16.5 Curl and Divergence

In this section we define two operations that can be performed on vector fields and that play a basic role in the applications of vector calculus to fluid flow and electricity and magnetism.

Curl

Definition If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and the partial derivatives of P, Q, and R all exist, then the curl of \mathbf{F} is the vector field on \mathbb{R}^3 defined by

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

An easy way to remember this formula is that curl $\mathbf{F} = \nabla \times \mathbf{F}$ where the vector differential operator ∇ ("del") is defined as $\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$.

Example 1 If $\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$, find curl *F*.

Example 2-(Theorem) If f is a function of three variables that has continuous second order derivatives, then curl $(\nabla f) = 0$.

Since a conservative vector field is one for which $F = \nabla f$, example 2-(Theorem) can be rephrased as follows:

If F is conservative, then curl F = 0. (This gives us a way of verifying that a vector field is not conservative.)

Example 3 Show that $\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$ is not conservative.

Theorem If **F** is a vector field defined on all \mathbb{R}^3 whose component functions have continuous partial derivatives and curl $\mathbf{F} = \mathbf{0}$, then **F** is a conservative vector field.

Example 4 Show that $\mathbf{F}(x, y, z) = \mathbf{i} + \sin z \mathbf{j} + y \cos z \mathbf{k}$ is a conservative vector field.

Divergence

Definition If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and $\partial P/\partial x, \partial Q/\partial y$, and $\partial R/\partial z$ exist, then the **divergence of F** is the function of three variables defined by

div
$$\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \nabla \cdot \mathbf{F}$$

Observe that curl \mathbf{F} is a vector field but div \mathbf{F} is a scalar field.

Example 5 If $\mathbf{F}(x, y, z) = \langle xz, xyz, -y^2 \rangle$, find div \mathbf{F} .

Theorem (*) If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R have continuous second-order partial derivatives, then

div curl $\mathbf{F}=0$

Example 6 By considering Theorem (*) explain whether there is a vector G or not on \mathbb{R}^3 such that curl $\mathbf{G} = \langle x \sin y, \cos y, z - xy \rangle$?

Homework 1, 3, 12, 13, 17, 19