
Lecture Note 26, (Text book page 1068) 10/30/2018

Chapter 16 Vector Complex

16.1 Vector Fields

Definition (1). Let D be a set in R2 (a plane region). A vector field on R2 is a function
F that assigns to each point (x, y) in D a two-dimensional vector F (x, y).

Since F(x, y) is a two-dimensional vector, we can write it in terms of its component functions
P and Q as follows:

F(x, y) = P (x, y)i + Q(x, y)j = 〈P (x, y), Q(x, y)〉

(2). Let E be a subset of R3. A vector field on R3 is a function F that assigns to each
point (x, y, z) in E a three-dimensional vector F (x, y, z).

We can express a vector field in three dimensional space in terms of its component functions
P, Q, and R as

F(x, y, z) = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k

Example 1 A vector field on R2 is defined by F(x, y) = −yi + xj. Described F by sketching some
of the vectors F(x, y).

Example 2 Sketch the vector field on R3 given by F(x, y, z) = zk.

Gradient Fields

If f is a scalar function of two variables, then its gradient ∇f is defined by

∇f(x, y) = fx(x, y)i + fy(x, y)j

Therefore ∇f is really a vector field on R2 and is called a gradient vector field.
Likewise, if f is a scalar function of three variables, its gradient is a vector field on R3 is
given by

∇f(x, y, z) = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k

Example 3 Find the gradient vector field of f(x.y, z) = x2y − y3. Plot the gradient vector field
together with a contour map of f . How are they related?

Homework 1, 11, 13.
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16.2 Line Integrals

Outcome 1: Evaluate the line integral of a function along a piecewise smooth curve with respect
to arc length.

In this section we define an integral that is similar to a single integral except that instead of
integrating over an interval [a, b], we integrate over a curve C, and such integrals are called line
integrals.

We start with a plane curve C given by the parametric equations

x = x(t) y = y(t) a ≤ t ≤ b (1)

or, equivalently, by the vector equation r(t) = x(t)i + y(t)j, and we assume that C is a smooth
curve. (This means that r′ is continuous and r′(t) 6= 0).

Definition (1) If f is defined on a smooth curve C given by Equations 1, then the line
integral of f along C is ∫

C
f(x, y)ds = lim

n→∞

n∑
i=1

f(x∗i , y∗i )∆si

if this limit exists.

In previous classes, section 10.2, the length of C should have been shown as

L =
∫ b

a

√(
dx

dt

)2
+
(
dy

dt

)2
dt

A similar type of argument can be used to show that if f is a continuous function, then the limit
in the definition always exists and the following formula can be used to evaluate the line integral:

∫
C
f(x, y)ds =

∫ b

a
f(x(t), y(t))

√(
dx

dt

)2
+
(
dy

dt

)2
dt

The value of the line integral does not depend on the parametrization of the curve, provided
that the curve is traversed exactly once as t increases from a to b.

If f is a positive function i.e. f(x, y) ≥ 0,
∫

C f(x, y)ds represents the area of one side of the
”fence” or ”curtain”, whose base is C and whose height above the point (x, y) is f(x, y).

Example 1 Evaluate the line integral
∫

C xy
4ds where C is the right half of the circle x2 +y2 = 16.

If C is a piecewise-smooth curve; that is C is a union of a finite number of smooth curves
C1, C2, · · · , Cn, then∫

C
f(x, y)ds =

∫
C1
f(x, y)ds+

∫
C2
f(x, y)ds+ · · ·+

∫
Cn

f(x, y)ds

Example 2 Evaluate
∫

C 2xds, where C consists of the arc C1 of the parabola y = x2 from (0, 0)
to (1, 1) followed by the vertical line segment C2 from (1, 1) to (1, 2).



Outcome 2: Find the mass and center of mass of a thin wire given its shape and linear density.
Any physical interpretation of a line integral

∫
C f(x, y)ds depends on the physical interpretation

of the function f . Suppose that ρ(x, y) represents the linear density at a point (x, y) of a thin wire
shaped like a curve C. Then the mass of the part of the wire from Pi−1 to Pi is approximately
ρ(x∗i , y∗i )∆si and so the total mass of the wire is approximately

∑
ρ(x∗i , y∗i )∆si. By taking more

and more points on the curve, we obtain the mass m of the wire as the limiting value of these
approximations:

m = lim
n→∞

n∑
i=1

ρ(x∗i , y∗i )∆si =
∫

C
ρ(x, y)ds

The center of mass of the wire with density function ρ is located at the point (x̄, ȳ), where

x̄ = 1
m

∫
C
xρ(x, y)ds, ȳ = 1

m

∫
C
yρ(x, y)ds

Two other line integrals are obtained by replacing ∆si by either ∆xi = xi − xi−1 or ∆yi =
yi−yi−1 in Definition (?). They are called the line integrals of f along C with respect to x and
y, They can be evaluated by expressing everything in terms of t: x = x(t), y = y(t), dx = x

