3-6 Find the limit.
3. $\lim _{t \rightarrow 0}\left(e^{-3 t} \mathbf{i}+\frac{t^{2}}{\sin ^{2} t} \mathbf{j}+\cos 2 t \mathbf{k}\right)$
(4. $\lim _{t \rightarrow 1}\left(\frac{t^{2}-t}{t-1} \mathbf{i}+\sqrt{t+8} \mathbf{j}+\frac{\sin \pi t}{\ln t} \mathbf{k}\right)$

By definition,

$$
\begin{aligned}
& \lim _{t \rightarrow 1}\left(\frac{t^{2}-t}{t-1} i+\sqrt{t+8} j+\frac{\sin (\pi t)}{\ln t} k\right) \\
& \quad=\left(\lim _{t \rightarrow 1} \frac{t^{2}-t}{t-1}\right) i+\left(\lim _{t \rightarrow 1} \sqrt{t+8}\right) j+\left(\lim _{t \rightarrow 1} \frac{\sin (\pi t)}{\ln t}\right) k
\end{aligned}
$$

But

$$
\begin{aligned}
& \operatorname{But}_{\lim _{t \rightarrow 1}} \frac{t^{2}-t}{t-1}=\lim _{t \rightarrow 1} \frac{t(t-1)}{t-1}=\lim _{t \rightarrow 1} t=1 \\
& \lim _{t \rightarrow 1} \sqrt{t+8}=\sqrt{\lim _{t \rightarrow 1} t+8}=\sqrt{1+8}=\sqrt{9}=3
\end{aligned}
$$

and

$$
\lim _{t \rightarrow 1} \frac{\sin (\pi t)}{\ln t} \stackrel{L H}{=} \lim _{t \rightarrow 1} \frac{\pi \cos (\pi t)}{1 / t}=\frac{\pi \cos \pi}{1 / 1}=-\pi
$$

Hence

$$
\begin{aligned}
& \lim _{t \rightarrow 1}\left(\frac{t^{2}-t}{t-1} i+\sqrt{t+8} j+\frac{\sin (\pi t)}{\ln t} k\right) \\
& \quad=\left(\lim \frac{t^{2}-t}{\ln }\right) i+(\lim \cdot \sqrt{t+8}) i+\left(\lim \frac{\sin (\pi t)}{\ln t}\right) k
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\left(\lim _{t \rightarrow 1} \frac{t^{2}-t}{t-1}\right)}_{i \rightarrow 1} i+(\underbrace{\lim _{t \rightarrow 1} \sqrt{t+8}}_{3 j}) j+\underbrace{\left.\lim _{t \rightarrow 1} \frac{\sin (\pi t)}{\ln t}\right) k}_{-\pi k} \\
& =\underbrace{}_{i} \\
& =i i+3 j-\pi k
\end{aligned}
$$

*This problem is not contained in the list given by the professor.

7-14 Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases.
7. $\mathbf{r}(t)=\langle\sin t, t\rangle$
8. $\mathbf{r}(t)=\left\langle t^{2}-1, t\right\rangle$
9. $\mathbf{r}(t)=\langle t, 2-t, 2 t\rangle$
10. $\mathbf{r}(t)=\langle\sin \pi t, t, \cos \pi t\rangle$
(3) $\gamma(t)=\langle t, 2-t, 2 t\rangle$.

The parametric equations are

$$
x=t, y=2-t, z=2 t
$$

Which is the parametric equations of the line through the point $(0,2,0)$ with direction vector $\langle 1,-1,2\rangle$.

17-20 Find a vector equation and parametric equations for the line segment that joins P to Q.
17. $P(2,0,0), Q(6,2,-2) \quad$ 18. $P(-1,2,-2), \quad Q(-3,5,1)$
(18) $P(-1,2,-2), Q(-3,5,1)$.

