14.5 The Chain Rule

The Chain Rule (Case 1) Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are both differentiable functions of t. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Example 1 If $z=x^{2} y+3 x y^{4}$, where $x=\sin 2 t$ and $y=\cos 2 t$, find $d z / d t$ when $t=0$.
The Chain Rule (Case 2) Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(s, t)$ and $y=h(s, t)$ are differentiable functions of s and t. Then

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

Example 2 If $z=e^{x} \sin y$, where $x=s t^{2}$, and $y=s^{2} t$, find $\partial z / \partial s$ and $\partial z / \partial t$.

The Chain Rule (General Version) Suppose that u is a differentiable function of the n variables $x_{1}, x_{2}, \cdots, x_{n}$ and each x_{j} is a differentiable function of the m variables $t_{1}, t_{2}, \cdots, t_{m}$. Then u is a function of $t_{1}, t_{2}, \cdots, t_{m}$ and

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}
$$

for each $i=1,2, \cdots, m$

Example 3 If $u=x^{4} y+y^{2} z^{3}$, where $x=r s e^{t}, y=r s^{2} e^{-t}$, and $z=r^{2} s \sin t$, find $\partial u / \partial s$ when $r=2, s=1, t=0$.

Implicit Differentiation

Now suppose that z is given implicitly as a function $z=f(x, y)$ by an equation of the form $F(x, y, z)=0$. Then we have the following formulas

$$
\begin{equation*}
\frac{\partial z}{\partial x}=-\frac{\partial F / \partial x}{\partial F / \partial z}=-\frac{F_{x}}{F_{z}} \text { and } \frac{\partial z}{\partial y}=-\frac{\partial F / \partial y}{\partial F / \partial z}=-\frac{F_{y}}{F_{z}} . \tag{ix}
\end{equation*}
$$

A version of the Implicit Function Theorem stipulates conditions under which our assumption is valid: if F is defined within a sphere containing (a, b, c), where $F(a, b, c)=0, F_{z}(a, b, c) \neq 0$, and F_{x}, F_{y}, and F_{z} are continuous inside the sphere, then the equation $F(x, y, z)=0$ defines z as a function of x and y near the point (a, b, c) and this function is differentiable, with partial derivatives given by (z).
Example 4 Find $\partial z / \partial x$ and $\partial z / \partial y$ if $x^{3}+y^{3}+z^{3}+6 x y z=1$.
Homework 1, 2, 3, 7, 11, 21, 31,32

