15.7 Triple Integrals in Cylindrical Coordinates

Cylindrical Coordinates

In three dimensions there is a coordinate system, called cylindrical coordinates, that is similar to polar coordinates.

In the cylindrical coordinate system, a point P in three-dimensional space is represented by the ordered triple (r, θ, z), where r and θ are polar coordinates of the projection of P onto the $x y$-plane and z is the directed distance from the $x y$-plane to P.

To convert from cylindrical to rectangular coordinates, we use the equations

$$
x=r \cos \theta \quad y=r \sin \theta \quad z=z
$$

whereas to convert from rectangular to cylindrical coordinates, we use

$$
r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x} \quad z=z
$$

Evaluating Triple Integrals with Cylindrical Coordinates

Suppose that E is a type 1 region whose projection D onto the $x y$-plane is conveniently described in polar coordinates. In particular suppose that f is continuous and

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

where D is given in polar coordinates by

$$
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

then the formula for triple integration in cylindrical coordinates becomes,

$$
\iiint_{E} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

It is worthwhile to use this formula when E is a solid region easily described in cylindrical coordinates, and especially when the function $f(x, y, z)$ involves the expression $x^{2}+y^{2}$.
Example 1 Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$ where E is the region that lies inside cylinder $x^{2}+y^{2}=16$ and between the planes $z=-5$ and $z=4$.
Example 2 Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.

Example 3 Find the volume of the solid that is enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=2$.

Homework exercise 18, 22, 24, Example 3, Example 4.

