14.5 The Chain Rule

The Chain Rule (Case 1) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and $dz = \partial f dx = \partial f dy$

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Example 1 If $z = x^2y + 3xy^4$, where $x = \sin 2t$ and $y = \cos 2t$, find dz/dt when t = 0.

The Chain Rule (Case 2) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

 $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s} \qquad \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$

Example 2 If $z = e^x \sin y$, where $x = st^2$, and $y = s^2t$, find $\partial z/\partial s$ and $\partial z/\partial t$.

The Chain Rule (General Version) Suppose that u is a differentiable function of the n variables x_1, x_2, \dots, x_n and each x_j is a differentiable function of the m variables t_1, t_2, \dots, t_m . Then u is a function of t_1, t_2, \dots, t_m and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

for each $i = 1, 2, \cdots, m$

Example 3 If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find $\partial u/\partial s$ when r = 2, s = 1, t = 0.

Implicit Differentiation

Now suppose that z is given implicitly as a function z = f(x, y) by an equation of the form F(x, y, z) = 0. Then we have the following formulas

$$\frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial z} = -\frac{F_x}{F_z} \text{ and } \frac{\partial z}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial z} = -\frac{F_y}{F_z} \cdots \cdots \cdots (\boldsymbol{k})$$

A version of the **Implicit Function Theorem** stipulates conditions under which our assumption is valid: if F is defined within a sphere containing (a, b, c), where F(a, b, c) = 0, $F_z(a, b, c) \neq 0$, and F_x, F_y , and F_z are continuous inside the sphere, then the equation F(x, y, z) = 0 defines z as a function of x and y near the point (a, b, c) and this function is differentiable, with partial derivatives given by (\mathbf{A}) .

Example 4 Find $\partial z/\partial x$ and $\partial z/\partial y$ if $x^3 + y^3 + z^3 + 6xyz = 1$.

Homework 1, 2, 3, 7, 11, 21, 31,32