5-8 Determine the signs of the partial derivatives for the function f whose graph is shown.

5. (a) $f_{x}(1,2)$
(b) $f_{y}(1,2)$

As shown in purple on the graph, from the point $(1,2)$ and
(a) moving i m the positive x-axis, f is increasing, so $f_{x}(1,2)>0$.
(b) moving i m the positive y-axis, f is decreasing, so $f_{x}(1,2)<0$.
11. If $f(x, y)=16-4 x^{2}-y^{2}$, find $f_{x}(1,2)$ and $f_{y}(1,2)$ and interpret these numbers as slopes. Illustrate with either handdrawn sketches or computer plots.

$$
\begin{aligned}
& f_{x}(x, y)=-8 x \Rightarrow f_{x}(1,2)=-\left.8 x\right|_{(x, y)=(1,2)}=-8(1)=-8 \\
& f_{y}(x, y)=-2 y \Rightarrow f_{y}(1,2)=-\left.2 y\right|_{(x, y)=(1,2)}=-2(2)=-4
\end{aligned}
$$

15-40 Find the first partial derivatives of the function.
15. $f(x, y)=x^{4}+5 x y^{3}$
$f_{x}(x, y)=4 x^{3}+5 y^{3}$, Keeping y fixed.

$$
f_{y}(x, y)=15 x y^{2}, \text { keeping } x \text { fixed. }
$$

20. $z=x \sin (x y)$

Using product rule and keeping y fixed,

$$
\begin{aligned}
z_{x} & =x(y \cos (x y))+1(\sin (x y)) \\
& =x y \cos (x y)+\sin (x y)
\end{aligned}
$$

Simply Keeping x fixed (now, no product me)

$$
\begin{aligned}
z_{y} & =x(x \cos (x y)) \\
& =x^{2} \cos (x y)
\end{aligned}
$$

23. $f(x, y)=\frac{a x+b y}{c x+d y}$

Keeping y fixed and using quotient rule,

$$
\begin{aligned}
f_{x}(x, y) & =\frac{(c x+d y) a-(a x+b y) c}{(c x+d y)^{2}} \\
& =\frac{a c x+a d y-a c x-b c y}{(c x+d y)^{2}} \\
& =\frac{(a d-b c) y}{(c x+d y)^{2}}
\end{aligned}
$$

Similarly, keeping x fixed and using quotient mile,

$$
\begin{aligned}
f_{y}(x, y) & =\frac{(c x+d y) b-(a x+b y) d}{(c x+d y)^{2}} \\
& =\frac{b c x+b d y-a d x-b d y}{(c x+d y)^{2}} \\
& =\frac{(b c-a d) x}{(c x+d y)^{2}}
\end{aligned}
$$

28. $f(x, y)=x^{y}$

Here, we use implicit differentiation as follows.
Let $z=x^{y}$.
Then

$$
\ln z=\ln x^{y}=y \ln x
$$

ie,

$$
\ln z=y \ln x
$$

le,

$$
\ln z=y \ln x .
$$

Keeping y fried and differentiating impliatly w.r.t x,

$$
\begin{aligned}
\frac{\delta}{\partial x}(\ln z) & =\frac{\partial}{\partial x}(y \ln x) \\
\Rightarrow \frac{1}{z} z_{x} & =y\left(\frac{1}{x}\right) \\
\Rightarrow z_{x} & =\frac{y z}{x} \\
& =\frac{y\left(x^{y}\right)}{x} \\
\Rightarrow f_{x}(x, y) & =y\left(x^{y-1}\right)
\end{aligned}
$$

Simily, keeping x furred and differentiating w.r.t y,

$$
\begin{aligned}
\frac{\partial}{\partial y}(\ln z) & =\frac{\partial}{\partial y}(y \ln x) \\
\Rightarrow \quad \frac{1}{z} z_{y} & =\ln x \\
\Rightarrow \quad z_{y} & =z \ln x \\
& =x^{y} \ln x \\
\Rightarrow f_{y}(x, y) & =x^{y} \ln x .
\end{aligned}
$$

