1-6 Use the Chain Rule to find $d z / d t$ or $d w / d t$.

1. $z=x y^{3}-x^{2} y, \quad x=t^{2}+1, \quad y=t^{2}-1$

By the chain rule,

$$
\begin{array}{rlr}
\frac{d z}{d t} & =\overbrace{(\overbrace{}^{3}-2 x y)}^{\frac{\partial z}{\partial x} \frac{d x}{d t}+\overbrace{(2 t)+\overbrace{\left(3 x y^{2}-x^{2}\right)}^{\partial y} \frac{d y}{d t}}(2 t) \quad} \begin{array}{ll}
& x=t^{2}+1 \Rightarrow \frac{d x}{d t}=2 t \\
& =2 t \\
& \left.=2 t\left(y^{3}-2 x y+3 x y^{2}-x^{2}\right)\right\} \text { Could expand in } t
\end{array} & y=t^{2}-1 \Rightarrow \frac{d y}{d t}=2 t \\
\text { only but no need }
\end{array}
$$

5. $w=x e^{y / z}, \quad x=t^{2}, \quad y=1-t, \quad z=1+2 t$

By the chain mule,

$$
\begin{align*}
\frac{d w}{d t} & =\underbrace{\frac{\partial w}{\partial x}} \frac{d x}{d t}+\underbrace{\frac{\partial w}{\partial y}} \frac{d y}{d t}+\underbrace{\frac{\partial w}{\partial z}} \frac{d z}{d t} \\
& =e^{y / z}(2 t)+\frac{x}{z} e^{y / z}(-1)-\frac{x y}{z^{2}} e^{\frac{\partial}{z}} \tag{2}\\
& =\left(2 t-\frac{x}{z}-\frac{2 x y}{z^{2}}\right) e^{y / z}
\end{align*}
$$

7-12 Use the Chain Rule to find $\partial z / \partial s$ and $\partial z / \partial t$.
7. $z=(x-y)^{5}, \quad x=s^{2} t, \quad y=s t^{2}$

By definition,

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\underbrace{\frac{\partial z}{\partial x}} \frac{\partial x}{\partial s}+\underbrace{\frac{\partial z}{\partial y}} \frac{\delta y}{\partial s} \\
& =s(x-u)^{4}(2 s t)-s(x-y)^{4}\left(t^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =s(x-y)^{4}(2 s t)-s(x-y)^{4}\left(t^{2}\right) \\
& =5(x-y)^{4}\left(2 s t-t^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial z}{\partial t} & =\underbrace{\frac{\partial z}{\partial x}} \frac{\partial x}{\partial t}+\underbrace{\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}} \\
& =5(x-y)^{4}\left(s^{2}\right)-5(x-y)^{4}(2 s t) \\
& =5(x-y)^{4}\left(s^{2}-2 s t\right)
\end{aligned}
$$

15. Suppose f is a differentiable function of x and y, and $g(u, v)=f\left(e^{u}+\sin v, e^{u}+\cos v\right)$. Use the table of values to calculate $g_{u}(0,0)$ and $g_{v}(0,0)$.

	f	g	f_{x}	f_{y}
$(0,0)$	3	6	4	8
$(1,2)$	6	3	2	5

Explicitly,

$$
g(u, v)=f(x, y) \text { where } x=e^{u}+\sin v, y=e^{u}+\cos v \text {. }
$$

So by the chime rule,

$$
\begin{aligned}
g_{u}(u, v) & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\
& =f_{x}\left(e^{u}\right)+f_{y}\left(e^{u}\right) \\
& =e^{u} f_{x}(x, y)+e^{u} f_{y}(x, y) \quad
\end{aligned} \begin{array}{ll}
& x=e^{u}+\sin v \\
& \Rightarrow x=e^{0}+\sin 0 \text { at }(u, v)=(0,0)
\end{array}
$$

$$
\begin{array}{rlrl}
=e^{0} f_{x}(1,2)+e^{0} f_{y}(1,2) & & =e^{0}+\sin D \quad \text { at }(u, v)=(0,0) \\
& =1(2)+1(5) & & =e^{x}+\operatorname{cosv} \\
= & & y=e^{0}+\operatorname{coso} \quad \text { at }(u, v)=(0,0) \\
=2+5 & & =2 \\
=7 & & \text { so }(u, v)=(0,0) \Rightarrow(x, y)=(1,2)
\end{array}
$$

Similarly,

$$
\begin{aligned}
g_{v}(u, v) & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v} \\
& =f_{x}(x, y)(\cos v)+f_{y}(x, y)(-\sin v) \\
& =f_{x}(1,2)(\cos 0)+f_{y}(1,2)(-\sin 0) \\
& =2(1)+5(0) \\
& =2 .
\end{aligned}
$$

27-30 Use Equation 6 to find $d y / d x$.
(27. $y \cos x=x^{2}+y^{2}$
28. $\cos (x y)=1+\sin y$

Let $F(x, y)=y \cos x-x^{2}-y^{2}=0$ Then $F_{x}(x, y)=-y \sin x-2 x$ and $F_{y}=\cos x-2 y$.
Thus, by equation 6,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-F_{x}}{F_{y}} \\
& =\frac{-(-y \sin x-2 x)}{\cos x-2 y}
\end{aligned}
$$

$$
=\frac{y \sin x+2 x}{\cos x-2 y}
$$

31-34 Use Equations 7 to find $\partial z / \partial x$ and $\partial z / \partial y$.
(37. $x^{2}+2 y^{2}+3 z^{2}=1$
32. $x^{2}-y^{2}+z^{2}-2 z=4$

Let $F(x, y, z)=x^{2}+2 y^{2}+3 z^{2}-1=0$. Then $F_{x}=2 x, F_{y}=4 y$ as $F_{z}=6 z$. So by Equations 7,

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =-\frac{F_{x}}{F_{z}} \\
& =\frac{-(2 x)}{6 z} \\
& =-\frac{x}{3 z}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial z}{\partial} & =-\frac{F_{y}}{F_{z}} \\
& =-\frac{4 y}{6 z} \\
& =-\frac{2 y}{3 z}
\end{aligned}
$$

