Chapter 16 Vector Complex

16.1 Vector Fields

Definition (1). Let D be a set in \mathbb{R}^{2} (a plane region). A vector field on \mathbb{R}^{2} is a function \mathbf{F} that assigns to each point (x, y) in D a two-dimensional vector $F(x, y)$.

Since $\mathbf{F}(x, y)$ is a two-dimensional vector, we can write it in terms of its component functions P and Q as follows:

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\langle P(x, y), Q(x, y)\rangle
$$

(2). Let E be a subset of \mathbb{R}^{3}. A vector field on \mathbb{R}^{3} is a function \mathbf{F} that assigns to each point (x, y, z) in E a three-dimensional vector $F(x, y, z)$.

We can express a vector field in three dimensional space in terms of its component functions P, Q, and R as

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

Example 1 A vector field on \mathbb{R}^{2} is defined by $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$. Described \mathbf{F} by sketching some of the vectors $\mathbf{F}(x, y)$.

Example 2 Sketch the vector field on \mathbb{R}^{3} given by $\mathbf{F}(x, y, z)=z \mathbf{k}$.

Gradient Fields

If f is a scalar function of two variables, then its gradient ∇f is defined by

$$
\nabla f(x, y)=f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j}
$$

Therefore ∇f is really a vector field on \mathbb{R}^{2} and is called a gradient vector field. Likewise, if f is a scalar function of three variables, its gradient is a vector field on \mathbb{R}^{3} is given by

$$
\nabla f(x, y, z)=f_{x}(x, y, z) \mathbf{i}+f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}
$$

Example 3 Find the gradient vector field of $f(x . y, z)=x^{2} y-y^{3}$. Plot the gradient vector field together with a contour map of f. How are they related?

Homework 1, 11, 13.

16.2 Line Integrals

Outcome 1: Evaluate the line integral of a function along a piecewise smooth curve with respect to arc length.

In this section we define an integral that is similar to a single integral except that instead of integrating over an interval $[a, b]$, we integrate over a curve C, and such integrals are called line integrals.

We start with a plane curve C given by the parametric equations

$$
\begin{equation*}
x=x(t) \quad y=y(t) \quad a \leq t \leq b \tag{1}
\end{equation*}
$$

or, equivalently, by the vector equation $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, and we assume that C is a smooth curve. (This means that \mathbf{r}^{\prime} is continuous and $\left.\mathbf{r}^{\prime}(t) \neq 0\right)$.

Definition (1) If f is defined on a smooth curve C given by Equations 1, then the line integral of f along C is

$$
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

if this limit exists.
In previous classes, section 10.2, the length of C should have been shown as

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

A similar type of argument can be used to show that if f is a continuous function, then the limit in the definition always exists and the following formula can be used to evaluate the line integral:

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

The value of the line integral does not depend on the parametrization of the curve, provided that the curve is traversed exactly once as t increases from a to b.

If f is a positive function i.e. $f(x, y) \geq 0, \int_{C} f(x, y) d s$ represents the area of one side of the "fence" or "curtain", whose base is C and whose height above the point (x, y) is $f(x, y)$.

Example 1 Evaluate the line integral $\int_{C} x y^{4} d s$ where C is the right half of the circle $x^{2}+y^{2}=16$.
If C is a piecewise-smooth curve; that is C is a union of a finite number of smooth curves $C_{1}, C_{2}, \cdots, C_{n}$, then

$$
\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s+\cdots+\int_{C_{n}} f(x, y) d s
$$

Example 2 Evaluate $\int_{C} 2 x d s$, where C consists of the arc C_{1} of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ followed by the vertical line segment C_{2} from $(1,1)$ to $(1,2)$.

Outcome 2: Find the mass and center of mass of a thin wire given its shape and linear density.
Any physical interpretation of a line integral $\int_{C} f(x, y) d s$ depends on the physical interpretation of the function f. Suppose that $\rho(x, y)$ represents the linear density at a point (x, y) of a thin wire shaped like a curve C. Then the mass of the part of the wire from P_{i-1} to P_{i} is approximately $\rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}$ and so the total mass of the wire is approximately $\sum \rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}$. By taking more and more points on the curve, we obtain the mass m of the wire as the limiting value of these approximations:

$$
m=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}=\int_{C} \rho(x, y) d s
$$

The center of mass of the wire with density function ρ is located at the point (\bar{x}, \bar{y}), where

$$
\bar{x}=\frac{1}{m} \int_{C} x \rho(x, y) d s, \quad \bar{y}=\frac{1}{m} \int_{C} y \rho(x, y) d s
$$

