2-10 Find $\mathbf{a} \cdot \mathbf{b}$.
7. $\mathbf{a}=2 \mathbf{i}+\mathbf{j}, \quad \mathbf{b}=\mathbf{i}-\mathbf{j}+\mathbf{k}$

$$
\begin{aligned}
a \cdot b & =(2 i+j) \cdot(i-j+k) \\
& =2(1)+1(-1)+0(1) \\
& =2-1+0 \\
& =1
\end{aligned}
$$

9. $|\mathbf{a}|=7, \quad|\mathbf{b}|=4$, the angle between \mathbf{a} and \mathbf{b} is 30°

By Theorem 3 in the book, $a \cdot b=|a||b| \cos \theta$ where θ is the angle between a and b.
Thus

$$
\begin{aligned}
a \cdot b & =7(4) \cos 30^{\circ} \\
& =7(4)\left(\frac{\sqrt{3}}{2}\right) \\
& =14 \sqrt{3}
\end{aligned}
$$

15-20 Find the angle between the vectors. (First find an exact expression and then approximate to the nearest degree.)
17. $\mathbf{a}=\langle 1,-4,1\rangle, \quad \mathbf{b}=\langle 0,2,-2\rangle$

By Theorem 3 in the book, $a \cdot b=|a||b| \cos \theta$ where θ is the angle between a and b.

$$
\begin{aligned}
\Rightarrow \cos \theta & =\frac{a \cdot b}{|a||b|} \\
& =\frac{\langle 1,-4,1\rangle \cdot\langle 0,2,-2\rangle}{|\langle 1,-4,1\rangle| \mid\langle 0,2,-2\rangle} \\
& =\frac{1(0)-4(2)+1(-2)}{\sqrt{1^{2}+(-4)^{2}+1^{2}} \sqrt{0^{2}+2^{2}+(-2)^{2}}} \\
& =\frac{-8-2}{\sqrt{18} \sqrt{8}} \\
& =\frac{-10}{12} \\
& =\frac{-5}{6}
\end{aligned}
$$

$\Rightarrow \theta=\cos ^{-1}(-5 / 6) \approx 146^{\circ}$ to the nearest degree.

23-24 Determine whether the given vectors are orthogonal, parallel, or neither.
23. (a) $\mathbf{a}=\langle 9,3\rangle, \quad \mathbf{b}=\langle-2,6\rangle$

Recall two vectors a and b are

- orthogonal if $a \cdot b=0$
- parallel if $a=\alpha b$ for some $\alpha \in \mathbb{R}$.

This,

$$
a \cdot b=\langle 9,3\rangle \cdot\langle-2,6\rangle=9(-2)+3(6)=-18+18=0
$$

$\Rightarrow a$ and b are orthogmal.
(b) $\mathbf{a}=\langle 4,5,-2\rangle, \quad \mathbf{b}=\langle 3,-1,5\rangle$

$$
\begin{aligned}
a \cdot b & =\langle 4,5,-2\rangle \cdot\langle 3,-1,5\rangle \\
& =4(3)+5(-1)-2(5) \\
& =12-5-10 \\
& =-3 \neq 0
\end{aligned}
$$

$\Rightarrow a$ and b ane not orthogonal
On the other hand, suppose a and b are parallel. Then we can fund $\alpha \in \mathbb{R}$ such that

$$
\begin{aligned}
& \langle 4,5,-2\rangle=\alpha\langle 3,-1,5\rangle . \\
\Rightarrow & 4=3 \alpha, 5=-\alpha,-2=5 \alpha \text { (Impossible!!) }
\end{aligned}
$$

Hence, the two vectors are neither orthogonal nor parallel.

$$
\begin{aligned}
(c) \mathbf{a} & =-8 \mathbf{i}+12 \mathbf{j}+4 \mathbf{k}, \quad \mathbf{b}=6 \mathbf{i}-9 \mathbf{j}-3 \mathbf{k} \\
a \cdot b & =(-8 i+12 \mathbf{j}+4 k) \cdot(6 i-9 \mathbf{j}-3 k) \\
& =-8(6)+12(-9)+4(-3) \\
& =-168 \neq 0
\end{aligned}
$$

$\Rightarrow a$ and b are not orthogonal.
Suppose a and b are parallel. Then we can fid $\alpha \in R$ such that

$$
\begin{aligned}
& (-8 i+12 j+4 k)=\alpha(6 i-9 j-3 k) \\
\Rightarrow & -(8+6 \alpha) i+(12+9 \alpha) j+(4+3 \alpha) k=0 \\
\Rightarrow & -(8+6 \alpha)=0,12+9 \alpha=0,4+3 \alpha=0 \\
\Rightarrow & \alpha=-\frac{4}{3}, \alpha=-\frac{4}{3}, \alpha=\frac{-4}{3}
\end{aligned}
$$

$\Rightarrow a$ and b are parallel.

$$
\begin{aligned}
(\mathrm{d}) & \mathbf{a}
\end{aligned}=3 \mathbf{i}-\mathbf{j}+3 \mathbf{k}, \quad \mathbf{b}=5 \mathbf{i}+9 \mathbf{j}-2 \mathbf{k} \mathbf{~} \begin{aligned}
a \cdot b & =(3 i-j+3 k) \cdot(5 i+9 \mathbf{j}-2 k) \\
& =3(5)-1(9)+3(-2) \\
& =15-9-6 \\
& =0
\end{aligned}
$$

$\Rightarrow a$ ard b are orthogonal.

