15.8 Triple Integrals in Spherical Coordinates

Another useful coordinate system in three dimensions is the **spherical coordinate system**. It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

Spherical Coordinates

The spherical coordinates (ρ, θ, ϕ) of a point P in space, where $\rho = |OP|$ is the distance from the origin to P, θ is the same angle as in cylindrical coordinates, and ϕ is the angle between the positive z-axis and the line segment OP. Note that

$$\rho \geq 0$$
 and $0 \leq \phi \leq \pi$.

The spherical coordinate system is especially useful in problems where there is symmetry about a point, and the origin is placed at this point.

The relationship between rectangular and spherical coordinates can be seen as follows. From triangles OPQ and OPP' we have

$$\cos\phi, \qquad r = \rho\sin\phi$$

(b) But $x = r \cos \theta$ and $y = r \cos \theta$, so to convert from spherical to rectangular coordinates, we use the equations

 $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ and $z = \rho \cos \phi$

$$\rho^2 = x^2 + y^2 + z^2$$

Evaluating Triple integrals with spherical coordinates

In the spherical coordinate system the counterpart of a rectangular box is a **spherical wedge**

$$E = \{ (\rho, \theta, \phi) | a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d \}$$

where $a \ge 0$ and $\beta - \alpha \le 2\phi$, and $d - c \le \phi$.

Formula for triple integration in spherical coordinates

$$\iiint_E f(x, y, z)dV = \int_c^d \int_\alpha^\beta \int_a^b f(\rho \sin \phi \cos \theta, \ \rho \sin \phi \sin \theta, \ \rho \cos \phi)\rho^2 \sin \phi \ d\rho \ d\theta \ d\phi$$

where E is a spherical wedge given by

 $E = \{ (\rho, \theta, \phi) | a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d \}$

Example 1 The point $(2, \pi/4, \pi/3)$ is given in spherical coordinates. Plot the point and find its rectangular coordinates.

Example 2 The point $(0, 2\sqrt{3}, -2)$ is given in rectangular coordinates. Find spherical coordinates for this point.

Example 3 Evaluate $\iint_{E} e^{(x^2+y^2+z^2)^{\frac{3}{2}}} dV$, where *B* is the unit ball: $B = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$

Example 4 Use spherical coordinates to find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.

Homework 4, 5, 7, 11, 13, 15, 19, 21