15.1 Double Integrals over Rectangles

Definition The **double integral** of f over the rectangle R is

$$\iint\limits_R f(x,y)dA = \lim\limits_{m,n\to\infty} \sum\limits_{i=1}^m \sum\limits_{j=1}^n f(x_{ij}^*,y_{ij}^*) \Delta A$$

if this limit exists.

A function f is called **integrable** if the limit in the definition exists. The sum $\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*)$

is called a **double Riemann sum** and is used as an approximation to the value of the double integral.

If $f(x, y) \ge 0$, then the volume V of the solid that lies above the rectangle R and below the surface z = f(x, y) is

$$V = \iint_R f(x, y) \ dA$$

Example 1 Estimate the volume of the solid that lies above the square $R = [0, 2] \times [0, 2]$ and below the elliptic paraboloid $z = 16 - x^2 - 2y^2$. Divide R into four equal squares and choose the sample point to be the upper right corner of each square R_{ij} . Sketch the solid and the approximating rectangular boxes.

Midpoint Rule for Double Integrals

$$\iint_{R} f(x,y) dA \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

where \bar{x}_i is the midpoint of $[x_{i-1}, x_i]$ and \bar{y}_j is the midpoint of $[y_{j-1}, y_j]$.

Example 2 Use the Midpoint Rule with m = n = 2 to estimate the value of the integral $\int \int_{R} (x - 3y^2) dA$, where $R = \{(x, y) | 0 \le x \le 2, 1 \le y \le 2\}$.

Iterated Integrals

Suppose f is a function of two variables that is integrable on the ractangle $R = [a, b] \times [c, d]$, then

$$\int_{R} \int f(x,y) dy dx = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) dy \right] dx$$

The integral on the right side is called **iterated integral**.

Example 3 Evaluate the iterated integral $\int_{-3}^{3} \int_{0}^{\pi/2} (y + y^2 \cos x) dx dy$.

Fubini's Theorem If f is continuous on the rectangle $R = \{(x, y) | a \le x \le b, c \le y \le d\}$, then

$$\iint_{R} f(x,y)dA = \int_{a}^{b} \int_{c}^{d} f(x,y)dydx = \int_{c}^{d} \int_{a}^{b} f(x,y)dxdy$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Example 4 Evaluate $\int \int_{R} \frac{xy^2}{x^2 + 1} dA$, where $R = \{(x, y) | 0 \le x \le 1, -3 \le y \le 3\}$.

$$\iint_{R} g(x)h(y)dA = \int_{a}^{b} g(x)dx \int_{c}^{d} h(y)dy \text{ where } R = [a,b] \times [c,d]$$

The Average Value of a function of two variables defined on a rectangle R to be

$$f_{ave} = \frac{1}{A(R)} \iint_{R} f(x, y) dA$$

where A(R) is the area of R.

Example 5 Find the average value of $f = x^2 y$ over the given rectangle whose vertices are (-1,0), (-1,5), (1,5),and (1,0)

Homework 6, 8, 10, 18, 32, 34, 36, 48

15.2 Double Integrals over General Regions

1. Suppose $g_1(x)$ and $g_2(x)$ are continuous functions on [a, b] and the region R is defined by $R = \{(x, y)|g_1(x) \le y \le g_2(x); a \le x \le b\}$ (type I). Then

$$\iint_{R} f(x,y)dA = \int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} f(x,y)dy \right] dx$$

2. Suppose $h_1(y)$ and $h_2(y)$ are continuous functions on [c, d] and the region R is defined by $R = \{(x, y) | h_1(x) \le x \le h_2(x); c \le y \le d\}$ (type II). Then

$$\iint_{R} f(x,y)dA = \int_{c}^{d} \left[\int_{h_{1}(y)}^{h_{2}(y)} f(x,y)dx \right] dy$$

Example 1 Evaluate the double integral $\iint_D (x+2y)dA$, D is the region bounded by $y = 2x^2$, $y = 1 + x^2$, $x \ge 0$.

Properties of Double Integrals

We assume that all of the following integrals exist.

1.
$$\iint_{D} [f(x,y) + g(x,y)] dA = \iint_{D} f(x,y) dA + \iint_{D} g(x,y) dA$$

2.
$$\iint_{D} cf(x,y) dA = c \iint_{D} f(x,y) dA \text{ where } c \text{ is a constant.}$$

3. If $f(x,y) \ge g(x,y)$ in D , then $\iint_{D} f(x,y) dA \ge \iint_{D} g(x,y) dA$
4. If $D = D_1 \cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries, then $\iint_{D} f(x,y) dA = \iint_{D_1} f(x,y) dA + \iint_{D_2} f(x,y) dA$
5. If we integrate constant function $f(x,y) = 1$ over a region D , we get the area of D :
 $\iint_{D} 1 dA = A(D)$
6. If $m \le f(x,y) \le M$ for all (x,y) in D , then $mA(D) \le \iint_{D} f(x,y) dA \le MA(D)$.

Example 2 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region D in the xy- plane bounded by the line y = 2x and the parabola $y = x^2$.

Example 3 Evaluate the double integral $\iint_D xy \, dA$, where *D* is the region bounded by the line y = x - 1 and the parabola $y^2 = 2x + 6$.

Example 4 Find the volume of the tetrahedron enclosed by the plane x + 2y + z = 2, x = 2y, x = 0 and z = 0.

Example 5 Sketch the region of integration and change the order of integration. $\int_0^{\pi/2} \int_0^{\cos x} f(x, y) dy dx$.

Example 6 Use Property 6 to estimate the integral $\iint_{D} e^{\sin x \cos x} dA$, where D is the disk with center the origin and radius 2.

Homework 4, 8, 17, 21, 23, 25, 26, 28, 31, 36, 45, 49, 56, 60