Chapter 16 Vector Complex

16.1 Vector Fields

Definition (1). Let *D* be a set in \mathbb{R}^2 (a plane region). A vector field on \mathbb{R}^2 is a function **F** that assigns to each point (x, y) in *D* a two-dimensional vector F(x, y).

Since $\mathbf{F}(x, y)$ is a two-dimensional vector, we can write it in terms of its **component functions** P and Q as follows:

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \langle P(x,y), Q(x,y) \rangle$$

(2). Let *E* be a subset of \mathbb{R}^3 . A vector field on \mathbb{R}^3 is a function **F** that assigns to each point (x, y, z) in *E* a three-dimensional vector F(x, y, z).

We can express a vector field in three dimensional space in terms of its component functions P, Q, and R as

$$\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$$

Example 1 A vector field on \mathbb{R}^2 is defined by $\mathbf{F}(x, y) = -y\mathbf{i} + x\mathbf{j}$. Described \mathbf{F} by sketching some of the vectors $\mathbf{F}(x, y)$.

Example 2 Sketch the vector field on \mathbb{R}^3 given by $\mathbf{F}(x, y, z) = z\mathbf{k}$.

Gradient Fields

If f is a scalar function of two variables, then its gradient ∇f is defined by

$$\nabla f(x,y) = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j}$$

Therefore ∇f is really a vector field on \mathbb{R}^2 and is called a **gradient vector field**. Likewise, if f is a scalar function of three variables, its gradient is a vector field on \mathbb{R}^3 is given by

$$\nabla f(x, y, z) = f_x(x, y, z)\mathbf{i} + f_y(x, y, z)\mathbf{j} + f_z(x, y, z)\mathbf{k}$$

Example 3 Find the gradient vector field of $f(x.y, z) = x^2y - y^3$. Plot the gradient vector field together with a contour map of f. How are they related?

Homework 1, 11, 13.

16.2 Line Integrals

<u>Outcome 1</u>: Evaluate the line integral of a function along a piecewise smooth curve with respect to arc length.

In this section we define an integral that is similar to a single integral except that instead of integrating over an interval [a, b], we integrate over a curve C, and such integrals are called *line integrals*.

We start with a plane curve C given by the parametric equations

$$x = x(t) \qquad y = y(t) \qquad a \le t \le b \tag{1}$$

or, equivalently, by the vector equation $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, and we assume that C is a smooth curve. (This means that \mathbf{r}' is continuous and $\mathbf{r}'(t) \neq 0$).

Definition (1) If f is defined on a smooth curve C given by Equations 1, then the **line** integral of f along C is

$$\int_C f(x,y)ds = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i$$

if this limit exists.

In previous classes, section 10.2, the length of C should have been shown as

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

A similar type of argument can be used to show that if f is a continuous function, then the limit in the definition always exists and the following formula can be used to evaluate the line integral:

$$\int_C f(x,y)ds = \int_a^b f(x(t),y(t))\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}dt$$

The value of the line integral does not depend on the parametrization of the curve, provided that the curve is traversed exactly once as t increases from a to b.

If f is a positive function i.e. $f(x,y) \ge 0$, $\int_C f(x,y) ds$ represents the area of one side of the "fence" or "curtain", whose base is C and whose height above the point (x,y) is f(x,y).

Example 1 Evaluate the line integral $\int_C xy^4 ds$ where C is the right half of the circle $x^2 + y^2 = 16$.

If C is a **piecewise-smooth curve**; that is C is a union of a finite number of smooth curves C_1, C_2, \dots, C_n , then

$$\int_C f(x,y)ds = \int_{C_1} f(x,y)ds + \int_{C_2} f(x,y)ds + \dots + \int_{C_n} f(x,y)ds$$

Example 2 Evaluate $\int_C 2xds$, where C consists of the arc C_1 of the parabola $y = x^2$ from (0,0) to (1,1) followed by the vertical line segment C_2 from (1,1) to (1,2).

Outcome 2: Find the mass and center of mass of a thin wire given its shape and linear density.

Any physical interpretation of a line integral $\int_C f(x, y) ds$ depends on the physical interpretation of the function f. Suppose that $\rho(x, y)$ represents the linear density at a point (x, y) of a thin wire shaped like a curve C. Then the mass of the part of the wire from P_{i-1} to P_i is approximately $\rho(x_i^*, y_i^*) \Delta s_i$ and so the total mass of the wire is approximately $\sum \rho(x_i^*, y_i^*) \Delta s_i$. By taking more and more points on the curve, we obtain the **mass** m of the wire as the limiting value of these approximations:

$$m = \lim_{n \to \infty} \sum_{i=1}^{n} \rho(x_i^*, y_i^*) \Delta s_i = \int_C \rho(x, y) ds$$

The center of mass of the wire with density function ρ is located at the point (\bar{x}, \bar{y}) , where

$$\bar{x} = \frac{1}{m} \int_C x \rho(x, y) ds, \qquad \bar{y} = \frac{1}{m} \int_C y \rho(x, y) ds$$

