15.1 Double Integrals over Rectangles

Definition The double integral of f over the rectangle R is

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

if this limit exists.
A function f is called integrable if the limit in the definition exists. The sum $\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right)$ is called a double Riemann sum and is used as an approximation to the value of the double integral.

If $f(x, y) \geq 0$, then the volume V of the solid that lies above the rectangle R and below the surface $z=f(x, y)$ is

$$
V=\iint_{R} f(x, y) d A
$$

Example 1 Estimate the volume of the solid that lies above the square $R=[0,2] \times[0,2]$ and below the elliptic paraboloid $z=16-x^{2}-2 y^{2}$. Divide R into four equal squares and choose the sample point to be the upper right corner of each square $R_{i j}$. Sketch the solid and the approximating rectangular boxes.

Midpoint Rule for Double Integrals

$$
\iint_{R} f(x, y) d A \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

where \bar{x}_{i} is the midpoint of $\left[x_{i-1}, x_{i}\right]$ and \bar{y}_{j} is the midpoint of $\left[y_{j-1}, y_{j}\right]$.

Example 2 Use the Midpoint Rule with $m=n=2$ to estimate the value of the integral $\iint_{R}\left(x-3 y^{2}\right) d A$, where $R=\{(x, y) \mid 0 \leq x \leq 2,1 \leq y \leq 2\}$.

Iterated Integrals

Suppose f is a function of two variables that is integrable on the ractangle $R=[a, b] \times[c, d]$, then

$$
\int_{R} \int f(x, y) d y d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

The integral on the right side is called iterated integral.
Example 3 Evaluate the iterated integral $\int_{-3}^{3} \int_{0}^{\pi / 2}\left(y+y^{2} \cos x\right) d x d y$.

Fubini's Theorem If f is continuous on the rectangle $R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Example 4 Evaluate $\iint_{R} \frac{x y^{2}}{x^{2}+1} d A$, where $R=\{(x, y) \mid 0 \leq x \leq 1,-3 \leq y \leq 3\}$.

$$
\iint_{R} g(x) h(y) d A=\int_{a}^{b} g(x) d x \int_{c}^{d} h(y) d y \text { where } R=[a, b] \times[c, d]
$$

The Average Value of a function of two variables defined on a rectangle R to be

$$
f_{\text {ave }}=\frac{1}{A(R)} \iint_{R} f(x, y) d A
$$

where $A(R)$ is the area of R.

Example 5 Find the average value of $f=x^{2} y$ over the given rectangle whose vertices are $(-1,0),(-1,5),(1,5)$, and $(1,0)$

Homework 6, 8, 10, 18, 32, 34, 36, 48

15.2 Double Integrals over General Regions

1. Suppose $g_{1}(x)$ and $g_{2}(x)$ are continuous functions on $[a, b]$ and the region R is defined by $R=\left\{(x, y) \mid g_{1}(x) \leq y \leq g_{2}(x) ; a \leq x \leq b\right\}$ (type I). Then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right] d x
$$

2. Suppose $h_{1}(y)$ and $h_{2}(y)$ are continuous functions on $[c, d]$ and the region R is defined by $R=\left\{(x, y) \mid h_{1}(x) \leq x \leq h_{2}(x) ; c \leq y \leq d\right\}$ (type II). Then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d}\left[\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right] d y
$$

Example 1 Evaluate the double integral $\iint_{D}(x+2 y) d A, D$ is the region bounded by $y=2 x^{2}$, $y=1+x^{2}, x \geq 0$.

Properties of Double Integrals

We assume that all of the following integrals exist.

1. $\iint_{D}[f(x, y)+g(x, y)] d A=\iint_{D} f(x, y) d A+\iint_{D} g(x, y) d A$
2. $\iint_{D} c f(x, y) d A=c \iint_{D} f(x, y) d A$ where c is a constant.
3. If $f(x, y) \geq g(x, y)$ in D, then $\iint_{D} f(x, y) d A \geq \iint_{D} g(x, y) d A$
4. If $D=D_{1} \cup D_{2}$, where D_{1} and D_{2} don't overlap except perhaps on their boundaries, then $\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A$
5. If we integrate constant function $f(x, y)=1$ over a region D, we get the area of D : $\iint_{D} 1 d A=A(D)$
6. If $m \leq f(x, y) \leq M$ for all (x, y) in D, then $m A(D) \leq \iint_{D} f(x, y) d A \leq M A(D)$.

Example 2 Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$ and above the region D in the $x y$ - plane bounded by the line $y=2 x$ and the parabola $y=x^{2}$.

Example 3 Evaluate the double integral $\iint_{D} x y d A$, where D is the region bounded by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.

Example 4 Find the volume of the tetrahedron enclosed by the plane $x+2 y+z=2, x=2 y$, $x=0$ and $z=0$.

Example 5 Sketch the region of integration and change the order of integration. $\int_{0}^{\pi / 2} \int_{0}^{\cos x} f(x, y) d y d x$.
Example 6 Use Property 6 to estimate the integral $\iint_{D} e^{\sin x \cos x} d A$, where D is the disk with center the origin and radius 2 .

Homework 4, 8, 17, 21, 23, 25, 26, 28, 31, 36, 45, 49, 56, 60

