1-6 Find an equation of the tangent plane to the given surface at the specified point.
6. $z=\ln (x-2 y), \quad(3,1,0)$

The required equation is

$$
z-0=f_{x}(3,1)(x-3)+f_{y}(3,1)(y-1)
$$

But

$$
f_{x}(x, y)=\frac{1}{x-2 y} \Rightarrow f_{x}(3,1)=\frac{1}{3-2(1)}=1
$$

and

$$
\begin{aligned}
& \text { and } \\
& f_{y}(x, y)=\frac{-2}{x-2 y} \Rightarrow f_{y}(3,1)=\frac{-2}{3-2(1)}=-2
\end{aligned}
$$

Thus,

$$
\begin{aligned}
z & =1(x-3)-2(y-1) \\
& =x-3-2 y+2 \\
& =x-2 y-1
\end{aligned}
$$

25-30 Find the differential of the function.
25. $z=e^{-2 x} \cos 2 \pi t$

The differential of z is given as

$$
d z=\frac{\partial z}{\partial t} d t+\frac{\partial z}{\partial x} d x
$$

$$
d z=\frac{\partial z}{\partial t} d t+\frac{\partial t}{\delta x} d x
$$

But

$$
\frac{\partial z}{\partial t}=-2 \pi e^{-2 x} \sin (2 \pi t) \text { and } \frac{\partial z}{\partial x}=-2 e^{-2 x} \cos (2 \pi t)
$$

Thus,

$$
\begin{aligned}
d z & =\frac{\partial z}{\partial t} d t+\frac{\partial z}{\delta x} d x \\
& =-2 \pi e^{-2 x} \sin (2 \pi t) d t-2 e^{-2 x} \cos (2 \pi t) d x
\end{aligned}
$$

31. If $z=5 x^{2}+y^{2}$ and (x, y) changes from $(1,2)$ to $(1.05,2.1)$, compare the values of Δz and $d z$.

$$
z=5 x^{2}+y^{2} \Rightarrow z_{x}=10 x \text { and } z_{y}=2 y
$$

Let $\left(x_{1}, y_{1}\right)=(1.2)$ and $\left(x_{2}, y_{2}\right)=(1.05,2.1)$.
Then

$$
\Delta x=x_{2}-x_{1}=1.05-1=0.5=d x
$$

and

$$
\Delta y=y_{2}-y_{1}=2.1-2=0.1=d y
$$

Thus,

$$
\begin{aligned}
d z & =z_{x} d x+z_{y} d y \\
& =10(1)(0.05)+2(2)(0.1) \\
& =0.9
\end{aligned}
$$

$$
=0.9
$$

However, actual change in z

$$
\begin{aligned}
\Delta z & =f(1.05,2.1)-f(1,2) \\
& =\left[5(1.05)^{2}+(2.1)^{2}\right]-\left[5(1)^{2}+2^{2}\right] \\
& =9.9225-9 \\
& =0.9225
\end{aligned}
$$

