19-26 Find a parametric representation for the surface.
19. The plane through the origin that contains the vectors $\mathbf{i}-\mathbf{j}$ and $\mathbf{j}-\mathbf{k}$
The required vector equation is
$\gamma=\gamma_{0}+u a+v b$ where u, v are real numbers.
Here,

$$
\gamma_{0}=(0,0,0), a=\langle 1,-1,0\rangle, b=\langle 0,1,-1\rangle
$$

Thus,

$$
\begin{aligned}
r & =(0,0,0)+u\langle 1,-1,0\rangle+v\langle 0,1,-1\rangle \\
& =(0+u+0,0-u+v, 0+0-v) . \\
& =(u, v-u,-v) .
\end{aligned}
$$

Hence, the parametric equations are

$$
x=u, \quad y=v-u, \quad z=-v .
$$

33-36 Find an equation of the tangent plane to the given parametric surface at the specified point.
35. $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+v \mathbf{k} ; \quad u=1, v=\pi / 3$

At $u=1, v=\pi / 3$, a point on the tangent plane is

$$
\begin{aligned}
r(1, \pi / 3) & =(1 \cos \pi / 3,1 \sin \pi / 3, \pi / 3) \\
& =\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, \pi / 3\right) .
\end{aligned}
$$

At any u, v normal to the tangent p lane is $\gamma_{u} \times \gamma_{v}$. But

$$
1 \ldots \operatorname{cin} v .0) \text { and } \gamma_{v}=(-u \sin v, u \cos v, 1)
$$

$$
\begin{aligned}
& \text { But } \begin{aligned}
\gamma_{u} & =(\cos v, \sin v, 0) \text { and } \gamma_{v}=(-u \sin v, u \cos v, 1) \\
\Rightarrow \gamma_{u} \times \gamma_{v} & =\left|\begin{array}{ccc}
i & j & k \\
\cos v & \sin v & 0 \\
-u \sin v & u \cos v & 1
\end{array}\right| \\
& =(\sin v) i-(\cos v) j+\left(u \cos ^{2} v+u \sin ^{2} v\right) k \\
& =\langle\sin v,-\cos v, u\rangle \\
\Rightarrow \gamma_{u}(1, \pi / 3) \times \gamma_{v}(1, \pi / 3) & =\langle\sin \pi / 3,-\cos \pi / 3,1\rangle \\
& =\left\langle\frac{\sqrt{3}}{2},-\frac{1}{2}, 1\right\rangle
\end{aligned}
\end{aligned}
$$

Hence, the equation of tangent plane at $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, \pi / 3\right)$ is

$$
\begin{aligned}
& \frac{\sqrt{3}}{2}\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(y-\frac{\sqrt{3}}{2}\right)+1(z-\pi / 3)=0 . \\
\Rightarrow & \frac{1}{2}(\sqrt{3} x-y+2 z)=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}+\frac{\pi}{3} \\
\Rightarrow & \frac{1}{2}(\sqrt{3} x-y+2 z)=\pi / 3
\end{aligned}
$$

39-50 Find the area of the surface.
43. The surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1$

Let x and y be the parameters. Then the vector equation of the surface is

$$
v(x, u)=x i+4 i i+\frac{2}{2}\left(x^{3 / 2}+y^{3 / 2}\right) k
$$

is

$$
\gamma(x, y)=x i+y j+\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right) k
$$

$$
\Rightarrow \gamma_{x}=i+x^{1 / 2} k \text { and } \gamma_{y}=j+y^{1 / 2} k
$$

$$
\Rightarrow \gamma_{x} \times \gamma_{y}=\left|\begin{array}{lll}
i & j & k \\
1 & 0 & x^{1 / 2} \\
0 & 1 & y^{1 / 2}
\end{array}\right|
$$

$$
=-x^{1 / 2} i-y^{1 / 2} j+k
$$

$$
\begin{aligned}
\Rightarrow\left|\gamma_{x} \times \gamma_{y}\right| & =\sqrt{\left(-x^{1 / 2}\right)^{2}+\left(-y^{1 / 2}\right)^{2}+1^{2}} \\
& =\sqrt{x+y+1}
\end{aligned}
$$

Thus, area of the surface

$$
\begin{aligned}
& \text { area of the surface } \\
& =\int_{D}\left|\gamma_{x} x \gamma_{y}\right| d A \quad \text { where } D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\} \\
& =\int_{0}^{1} \int_{0}^{1} \sqrt{x+y+1} d x d y \\
& =\int_{0}^{1} \int_{0}^{1}(x+y+1)^{1 / 2} d x d y \\
& =\int_{0}^{1} \int_{0}^{1} u^{1 / 2} d u d y \\
& =\left.\int_{0}^{1} \frac{2}{3} u^{3 / 2}\right|_{x=0} ^{x=1} d y \\
& \\
& 100 x+y+1 \\
& =13 /\left.2\right|^{x=1} 0 .
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\int_{0}^{1} \frac{2}{3}(x+y+1)^{3 / 2}\right|_{x=0} ^{x=1} d y \\
& =\frac{2}{3} \int_{0}^{1}\left[(2+y)^{3 / 2}-(y+1)^{3 / 2}\right] d y \\
& =\frac{2}{3}\left[\frac{2}{5}(2+y)^{5 / 2}-\frac{2}{5}(1+y)^{5 / 2}\right]_{0}^{1} \\
& =\frac{2}{3}\left[\left(\frac{2}{5}\left(3^{5 / 2}\right)-\frac{2}{5}\left(2^{5 / 2}\right)\right)-\left(\frac{2}{5}\left(2^{5 / 2}\right)-\frac{2}{5}\left(1^{5 / 2}\right)\right)\right] \\
& =\frac{2}{3} \cdot \frac{2}{5}\left(3^{5 / 2}-2 \cdot 2^{5 / 2}+1\right) \\
& =\frac{4}{15}\left(3^{5 / 2}-2^{7 / 2}+1\right) .
\end{aligned}
$$