Work out these ones yourself
24. $w=\frac{e^{v}}{u+v^{2}}$
30. $F(\alpha, \beta)=\int_{\alpha}^{\beta} \sqrt{t^{3}+1} d t$

41-44 Find the indicated partial derivative.
42. $f(x, y)=y \sin ^{-1}(x y) ; \quad f_{y}\left(1, \frac{1}{2}\right)$

Here, we use implicit differentiation as follows.
Let $z=y \sin ^{-1}(x y)$.

$$
\begin{aligned}
& \text { Then } \\
& \qquad \frac{z}{y}=\sin ^{-1}(x y) \\
& \Rightarrow \sin \left(\frac{z}{y}\right)=x y .
\end{aligned}
$$

Keeping x fixed and differentiating implicitly w.r.t y,

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(\sin _{\text {q.rnle }}^{\left(\frac{z}{y}\right)}\right)=\frac{\partial}{\partial x}(x y) \quad \text { keep in mind } z=f(x, y) \text {, a function of } x \text { ad } y \\
& \cos \left(\frac{z}{y}\right) \cdot \frac{y z_{y}-z}{y^{2}}=x . \\
& \Rightarrow y z_{y}-z=\frac{x y^{2}}{\cos \left(\frac{z}{y}\right)} \\
& \Rightarrow \quad y z_{y}=\frac{x y^{2}}{\cos (z / y)}+z \\
& \Rightarrow \quad z_{y}=\frac{x y}{\cos (z / y)}+\frac{z}{y} \\
& \Rightarrow \frac{x y}{\sqrt{1-(x y)^{2}}}+\frac{1}{y}
\end{aligned}
$$

$$
=\frac{x y}{\sqrt{1-(x y)^{2}}}+\frac{z}{y}
$$

So

$$
f_{y}(x, y)=\frac{x y}{\sqrt{1-(x y)^{2}}}+\sin ^{-1}(x y)
$$

Hence,

$$
\begin{aligned}
f_{y}\left(1, \frac{1}{2}\right) & =\frac{1\left(\frac{1}{2}\right)}{\sqrt{1-\left(1 \cdot \frac{1}{2}\right)^{2}}}+\sin ^{-1}\left(1 \cdot \frac{1}{2}\right) \\
& =\frac{\frac{1}{2}}{\sqrt{1-\frac{1}{4}}}+\sin ^{-1}\left(\frac{1}{2}\right) \\
& =\frac{1 / 2}{\sqrt{3} / 2}+\frac{\pi}{6} \\
& =\frac{1}{\sqrt{3}}+\frac{\pi}{6}
\end{aligned}
$$

47-50 Use implicit differentiation to find $\partial z / \partial x$ and $\partial z / \partial y$.
47. $x^{2}+2 y^{2}+3 z^{2}=1$

Keeping y fixed and differentiathip implicitly w.r.t x,

$$
\begin{aligned}
2 x+6 z \cdot z_{x} & =0 \\
\Rightarrow z_{x} & =\frac{-2 x}{6 z} \\
& =\frac{-x}{3 z}
\end{aligned}
$$

Similarly, Keeping x fixed and differentiation implicitly w.r.t y,

$$
\begin{aligned}
4 y+6 z & \cdot z_{y}=0 \\
\Rightarrow z_{y} & =\frac{-4 y}{6 z} \\
& =\frac{-2 y}{3 z}
\end{aligned}
$$

53-58 Find all the second partial derivatives.
53. $f(x, y)=x^{4} y-2 x^{3} y^{2}$

$$
\begin{aligned}
& f_{x}(x, y)=4 x^{3} y-6 x^{2} y^{2} \\
& \Rightarrow f_{x x}(x, y)=12 x^{2} y-12 x y^{2} \text { and } f_{x y}(x, y)=4 x^{3}-12 x^{2} y
\end{aligned}
$$

Also,
Notice they are same.

$$
\begin{aligned}
& \text { (so, } \\
& f_{y}(x, y)=x^{4}-4 x^{3} y \\
\Rightarrow & f_{y y}(x, y)=-4 x^{3} \text { and } f_{y x}=4 x^{3}-12 x^{2} y
\end{aligned}
$$

