3-8 Find the velocity, acceleration, and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of t.
3. $\mathbf{r}(t)=\left\langle-\frac{1}{2} t^{2}, t\right\rangle, \quad t=2$

Velocity

$$
\begin{aligned}
V(t) & =\gamma^{\prime}(t) \\
& =\langle-t, 1\rangle
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \text { Speed } & =|v(t)| \\
& =\sqrt{(-t)^{2}+1^{2}} \\
& =\sqrt{t^{2}+1}
\end{aligned}
$$

Acceleration

$$
\begin{aligned}
a(t)=V^{\prime}(t) & =\gamma^{\prime \prime}(t) \\
& =\langle-1,0\rangle, \text { uniform acceleration }
\end{aligned}
$$

At $t=2$,

$$
\begin{aligned}
& \gamma(2)=\left\langle-\frac{1}{2}(2)^{2}, 2\right\rangle=\langle-2,2\rangle . \\
& V(2)=\langle-2,1\rangle \\
& a(2)=\langle-1,0\rangle
\end{aligned}
$$

To sketch the path, we rewrite in $x y$ coordinates.

$$
\begin{aligned}
& \langle x, y\rangle=r=\left\langle-\frac{1}{2} t^{2}, t\right\rangle \\
& \Rightarrow y=t
\end{aligned}
$$

Thus,

$$
x=-\frac{1}{2} y^{2}
$$

9-14 Find the velocity, acceleration, and speed of a particle with the given position function.
13. $\mathbf{r}(t)=e^{t}(\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k})$

The velocity

$$
\begin{aligned}
V(t) & =\gamma^{\prime}(t) \\
& =e^{t}(\cos t i+\sin t j+t k)+e^{t}(-\sin t i+\cos t j+k) \\
& =e^{t}[(\cos t-\sin t) i+(\sin t+\cos t) j+(t+1) k)
\end{aligned}
$$

The acceleration

$$
\begin{aligned}
a(t) & =v^{\prime}(t) \\
& =e^{t}[(\cos t-\sin t) i+(\sin t+\cos t) j+(t+1) k]+e^{t}[(-\sin t-\cos t) i+(\cos t-\sin t) j+k] \\
& =e^{t}[-2 \sin t i+2 \cos t j+(t+2) k]
\end{aligned}
$$

The speed

$$
=|v(t)|
$$

- The speed

$$
\begin{aligned}
& =|v(t)| \\
& =\sqrt{e^{2 t}\left[(\cos t-\sin t)^{2}+(\sin t+\cos t)^{2}+(t+1)^{2}\right]} \\
& =e^{t} \sqrt{\cos ^{2} t-2 \cos t / \sin ^{2} t+\sin ^{2} t^{\prime} t+\sin 2^{2} t+2 \cos t / \sin t+\cos ^{2} t^{\prime}+t^{2}+2 t+1} \\
& =e^{t} \sqrt{t^{2}+2 t+3}
\end{aligned}
$$

23. A projectile is fired with an initial speed of $200 \mathrm{~m} / \mathrm{s}$ and angle of elevation 60°. Find (a) the range of the projectile, (b) the maximum height reached, and (c) the speed at impact.

As given $|v(0)|=200 \mathrm{~m} / \mathrm{s}$ at an angle of 60°

$$
\begin{aligned}
\Rightarrow V(D) & =200 \cos 60^{\circ} i+200 \sin 60^{\circ} j \\
& =100 i+100 \sqrt{3} j
\end{aligned}
$$

But $|a| \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\Rightarrow a=-9.8 j$ since acceleration is due to gravity

$$
\begin{aligned}
\Rightarrow v(t) & =\int-9.8 j d t \\
& =-9.8 t j+c
\end{aligned}
$$

So

$$
\begin{aligned}
& 100 i+100 \sqrt{3} j=v(0)=0+c \\
\Longrightarrow & v(t)=100 i+(100 \sqrt{3}-9.8 t) j
\end{aligned}
$$

Thus

$$
\begin{aligned}
\gamma(t) & =\int v(t) d t \\
& =\int[100 i+(100 \sqrt{3}-9.8 t) j] d t \\
& =100 t i+\left(100 \sqrt{3} t-4.9 t^{2}\right) j+D
\end{aligned}
$$

We assume the projectile is fired fum the grows, so that $\gamma(0)=0$.

$$
\begin{aligned}
& \Rightarrow D=0 \\
& \Rightarrow \gamma(t)=100 t i+\left(100 \sqrt{3} t-4 \cdot 9 t^{2}\right) j \\
& \Rightarrow x(t)=100 t, y(t)=100 \sqrt{3} t-4.9 t^{2} \text { are the parametric equation e } \\
& \text { of the purectile. }
\end{aligned}
$$

(a) Range of the projective is the honzontal distance the projectile travels.

$$
\text { So } \begin{aligned}
& y=100 \sqrt{3} t-4.9 t^{2}=0 \\
& \Rightarrow t(100 \sqrt{3}-4.9 t)=0 \\
& \Rightarrow t=0, t=\frac{100 \sqrt{3}}{4.9} \\
& \Rightarrow x(0)=0 \text { and } x\left(\frac{100 \sqrt{3}}{4.9}\right)=100\left(\frac{100 \sqrt{3}}{4.9}\right) \approx 3534.7976
\end{aligned}
$$

So the range $\approx 3534 \mathrm{~m}$
(b) At maximum height $y^{\prime}(t)=0$

$$
\begin{aligned}
& \Rightarrow 100 \sqrt{3}-9.8 t=0 \\
& \Rightarrow \quad t=\frac{100 \sqrt{3}}{9.8}
\end{aligned}
$$

Thus, the maximum height is

$$
\begin{aligned}
y\left(\frac{100 \sqrt{3}}{9.8}\right) & =100 \sqrt{3}\left(\frac{100 \sqrt{3}}{9.8}\right)-4.9\left(\frac{100 \sqrt{3}}{9.8}\right)^{2} \\
& \approx 1531 \mathrm{~m}
\end{aligned}
$$

(c) From pant (a), impact occurs at $t=\frac{100 \sqrt{3}}{4.9}$

$$
\begin{aligned}
\Rightarrow v\left(\frac{100 \sqrt{3}}{4 \cdot 9}\right) & =100 i+\left[180 \sqrt{3}-9.8\left(\frac{100 \sqrt{3}}{4 \cdot 9}\right)\right] j \\
& =100 i-100 \sqrt{3} j
\end{aligned}
$$

\Rightarrow speed at impact is

$$
\begin{aligned}
\left|v\left(\frac{100 \sqrt{3}}{4 \cdot 9}\right)\right| & =\sqrt{100^{2}+(-100 \sqrt{3})^{2}} \\
& =\sqrt{10000+30000} \\
& =\sqrt{40000} \\
& =200 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