Let $\gamma_{0}=P(-1,2,-2)$ be a fixed point on the line. Then a direction vector

$$
\text { For } v=\langle-3,5,1\rangle-\langle-1,2,-2\rangle=\langle-2,3,3\rangle \text {. }
$$

Thus, a vector equation of the line is

$$
\begin{aligned}
\gamma & =\gamma_{0}+t v, 0 \leq t \leq 1 \text { for a line segment } \\
& =\langle-1,2,-2\rangle+t\langle-2,3,3\rangle, 0 \leq t \leq 1 \\
& =\langle-1-2 t, 2+3 t,-2+3 t\rangle, \quad 0 \leq t \leq 1
\end{aligned}
$$

So with $r=\langle x, y, z\rangle$

$$
x=-1-2 t, \quad y=2+3 t,-2+3 t
$$

is the parametric equation of the line.
31. At what points does the curve $\mathbf{r}(t)=t \mathbf{i}+\left(2 t-t^{2}\right) \mathbf{k}$ intersect the paraboloid $z=x^{2}+y^{2}$?

Since $r=x i+y_{j}+z k$, we have

$$
\begin{aligned}
& x_{i}+y_{j}+z k=t i+\left(2 t-t^{2}\right) k \\
\Rightarrow & x=t, \quad y=0, \quad z=2 t-t^{2}
\end{aligned}
$$

Plugging into the paraboloid, we have

$$
\begin{aligned}
& 2 t-t^{2}=t^{2}+0^{2} \\
\Rightarrow \quad & 2 t(1-t)=0 \\
\Rightarrow \quad & t=0,1 .
\end{aligned}
$$

Hence, the curve and the paraboloid intersect at $\gamma(0)$ and $\gamma(1)$. io. at $\left.1+n a t-t^{2}\right) \mid=(0,0,0)$ an $\left(t, 0,2 t-t^{2}\right) \mid=(1,0,1)$.

Hence, ine woure und … 1
i.e., at $\left.\left(t, 0,2 t-t^{2}\right)\right|_{t=0}=(0,0,0)$ and $\left.\left(t, 0,2 t-t^{2}\right)\right|_{t=1}=(1,0,1)$.
49. If two objects travel through space along two different curves, it's often important to know whether they will collide. (Will a missile hit its moving target? Will two aircraft collide?) The curves might intersect, but we need to know whether the objects are in the same position at the same time. Suppose the trajectories of two particles are given by the vector functions

$$
\mathbf{r}_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle \quad \mathbf{r}_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle
$$

for $t \geqslant 0$. Do the particles collide?
Assme the two particles callide at time to. Then $r_{1}\left(t_{0}\right)=r_{2}\left(t_{0}\right)$.
i.e;

$$
\begin{aligned}
& \left\langle t_{0}^{2}, 7 t_{0}-12, t_{0}^{2}\right\rangle=\left\langle 4 t_{0}-3, t_{0}^{2}, 5 t_{0}-6\right\rangle \\
& \Rightarrow\left\{\begin{array} { l }
{ t _ { 0 } ^ { 2 } = 4 t _ { 0 } ^ { - 3 } } \\
{ 7 t _ { 0 } - 1 2 = t _ { 0 } ^ { 2 } } \\
{ t _ { 0 } ^ { 2 } = 5 t _ { 0 } - 6 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ t _ { 0 } ^ { 2 } - 4 t _ { 0 } + 3 = 0 } \\
{ t _ { 0 } ^ { 2 } - 7 t _ { 0 } + 1 2 = 0 } \\
{ t _ { 0 } ^ { 2 } - 5 t _ { 0 } + 6 = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\left(t_{0}-1\right)\left(t_{0}-3\right)=0 \\
\left(t_{0}-3\right)\left(t_{0}-4\right)=0 \\
\left(t_{0}-2\right)\left(t_{0}-3\right)=0
\end{array}\right.\right.\right.
\end{aligned}
$$

$$
\Rightarrow\left\{\begin{array}{l}
t_{0}=1,3 \\
t_{0}=3,4 \\
t_{0}=2,3
\end{array} \Rightarrow t_{0}=3 \text { since this is the only thaie the thre } \quad \text { hold true for } r_{1}\left(t_{0}\right)=r_{2}\left(t_{0}\right) .\right.
$$

Hence, the partides intersect at line $t_{0}=3$ at the point

$$
\begin{aligned}
r_{1}(3)=r_{2}(3) & =\left.\left(t^{2}, 7 t-12, t^{2}\right)\right|_{t=3} \\
& =(9,9,9)
\end{aligned}
$$

