14.6 Directional Derivatives and the Gradient Vector

1. The directional derivative of a two variable function f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if this limit exists.
2. The directional derivative of a three variable function f at $\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b, c\rangle$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}, z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b, z_{0}+h c\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{h}
$$

if this limit exists.

Theorem 1. If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b\rangle$ and

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b
$$

2. Similarly if f is a differentiable function of x, y, and z, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b, c\rangle$ and

$$
D_{\mathbf{u}} f(x, y, z)=f_{x}(x, y, z) a+f_{y}(x, y, z) b+f_{z}(x, y, z) c
$$

For a two variable functions, if the unit vector \mathbf{u} makes an angle θ with the positive x-axis, then we can write $\mathbf{u}=\langle\cos \theta, \sin \theta\rangle$ and the formula in Theorem 3 becomes

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) \cos \theta+f_{y}(x, y) \sin \theta
$$

Example 1 Find the directional derivative of $f(x, y)=x^{3}-3 x y+4 y^{2}$ at the point $(1,2)$ in the direction indicated by the angle $\theta=\pi / 6$.

Example 2 Find the directional derivative of $f(x, y)=x^{2} y^{3}-4 y$ at the point $(2,-1)$ in the direction of the vector $\mathbf{v}=2 \mathbf{i}+5 \mathbf{j}$

Definition If f is a function of two variables x and y, then the gradient of f is the vector function, represented by ∇f, defined by

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

Similarly, if f is a function of three variables x, y, and z, then the gradient of f is

$$
\nabla f(x, y, z)=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

By the gradient vector of a differentiable function f we can rewrite the directional derivative as

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}
$$

For three variable function it is

$$
D_{\mathbf{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \mathbf{u}
$$

Example 3 For function $f(x, y, z)=x^{2} y z-x y z^{3}$, (a) Find the gradient of f, (b) Evaluate the gradient at the point $P(2,-1,1)$, (c) Find the rate of change of f at P in the direction of the vector $\mathbf{u}=\langle 0,4 / 5,-3 / 5\rangle$, (d) Express $D_{\mathbf{u}} f(x, y, z)$ by dot product of the gradient vector and the unit direction vector.

Homework 5, 6, 7, 10, 11, 13, 15

