Sections 12.1: 5, 11, 13, 18, 44
5. What does the equation $x=4$ represent in \mathbb{R}^{2} ? What does it represent in \mathbb{R}^{3} ? Illustrate with sketches.

$x=4$ is a line parallel to y-anis passing though the x-axis at 4 in \mathbb{R}^{2}.

In $\mathbb{R}^{3}, x=4$ is the set $\{(x, y, z): x=4\}$, a plane.
11. Determine whether the points lie on a straight line.
(a) $A(2,4,2), \quad B(3,7,-2), \quad C(1,3,3)$
(b) $D(0,-5,5), \quad E(1,-2,4), \quad F(3,4,2)$

If A, B ard c are on a straight line, as shown, then

$$
|A C|=|A B|+|B C|
$$

where $|A C|$ is the distance between A and C.
ie, Distance between the farthest points is the sun of the other distances.
(a)

$$
\begin{aligned}
& |A B|=\sqrt{(2-3)^{2}+(4-7)^{2}+(2+2)^{2}}=\sqrt{1+9+16}=\sqrt{26} \\
& |A C|=\sqrt{(2-1)^{2}+(4-3)^{2}+(2-3)^{2}}=\sqrt{1+1+1}=\sqrt{3} \\
& |B C|=\sqrt{(3-1)^{2}+(7-3)^{2}+(-2-3)^{2}}=\sqrt{4+16+25}=\sqrt{45}=3 \sqrt{5}
\end{aligned}
$$

Thus,

$$
3 \sqrt{5} \neq \sqrt{3}+\sqrt{26}
$$

\Rightarrow The paints ane not on a straight line.
(b)

$$
\begin{aligned}
& |D E|=\sqrt{(0-1)^{2}+(-5+2)^{2}+(5-4)^{2}}=\sqrt{1+9+1}=\sqrt{11} \\
& |D F|=\sqrt{(0-3)^{2}+(-5-4)^{2}+(5-2)^{2}}=\sqrt{9+81+9}=\sqrt{99}=3 \sqrt{11} \\
& |E F|=\sqrt{(1-3)^{2}+(-2-4)^{2}+(4-2)^{2}}=\sqrt{4+36+4}=\sqrt{44}=2 \sqrt{11}
\end{aligned}
$$

Thus,

$$
|D E|+|E F|=\sqrt{11}+2 \sqrt{11}=3 \sqrt{11}=|D F|
$$

\Rightarrow The three points lie on a straight line.
13. Find an equation of the sphere with center $(-3,2,5)$ and radius 4 . What is the intersection of this sphere with the $y z$-plane?
Recall that

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=v^{2}
$$

is the equation of a sphere with center (a, b, c) and radius r.
Thus,

$$
\begin{aligned}
& \quad(x+3)^{2}+(y-2)^{2}+(z-5)^{2}=4^{2} \\
& \Rightarrow \quad(x+3)^{2}+(y-2)^{2}+(z-5)^{2}=16
\end{aligned}
$$

is the required equation.

17-20 Show that the equation represents a sphere, and find its center and radius.
17. $x^{2}+y^{2}+z^{2}-2 x-4 y+8 z=15$
18. $x^{2}+y^{2}+z^{2}+8 x-6 y+2 z+17=0$

By completing the squares,

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}+8 x-6 y+2 z+17=0 \\
\Rightarrow & \left(x^{2}+8 x\right)+\left(y^{2}-6 y\right)+\left(z^{2}+2 z\right)=-17 \\
\Rightarrow & \left(x^{2}+8 x+16\right)+\left(y^{2}-6 y+9\right)+\left(z^{2}+2 z+1\right)=16+9+1-17 \\
\Rightarrow & (x+4)^{2}+(y-3)^{2}+(z+1)^{2}=3^{2}
\end{aligned}
$$

Hence, the equation represents a sphere with center $(-4,3,-1)$ and ranis 3.
44. Consider the points P such that the distance from P to $A(-1,5,3)$ is twice the distance from P to $B(6,2,-2)$. Show that the set of all such points is a sphere, and find its center and radius.
Let $P=P(x, y, z)$. Then $|P A|=2|P B|$.

$$
\begin{aligned}
& \Rightarrow \sqrt{(x+1)^{2}+(y-5)^{2}+(z-3)^{2}}=2 \sqrt{(x-6)^{2}+(y-2)^{2}+(z+2)^{2}} \\
& \Rightarrow(x+1)^{2}+(y-5)^{2}+(z-3)^{2}=4\left((x-6)^{2}+(y-2)^{2}+(z+2)^{2}\right) \\
& \Rightarrow 4\left((x-6)^{2}+(y-2)^{2}+(z+2)^{2}\right)=(x+1)^{2}+(y-5)^{2}+(z-3)^{2} \\
& \Rightarrow 4\left(x^{2}-12 x+36+y^{2}-4 y+4+z^{2}+4 z+4\right)=x^{2}+2 x+1+y^{2}-10 y+25+z^{2}-6 z+9 \\
& 12
\end{aligned} 1
$$

$$
\begin{aligned}
& \Rightarrow 4\left(x^{2}-12 x+y^{2}-4 y+z^{2}+4 z\right)+176=x^{2}+2 x+y^{2}-10 y+z^{2}-6 z+35 \\
& \Rightarrow\left(4 x^{2}-x^{2}-48 x-2 x\right)+\left(4 y^{2}-y^{2}-16 y+10 y\right)+\left(4 z^{2}-z^{2}+16 z+6 z\right)=35-176 \\
& \Rightarrow\left(3 x^{2}-50 x\right)+\left(3 y^{2}-6 y\right)+\left(3 z^{2}+22 z\right)=-141 \\
& \Rightarrow\left(x^{2}-\frac{50}{3} x\right)+\left(y^{2}-2 y\right)+\left(z^{2}+\frac{22}{3} z\right)=-\frac{141}{3}
\end{aligned}
$$

