15.3 Double Integrals in Polar Coordinates

Change to Polar Coordinates in a Dobule Integral

If f(x, y) is continuous on a polar rectangle R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint\limits_R f(x,y)dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta$$

The formula says that we convert from rectangular to polar coordinates in a double integral by writing $x = r \cos \theta$ and $y = r \sin \theta$, using the appropriate limits of integration for r and θ , and replacing dA by $rdrd\theta$.

Example 1 Sketch the region whose area is given by the integral $\int_{\pi/2}^{\pi} \int_{0}^{2\sin\theta} r dr d\theta$ and evaluate the integral.

Example 2 Evaluate $\iint_R \frac{y^2}{y^2 + x^2} dA$ by changing to polar coordinate, where R is the region that lie between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ with 0 < a < b.

Example 3 Evaluate $\iint_D e^{-x^2-y^2} dA$ by changing to polar coordinate, where D is the region bounded by the semi-circle $x = \sqrt{4-y^2}$ and the *y*-axis.

Example 4 Find the volume of the solid bounded by the plane 2x + y + z = 4 and above disk $x^2 + y^2 \le 1$.

Example 5 Find the volume of the solid which is the intersection of the interior of the sphere $x^2 + y^2 + z^2 = 16$ and the outside of the cylinder $x^2 + y^2 = 4$.

If f is continuous on a polar region of the form $D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_1(\theta) \leq r \leq h_2(\theta)\}$ then $\int \int \int \int d\theta d\theta d\theta d\theta d\theta$

$$\iint_{D} f(x,y)dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r\cos\theta, r\sin\theta)rdrd\theta$$

Example 6 Use double integral to find the area enclosed by one loop of the four leaved rose $r = \cos 2\theta$.

Example 7 Use double integral to find the area enclosed by one loop of the three leaved rose $r = \cos 3\theta$.

Homework 5, 7, 8, 9 18, 20, 24