39-44 Find the scalar and vector projections of \mathbf{b} onto \mathbf{a}.
39. $\mathbf{a}=\langle-5,12\rangle, \quad \mathbf{b}=\langle 4,6\rangle$

The scalar projection of b onto a

$$
\begin{aligned}
\operatorname{comp}_{a} b & =\frac{a \cdot b}{|a|} \\
& =\frac{\langle-5,12\rangle \cdot\langle 4,6\rangle}{\sqrt{(-5)^{2}+12^{2}}} \\
& =\frac{-5(4)+12(6)}{\sqrt{169}} \\
& =\frac{52}{13} \\
& =4=
\end{aligned}
$$

The vector projection of b onto a

$$
\begin{aligned}
\operatorname{Proj}_{a} b & =\left(\frac{a \cdot b}{|a|} \frac{a}{|a|}\right) \\
& =4 \frac{a}{|a|} \\
& =\frac{4\langle-5, \mid 2\rangle}{\sqrt{(-5)^{2}+12^{2}}} \\
& =\frac{4\langle-5,12\rangle}{13} \\
& =\left\langle\frac{-20}{13}, \frac{48}{13}\right\rangle .
\end{aligned}
$$

51. A sled is pulled along a level path through snow by a rope. A 30-lb force acting at an angle of 40° above the horizontal moves the sled 80 ft . Find the work done by the force.

As given,

$$
|F|=30 \mathrm{lb},|D|=80 \mathrm{ft}, \theta=40^{\circ}
$$

Worms done

$$
\begin{aligned}
W & =F \cdot D \\
& =|F||D| \cos \theta \\
& =30(88) \cos 40^{\circ} \\
& \approx 1838.5067 \mathrm{ft}-16
\end{aligned}
$$

1-7 Find the cross product $\mathbf{a} \times \mathbf{b}$ and verify that it is orthogonal to both \mathbf{a} and \mathbf{b}.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& \mathbf{a}=\langle 2,3,0\rangle, \quad \mathbf{b}=\langle 1,0,5\rangle \\
& \begin{aligned}
a \times b=\left|\begin{array}{lll}
i & j & k \\
2 & 3 & 0 \\
1 & 0 & 5
\end{array}\right| & =i\left|\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right|-j\left|\begin{array}{ll}
2 & 0 \\
1 & 5
\end{array}\right|+k\left|\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right| \\
& =15 i-10 j-3 k \\
a \cdot(a \times b) & =(2 i+3 j+0 k) \cdot(15 i-19 j-3 k) \\
& =2(15)+3(-10)+0(-3) \\
& =30-30-0 \\
& =0
\end{aligned}
\end{aligned} \begin{aligned}
(-2)
\end{aligned} \\
& \begin{aligned}
&
\end{aligned} \\
& =
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { and } \\
& \begin{aligned}
b \cdot(a \times b) & =(i+0 j+5 k)(15 i-10 j-3 k) \\
& =1(15)+0(-10)+5(-3) \\
& =15-0-15 \\
& =0 .
\end{aligned}
\end{aligned}
$$

\Rightarrow The cross product $a \times b$ is orthugmal to both a and b.

9-12 Find the vector, not with determinants, but by using properties of cross products.
9. $(\mathbf{i} \times \mathbf{j}) \times \mathbf{k}$
(10. $\mathbf{k} \times(\mathbf{i}-2 \mathbf{j})$
(10)

$$
\begin{aligned}
k \times(i-2 j) & =(k \times i)+(k \times-2 j) & \begin{array}{l}
\text { By property } 3
\end{array} \\
& =\underbrace{(k \times i)-2(k \times j)} & \text { By property } 2
\end{aligned}
$$

35-36 Find the volume of the parallelepiped with adjacent edges $P Q, P R$, and $P S$.
35. $P(-2,1,0), \quad Q(2,3,2), \quad R(1,4,-1), \quad S(3,6,1)$

$$
\begin{aligned}
& \overrightarrow{P Q}=(2,3,2)-(-2,1,0)=\langle 4,2,2\rangle=a \\
& \overrightarrow{P R}=(1,4,-1)-(-2,1,0)=\langle 3,3,-1\rangle=b \\
& \overrightarrow{P S}=(3,6,1)-(-2,1,0)=\langle 5,5,1\rangle=c
\end{aligned}
$$

Thus,

$$
a \times(b \times c)=\left|\begin{array}{ccc}
4 & 2 & 2 \\
3 & 3 & -1 \\
5 & 5 & 1
\end{array}\right|
$$

$$
\begin{aligned}
& =4\left|\begin{array}{cc}
3 & -1 \\
5 & 1
\end{array}\right|-2\left|\begin{array}{cc}
3 & -1 \\
5 & 1
\end{array}\right|+2\left|\begin{array}{ll}
3 & 3 \\
5 & 5
\end{array}\right| \\
& =4(3+5)-2(3+5)+2(15-15) \\
& =32-16 \\
& =16
\end{aligned}
$$

Hence, the volume of the parallelepiped with adjacent ages $\overrightarrow{P Q}, \overrightarrow{P R}$ an $\overrightarrow{P S}$ is 16 cubic units.

