15.8 Triple Integrals in Spherical Coordinates

Another useful coordinate system in three dimensions is the spherical coordinate system. It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in space, where $\rho=|O P|$ is the distance from the origin to P, θ is the same angle as in cylindrical coordinates, and ϕ is the angle between the positive z-axis and the line segment $O P$. Note that

$$
\rho \geq 0 \text { and } 0 \leq \phi \leq \pi .
$$

The spherical coordinate system is especially useful in problems where there is symmetry about a point, and the origin is placed at this point.

The relationship between rectangular and spherical coordinates can be seen as follows. From triangles $O P Q$ and $O P P^{\prime}$ we have

$$
z=\rho \cos \phi, \quad r=\rho \sin \phi
$$

(a)

(b) But $x=r \cos \theta$ and $y=r \cos \theta$, so to convert from spherical to rectangular coordinates, we use the equations
$x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta$ and $z=\rho \cos \phi$

$$
\rho^{2}=x^{2}+y^{2}+z^{2}
$$

Evaluating Triple integrals with spherical coordinates

In the spherical coordinate system the counterpart of a rectangular box is a spherical wedge

$$
E=\{(\rho, \theta, \phi) \mid a \leq \rho \leq b, \quad \alpha \leq \theta \leq \beta, \quad c \leq \phi \leq d\}
$$

where $a \geq 0 \quad$ and $\quad \beta-\alpha \leq 2 \phi, \quad$ and $d-c \leq \phi$.
Formula for triple integration in spherical coordinates

$$
\iiint_{E} f(x, y, z) d V=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

where E is a spherical wedge given by

$$
E=\{(\rho, \theta, \phi) \mid a \leq \rho \leq b, \quad \alpha \leq \theta \leq \beta, \quad c \leq \phi \leq d\}
$$

Example 1 The point $(2, \pi / 4, \pi / 3)$ is given in spherical coordinates. Plot the point and find its rectangular coordinates.

Example 2 The point $(0,2 \sqrt{3},-2)$ is given in rectangular coordinates. Find spherical coordinates for this point.

Example 3 Evaluate $\iint_{E} e^{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} d V$, where B is the unit ball: $B=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$
Example 4 Use spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$.

Homework 4, 5, 7, 11, 13, 15, 19, 21