′(t)dt,
dy = y

′(t)dt,∫
C
f(x, y)dx =

∫ b

a
f(x(t), y(t))x′(t)dt

∫
C
f(x, y)dy =

∫ b

a
f(x(t), y(t)y′(t)dt

It frequently happens that line integrals with respect to x and y occur together. When this happens,
it’s customary to abbreviate by writing∫

C
P (x, y)dx+

∫
C
Q(x, y)dy =

∫
C
P (x, y)dx+Q(x, y)dy

When we are setting up a line integral, sometimes the most difficult thing is to think of a parametric
representation for a curve whose geometric description is given. In particular, we often need to
parametrize a line segment, so it’s useful to remember that a vector representation of the line
segment that starts at r0 and ends at r1 is given by

r(t) = (1− t)r0 + tr1, 0 ≤ t ≤ 1

Example 3 Evaluate the line integral
∫

C x
2dx+y2dy, C consists of the arc of the circle x2 +y2 = 4

from (2, 0) to (0, 2) followed by the line segment from (0, 2) to (4, 3).

Line Integrals in Space

Outcome 3: Evaluate the line integral of a function along piecewise smooth curve with respect to
x, y, or z.

We now suppose that C is a smooth space curve given by the parametric equations

x = x(t) y = y(t) z = z(t) a ≤ t ≤ b



or by a vector equation r(t) = x(t)i+y(t)j+z(t)k. The definition line integral in space can be given
by a similar method of two dimensional space. We evaluate the line integral in space as following,

∫
C
f(x, y, z)ds =

∫ b

a
f(x(t), y(t), z(t))

√(
dx

dt

)2
+
(
dy

dt

)2
+
(
dz

dt

)2
dt

• The line integrals in 2D and 3D can be written in the more compact notation
∫ b

a
f(r(t))|r′(t)|dt.

• For the special case f(x, y, z) = 1, we get
∫

C
ds =

∫ b

a
|r′(t)|dt = L where L is the length of

the curve C.

• Line integrals along C with respect to x, y, and z can also be defined as follow;∫
C
f(x, y, z)dx =

∫ b

a
f(x(t), y(t), z(t))x′(t)dt∫

C
f(x, y, z)dy =

∫ b

a
f(x(t), y(t), z(t))y′(t)dt∫

C
f(x, y, z)dz =

∫ b

a
f(x(t), y(t), z(t))z′(t)dt

• Therefore, as with line integrals in the plane, we evaluate integrals of the form∫
C
P (x, y, z)dx+Q(x, y, z)dy +R(x, y, z)dz · · · · · · (2)

by expressing everthing (x, y, z, dx, dy, dz) in terms of the parameter t.

Example 4 Evaluate the line integral,
∫

C x
2y ds, where the curve C : x = cos t, y = sin t, z = t,

0 ≤ t ≤ π/2

Example 5 Evaluate the line integral,
∫

C xye
yz dy, where the curve C : x = t, y = t2, z = t3,

0 ≤ t ≤ 1

Line Integrals of Vector Fields

Outcome 4: Evaluate the line integral of a vector field along a piecewise smooth curve.

Definition (2) Let F be a continuous vector field defined on a smooth curve C given by a
vector function r(t), a ≤ t ≤ b. Then the the line integral of F along C is∫

C
F·dr =

∫ b

a
F(r(t)) · r′(t)dt =

∫
C

F ·Tds

When using Definition (2), bear in mind that F(r(t)) is just an abbreviation for the vector field
F(x(t), y(t), z(t)), so we evaluate F(r(t)) simply puting x = x(t), y = y(t), and z = z(t) in the
expression for F(x, y, z). Notice also that we can formally write dr = r′(t)dt.

Example 6 Evaluate the line integral
∫

C F · dr where C is given by the vector function r(t).

F(x, y, z) = (x+ y2)i + xzj + (y + z)k, r(t) = t2i + t3j− 2tk, 0 ≤ t ≤ 2.



Suppose the vector field F on R3 is given in component form by the equation F = P i+Qj+Rk.
We use Definition (2) to compute its line integral along C.∫

C
F · dr =

∫ b

a
F(r(t)) · r′(t)dt

=
∫ b

a
(P i +Qj +Rk) · (x′(t)i + y

′(t)j + z
′(t)k)

=
∫ b

a

[
P (x(t), y(t), z(t))x′(t) +Q(x(t), y(t), z(t))y′(t) +R(x(t), y(t), z(t))z′(t)

]
dt

But this last integral is precisely the line integral in (2). Therefore we have∫
C

F · dr =
∫

C
Pdx+Qdy +Rdz where F = P i +Qj +Rk

The line integral of F along the curve C represents the work done by the tangential component
of the force F along C.

Homework 2, 7, 10, 15, 21, 22, 35


