15.3 Double Integrals in Polar Coordinates

Change to Polar Coordinates in a Dobule Integral

If $f(x, y)$ is continuous on a polar rectangle R given by $0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta$, where $0 \leq \beta-\alpha \leq 2 \pi$, then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

The formula says that we convert from rectangular to polar coordinates in a double integral by writing $x=r \cos \theta$ and $y=r \sin \theta$, using the appropriate limits of integration for r and θ, and replacing $d A$ by $r d r d \theta$.
Example 1 Sketch the region whose area is given by the integral $\int_{\pi / 2}^{\pi} \int_{0}^{2 \sin \theta} r d r d \theta$ and evaluate the integral.
Example 2 Evaluate $\iint_{R} \frac{y^{2}}{y^{2}+x^{2}} d A$ by changing to polar coordinate, where R is the region that lie between the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2} \quad$ with $0<a<b$.
Example 3 Evaluate $\iint_{D} e^{-x^{2}-y^{2}} d A$ by changing to polar coordinate, where D is the region bounded by the semi-circle $x=\sqrt{4-y^{2}}$ and the y-axis.

Example 4 Find the volume of the solid bounded by the plane $2 x+y+z=4$ and above disk $x^{2}+y^{2} \leq 1$.

Example 5 Find the volume of the solid which is the intersection of the interior of the sphere $x^{2}+y^{2}+z^{2}=16$ and the outside of the cylinder $x^{2}+y^{2}=4$.

If f is continuous on a polar region of the form $D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}$ then

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Example 6 Use double integral to find the area enclosed by one loop of the four leaved rose $r=\cos 2 \theta$.

Example 7 Use double integral to find the area enclosed by one loop of the three leaved rose $r=\cos 3 \theta$.

Homework 5, 7, 8, 9 18, 20, 24

