Rightarrow \left| \lim_{(x,y) \to [0,0)} \right| \frac{x^2 y^3}{2x^2 + y^2} \right| \leq \lim_{(y \to 0)} |y^3| = 0$$
Thus, by Squeeze theorem
$$\lim_{(x,y) \to [0,0)} \frac{x^2 y^3}{2x^2 + y^2} = 0 \neq 1 = f(0,0).$$

$$\text{Hence, f is continuous everywhere except at } (x,y) = (0,0).$$

$$\text{i.e., f is continuous on the set}$$

$$\left\{ (z,y) \in \mathbb{R}^2: (x,y) \neq (0,0) \right\}.$$

39–41 Use polar coordinates to find the limit. [If (r, θ) are polar coordinates of the point (x, y) with $r \ge 0$, note that $r \rightarrow 0^+$ as $(x, y) \rightarrow (0, 0)$.]

