14.3 Partial Derivatives

In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say $y=b$, where b is a constant. Then we are really considering a function of a single variable x, namely, $g(x)=f(x, b)$. If g has a derivative at a, then we call it the partial derivative of f with respect to x at (a, b) and denote it by $f_{x}(a, b)$. Similarly, the partial derivative of f with respect to y at (a, b), denoted by $f_{y}(a, b)$, is obtained by keeping x fixed $(x=a)$ and finding the ordinary derivative at b of the function $G(y)=f(a, y)$.

If f is a function of two variables, its first partial derivatives are the functions f_{x} and f_{y} defined by

$$
\begin{aligned}
f_{x}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
f_{y}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

So while we find a partial derivative of a function f with respect to a variable, we consider the other variables as constants and take the ordinary derivative of f.

Example 1 Find $f_{x}(2,1)$ and $f_{y}(2,1)$ for function $f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}$.
Example 2 Use implicit differentiation to calculate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for function $e^{z}=x y z$.

Second-Order Partial Derivatives

The first partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ of a function $f(x, y)$ of the two variables x and y are also functions of x and y. As such, we may differentiate each of the functions f_{x} and f_{y} to obtain the second-order partial derivatives of f.

Example 3 Find all the second partial derivative of $v=\sin \left(s^{2}-t^{2}\right)$.
Example 4 For function $u=e^{x} \sin y$, show $u_{x x}+u_{y y}=0$ which is called the Laplace's equation.

Homework

$15,17,19,25,33,41,44,47,53,56,64,66,76$ b, 76 c