Now, complete the squares.

$$
\begin{aligned}
\Rightarrow\left(x-\frac{25}{3}\right)^{2}+(y-1)^{2}+\left(z+\frac{11}{3}\right)^{2} & =\left(\frac{25}{3}\right)^{2}+1^{2}+\left(\frac{11}{3}\right)^{2}-\frac{141}{3} \\
& =\frac{625}{9}+1+\frac{121}{9}-\frac{141}{3} \\
& =\frac{625+9+121-423}{9} \\
& =\frac{332}{9}
\end{aligned}
$$

Hence, the set of all such points P lie on a sphere with center $\left(\frac{25}{3}, 1,-\frac{11}{3}\right)$ and radius $\frac{\sqrt{332}}{3}$.

Sections 12.2: 4, 17, 19, 24, 41
4. Write each combination of vectors as a single vector.
(a) $\overrightarrow{A B}+\overrightarrow{B C}$
(b) $\overrightarrow{C D}+\overrightarrow{D B}$
(c) $\overrightarrow{D B}-\overrightarrow{A B}$
(d) $\overrightarrow{D C}+\overrightarrow{C A}+\overrightarrow{A B}$

Using the triangle law in each case,
(a) $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$

(b) $\overrightarrow{C D}+\overrightarrow{D B}=\overrightarrow{C B}$

(c)

$$
\begin{aligned}
\overrightarrow{D B}-\overrightarrow{A B} & =\overrightarrow{D B}+(-\overrightarrow{A B}) \\
& =\overrightarrow{D B}+\overrightarrow{B A} \\
& =D \vec{A}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\overrightarrow{D C}+\overrightarrow{C A}+\overrightarrow{A B} & =(\overrightarrow{D C}+\vec{C})+(\overrightarrow{A B}) \\
& =\overrightarrow{D A}+\overrightarrow{A B} \\
& =\overrightarrow{D B}
\end{aligned}
$$

15-18 Find the sum of the given vectors and illustrate geometrically.
15. $\langle-1,4\rangle,\langle 6,-2\rangle$
16. $\langle 3,-1\rangle,\langle-1,5\rangle$
(17. $\langle 3,0,1\rangle,\langle 0,8,0\rangle$
18. $\langle 1,3,-2\rangle,\langle 0,0,6\rangle$
(17)

19-22 Find $\mathbf{a}+\mathbf{b}, 4 \mathbf{a}+2 \mathbf{b},|\mathbf{a}|$, and $|\mathbf{a}-\mathbf{b}|$.
19. $\mathbf{a}=\langle-3,4\rangle, \quad \mathbf{b}=\langle 9,-1\rangle$

$$
\begin{aligned}
& a+b=\langle-3,4\rangle+\langle 9,-1\rangle=\langle-3+9,4-1\rangle=\langle 6,3\rangle . \\
& 4 a+2 b=4\langle-3,4\rangle+2\langle 9,-1\rangle=\langle-12,16\rangle+\langle 18,-2\rangle=\langle 6,14\rangle \\
& |a|=|\langle-3,4\rangle|=\sqrt{(-3)^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5 \\
& a-b=\langle-3,4\rangle-\langle 9,-1\rangle=\langle-3-9,4+1\rangle=\langle-12,5\rangle \\
& |a-b|=|\langle-12,5\rangle|=\sqrt{(-12)^{2}+5^{2}}=\sqrt{144+25}=\sqrt{169}=13
\end{aligned}
$$

23-25 Find a unit vector that has the same direction as the given vector.
23. $\langle 6,-2\rangle$
24. $-5 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$
(24) $|-5 i+3 j-k|=\sqrt{(-5)^{2}+3^{2}+(-1)^{2}}=\sqrt{25+9+1}=\sqrt{35}$

Hence, a init vector with the same direction as the given vector is

$$
\frac{1}{\sqrt{35}}(-5 i+3 j-k)
$$

41. Find the unit vectors that are parallel to the tangent line to the parabola $y=x^{2}$ at the point $(2,4)$.

$$
y=x^{2} \Rightarrow \frac{d y}{d x}=2 x
$$

du $\left.1 \quad \ldots 1-y_{2}\right)=4$ is the slope of the tangent tine
ax

$$
\begin{array}{r}
\left.\Rightarrow \frac{d y}{d x}\right|_{x=2}=\left.2 x\right|_{x=2}=2(2)=4 \begin{array}{l}
\text { is the slope of the tangent hie } \\
\text { to } y=x^{2} \text { at }(2,4) .
\end{array} \\
(1,0)(-1,-8)
\end{array}
$$

This, tangent line at $(2,4)$

$$
y-4=4(x-2) \Rightarrow y=4 x-4
$$

So $(1,0)$ and $(2,4)$ lie on the tangent line
So $\pm\langle 2-1,4-0\rangle= \pm\langle 1,4\rangle$ are parallel vectors to the tangent hive.
Since

$$
| \pm\langle 1,4\rangle|=\sqrt{1+16}=\sqrt{17}
$$

it follows that the required unit vectors are $\pm \frac{1}{\sqrt{17}}(i+4 j)$.