Two other line integrals are obtained by replacing Δs_i by either $\Delta x_i = x_i - x_{i-1}$ or $\Delta y_i = y_i - y_{i-1}$ in Definition (*). They are called the **line integrals of** f along C with respect to x and y, They can be evaluated by expressing everything in terms of t: x = x(t), y = y(t), dx = x'(t)dt, dy = y'(t)dt,

$$\int_{C} f(x,y)dx = \int_{a}^{b} f(x(t), y(t))x'(t)dt \qquad \qquad \int_{C} f(x,y)dy = \int_{a}^{b} f(x(t), y(t)y'(t)dt$$

It frequently happens that line integrals with respect to x and y occur together. When this happens, it's customary to abbreviate by writing

$$\int_C P(x,y)dx + \int_C Q(x,y)dy = \int_C P(x,y)dx + Q(x,y)dy$$

When we are setting up a line integral, sometimes the most difficult thing is to think of a parametric representation for a curve whose geometric description is given. In particular, we often need to parametrize a line segment, so it's useful to remember that a vector representation of the line segment that starts at \mathbf{r}_0 and ends at \mathbf{r}_1 is given by

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1, \quad 0 \le t \le 1$$

Example 3 Evaluate the line integral $\int_C x^2 dx + y^2 dy$, C consists of the arc of the circle $x^2 + y^2 = 4$ from (2,0) to (0,2) followed by the line segment from (0,2) to (4,3).

Line Integrals in Space

<u>**Outcome 3**</u>: Evaluate the line integral of a function along piecewise smooth curve with respect to x, y, or z.

We now suppose that C is a smooth space curve given by the parametric equations

$$x = x(t)$$
 $y = y(t)$ $z = z(t)$ $a \le t \le b$

or by a vector equation $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$. The definition line integral in space can be given by a similar method of two dimensional space. We evaluate the line integral in space as following,

$$\int_C f(x,y,z)ds = \int_a^b f(x(t),y(t),z(t))\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}dt$$

• The line integrals in 2D and 3D can be written in the more compact notation $\int_{a}^{b} f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$.

- For the special case f(x, y, z) = 1, we get $\int_C ds = \int_a^b |\mathbf{r}'(t)| dt = L$ where L is the length of the curve C.
- Line integrals along C with respect to x, y, and z can also be defined as follow;

$$\int_{C} f(x, y, z) dx = \int_{a}^{b} f(x(t), y(t), z(t)) x'(t) dt$$
$$\int_{C} f(x, y, z) dy = \int_{a}^{b} f(x(t), y(t), z(t)) y'(t) dt$$
$$\int_{C} f(x, y, z) dz = \int_{a}^{b} f(x(t), y(t), z(t)) z'(t) dt$$

• Therefore, as with line integrals in the plane, we evaluate integrals of the form

$$\int_C P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz \cdots (2)$$

by expressing everthing (x, y, z, dx, dy, dz) in terms of the parameter t.

Example 4 Evaluate the line integral, $\int_C x^2 y \, ds$, where the curve C: $x = \cos t$, $y = \sin t$, z = t, $0 \le t \le \pi/2$

Example 5 Evaluate the line integral, $\int_C xy e^{yz} dy$, where the curve C: x = t, $y = t^2$, $z = t^3$, $0 \le t \le 1$

Line Integrals of Vector Fields

Outcome 4: Evaluate the line integral of a vector field along a piecewise smooth curve.

Definition (2) Let **F** be a continuous vector field defined on a smooth curve *C* given by a vector function $\mathbf{r}(t)$, $a \le t \le b$. Then the **the line integral of F along** *C* is

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$

When using Definition (2), bear in mind that $\mathbf{F}(\mathbf{r}(t))$ is just an abbreviation for the vector field $\mathbf{F}(x(t), y(t), z(t))$, so we evaluate $\mathbf{F}(\mathbf{r}(t))$ simply puting x = x(t), y = y(t), and z = z(t) in the expression for $\mathbf{F}(x, y, z)$. Notice also that we can formally write $d\mathbf{r} = \mathbf{r}'(t)dt$.

Example 6 Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is given by the vector function $\mathbf{r}(t)$.

$$\mathbf{F}(x, y, z) = (x + y^2)\mathbf{i} + xz\mathbf{j} + (y + z)\mathbf{k}, \quad \mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} - 2t\mathbf{k}, \quad 0 \le t \le 2.$$

Suppose the vector field \mathbf{F} on \mathbb{R}^3 is given in component form by the equation $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$. We use Definition (2) to compute its line integral along C.

$$\begin{split} \int_{C} \mathbf{F} \cdot d\mathbf{r} &= \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{'}(t) dt \\ &= \int_{a}^{b} (P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}) \cdot (x^{'}(t)\mathbf{i} + y^{'}(t)\mathbf{j} + z^{'}(t)\mathbf{k}) \\ &= \int_{a}^{b} \left[P(x(t), y(t), z(t))x^{'}(t) + Q(x(t), y(t), z(t))y^{'}(t) + R(x(t), y(t), z(t))z^{'}(t) \right] dt \end{split}$$

But this last integral is precisely the line integral in (2). Therefore we have

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C P dx + Q dy + R dz \quad \text{where} \quad \mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$$

The line integral of \mathbf{F} along the curve C represents the **work done** by the tangential component of the force \mathbf{F} along C.

Homework 2, 7, 10, 15, 21, 22, 35