Two other line integrals are obtained by replacing Δs_{i} by either $\Delta x_{i}=x_{i}-x_{i-1}$ or $\Delta y_{i}=$ $y_{i}-y_{i-1}$ in Definition (\star). They are called the line integrals of f along C with respect to x and y, They can be evaluated by expressing everything in terms of $t: x=x(t), y=y(t), d x=x^{\prime}(t) d t$, $d y=y^{\prime}(t) d t$,

$$
\int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \quad \int_{C} f(x, y) d y=\int_{a}^{b} f\left(x(t), y(t) y^{\prime}(t) d t\right.
$$

It frequently happens that line integrals with respect to x and y occur together. When this happens, it's customary to abbreviate by writing

$$
\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y=\int_{C} P(x, y) d x+Q(x, y) d y
$$

When we are setting up a line integral, sometimes the most difficult thing is to think of a parametric representation for a curve whose geometric description is given. In particular, we often need to parametrize a line segment, so it's useful to remember that a vector representation of the line segment that starts at \mathbf{r}_{0} and ends at \mathbf{r}_{1} is given by

$$
\mathbf{r}(t)=(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1}, \quad 0 \leq t \leq 1
$$

Example 3 Evaluate the line integral $\int_{C} x^{2} d x+y^{2} d y, C$ consists of the arc of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$ followed by the line segment from $(0,2)$ to $(4,3)$.

Line Integrals in Space

Outcome 3: Evaluate the line integral of a function along piecewise smooth curve with respect to x, y, or z.

We now suppose that C is a smooth space curve given by the parametric equations

$$
x=x(t) \quad y=y(t) \quad z=z(t) \quad a \leq t \leq b
$$

or by a vector equation $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$. The definition line integral in space can be given by a similar method of two dimensional space. We evaluate the line integral in space as following,

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

- The line integrals in 2D and 3D can be written in the more compact notation $\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t$.
- For the special case $f(x, y, z)=1$, we get $\int_{C} d s=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t=L$ where L is the length of the curve C.
- Line integrals along C with respect to x, y, and z can also be defined as follow;
$\int_{C} f(x, y, z) d x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t$
$\int_{C} f(x, y, z) d y=\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t$
$\int_{C} f(x, y, z) d z=\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t$
- Therefore, as with line integrals in the plane, we evaluate integrals of the form

$$
\begin{equation*}
\int_{C} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z \cdots \cdots(2 \tag{2}
\end{equation*}
$$

by expressing everthing $(x, y, z, d x, d y, d z)$ in terms of the parameter t.
Example 4 Evaluate the line integral, $\int_{C} x^{2} y d s$, where the curve $C: x=\cos t, y=\sin t, z=t$, $0 \leq t \leq \pi / 2$

Example 5 Evaluate the line integral, $\int_{C} x y e^{y z} d y$, where the curve $C: x=t, y=t^{2}, z=t^{3}$, $0 \leq t \leq 1$

Line Integrals of Vector Fields

Outcome 4: Evaluate the line integral of a vector field along a piecewise smooth curve.
Definition (2) Let \mathbf{F} be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t), a \leq t \leq b$. Then the the line integral of \mathbf{F} along C is

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

When using Definition (2), bear in mind that $\mathbf{F}(\mathbf{r}(t))$ is just an abbreviation for the vector field $\mathbf{F}(x(t), y(t), z(t))$, so we evaluate $\mathbf{F}(\mathbf{r}(t))$ simply puting $x=x(t), y=y(t)$, and $z=z(t)$ in the expression for $\mathbf{F}(x, y, z)$. Notice also that we can formally write $d \mathbf{r}=\mathbf{r}^{\prime}(t) d t$.

Example 6 Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is given by the vector function $\mathbf{r}(t)$.

$$
\mathbf{F}(x, y, z)=\left(x+y^{2}\right) \mathbf{i}+x z \mathbf{j}+(y+z) \mathbf{k}, \quad \mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}-2 t \mathbf{k}, \quad 0 \leq t \leq 2 .
$$

Suppose the vector field \mathbf{F} on \mathbb{R}^{3} is given in component form by the equation $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$. We use Definition (2) to compute its line integral along C.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{a}^{b}(P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}) \cdot\left(x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}\right) \\
& =\int_{a}^{b}\left[P(x(t), y(t), z(t)) x^{\prime}(t)+Q(x(t), y(t), z(t)) y^{\prime}(t)+R(x(t), y(t), z(t)) z^{\prime}(t)\right] d t
\end{aligned}
$$

But this last integral is precisely the line integral in (2). Therefore we have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y+R d z \quad \text { where } \quad \mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}
$$

The line integral of \mathbf{F} along the curve C represents the work done by the tangential component of the force \mathbf{F} along C.

Homework 2, 7, 10, 15, 21, 22, 35

