3-10 Determine whether or not \mathbf{F} is a conservative vector field.
If it is, find a function f such that $\mathbf{F}=\nabla f$.
4. $\mathbf{F}(x, y)=\left(y^{2}-2 x\right) \mathbf{i}+2 x y \mathbf{j}$

Here, we apply Theorem 6.
Domain of F is \mathbb{R}^{2} which is open and simply connected.
Moreover,

$$
\begin{aligned}
& P=y^{2}-2 x \Rightarrow \frac{\partial P}{\partial y}=2 y \\
& Q=2 x y \Rightarrow \frac{\partial Q}{\partial x}=2 y
\end{aligned}
$$

ie.
P and Q have continuous first partial derviatives and

$$
\frac{\partial P}{\partial y}=2 y=\frac{\partial Q}{\partial x}
$$

Hence, F is conservative by Theorem 6.
Now, we find f such that $\nabla f=F$.
ie,

$$
\begin{aligned}
\frac{\partial f}{\partial x}=P & =y^{2}-2 x \quad \text { and } \quad \frac{\partial f}{\partial y}=Q=2 x y \\
\Rightarrow f(x, y) & =\int\left(y^{2}-2 x\right) \partial x \\
& =x y^{2}-x^{2}+g(y)
\end{aligned}
$$

Differentiating wot y and comparing with Q gives

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =2 x y+g^{\prime}(y)=2 x y \\
& \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=c, \text { a constant. }
\end{aligned}
$$

Hence, the required function is

Hence, the required function is

$$
f(x, y)=x y^{2}-x^{2}+c
$$

12-18 (a) Find a function f such that $\mathbf{F}=\nabla f$ and (b) use part (a) to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the given curve C.
13. $\mathbf{F}(x, y)=x^{2} y^{3} \mathbf{i}+x^{3} y^{2} \mathbf{j}$,

$$
C: \mathbf{r}(t)=\left\langle t^{3}-2 t, t^{3}+2 t\right\rangle, \quad 0 \leqslant t \leqslant 1
$$

(2)

$$
\begin{aligned}
& \nabla f=F \\
& \Rightarrow \frac{\partial f}{\partial x}=x^{2} y^{3} \quad \text { and } \frac{\partial f}{\partial y}=x^{3} y^{2} . \\
& \Rightarrow f(x, y)
\end{aligned}=\int x^{2} y^{3} \partial x .
$$

Differentiating writ y and using the second equation gives

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=x^{3} y^{2}+g^{\prime}(y)=x^{3} y^{2} \\
& \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=c \text {, a constant. }
\end{aligned}
$$

Thus, the required function is

$$
f(x, y)=\frac{1}{3} x^{3} y^{3}+c
$$

(b) By the Fumamental Theorem for line integrals (Theorem 2),

$$
\begin{array}{rlr}
\int_{c} F \cdot d r & =\int_{c} \nabla f \cdot d r \\
& =f(r(b))-f(r(a)) \quad a=0 \text { and } b=1
\end{array}
$$

$$
\begin{aligned}
& =f(r(b))-f(r(a)) \\
& =f(-1,3)-f(0,0) \\
& =\frac{1}{3}(-1)^{3}(3)^{3}+c-\left[\frac{1}{3}(0)^{3}(0)^{3}+c\right] \\
& =-9 .
\end{aligned}
$$

$$
a=0 \text { and } b=1
$$

$$
\Rightarrow r(0)=\left\langle 0^{3}-2(0), 0^{3}+2(0)\right\rangle
$$

17. $\mathbf{F}(x, y, z)=y z e^{x z} \mathbf{i}+e^{x z} \mathbf{j}+x y e^{x z} \mathbf{k}$,

$$
\begin{aligned}
& C: \mathbf{r}(t)=\left(t^{2}+1\right) \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}+\left(t^{2}-2 t\right) \mathbf{k} \\
& 0 \leqslant t \leqslant 2
\end{aligned}
$$

©

$$
\begin{aligned}
& \nabla f=F \\
& \Rightarrow \underbrace{\frac{\partial f}{\partial x}=y z e^{x z}}_{\text {I }}, \underbrace{\frac{\partial f}{\partial y}=e^{x z}}_{\text {II }} \text { and } \underbrace{\frac{\partial f}{\partial z}=x y e^{x z}}_{\text {III }},
\end{aligned}
$$

(I) implies

$$
\begin{aligned}
\text { implies } \\
\begin{aligned}
f(x, y, z) & =\int y z e^{x z} \partial x \\
& =y e^{x z}+g(y, z)
\end{aligned}, ~
\end{aligned}
$$

Differentiating and equating to (II) gives

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =e^{x z}+g_{y}(y, z)=e^{x z} \\
& \Rightarrow g_{y}(y, z)=0 \\
& \Rightarrow g(y, z)=\int_{0} \partial y
\end{aligned}
$$

So far,

$$
=h(z)
$$

$$
f(x, y, z)=y e^{x z}+h(z)
$$

Again, differenting and equating to (iii) gives

$$
\begin{aligned}
\frac{\partial f}{\partial z} & =x y e^{x z}+h^{\prime}(z)=x y e^{x z} \\
& \Rightarrow h^{\prime}(z)=0 \Rightarrow h(z)=c
\end{aligned}
$$

Hence,

$$
f(x, y, z)=y e^{x z}+c
$$

(b)

$$
\begin{aligned}
& \gamma(0)=\left\langle 0^{2}+1,0^{2}-1,0^{2}-2(0)\right\rangle=\langle 1,-1,0\rangle \text { and } \\
& Y(2)=\left\langle 2^{2}+1,2^{2}-1,2^{2}-2(2)\right\rangle=\langle 5,3,0\rangle
\end{aligned}
$$

So by the Fundamental theorem for line integrals,

$$
\begin{aligned}
\int_{c} F \cdot d r & =\int \nabla f \cdot d r \\
& =f(r(b))-f(r(a)) \\
& =f(r(2))-f(r(0)) \\
& =f(5,3,0)-f(1,-1,0) \\
& =\left(3 e^{5(0)}+c\right)-\left(-1 e^{1(0)}+c\right) \\
& =3+c+1-c \\
& =4 .
\end{aligned}
$$

