14.4 Tangent Planes and Linear Approximations

Definition Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point P(a, b, c) is

$$z - c = f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

The linear function whose graph is this tangent plane namely,

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the **linerization** of f at (a, b) and the approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the **linear approximation** or the **tangent plane approximation** of f at (a, b).

Example 1 Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

Definition If z = f(x, y), then f is **differentiable** at (a, b) if Δz can be expressed in the form

$$\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \epsilon_1\Delta x + \epsilon_2\Delta y$$

where ϵ_1 and $\epsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.

It is sometimes hard to use the definition of differentiable directly check the differentiability of a function, but the next theorem provides a convenient sufficient condition for differentiability.

Theorem If partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Example 2 Show that $f(x,y) = xe^{xy}$ is differentiable at (1,0) and find its linearization there. Then use it to approximate f(1.1, -0.1)

Definition For a differentiable function of two variables, z = f(x, y), we define the **differentials** dx and dy to be independent variables; that is, they can be given any values. Then the **differential** dz, also called the total differential, is defined by

$$dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

Example 3

(a) If $z = x^2 + 3xy - y^2$, find the differential dz.

⁽b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of Δz and dz.

Homework

 $1,\,6,\,11,\,25,\,27,\,29$