16.5 Curl and Divergence

In this section we define two operations that can be performed on vector fields and that play a basic role in the applications of vector calculus to fluid flow and electricity and magnetism.

Curl

Definition If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on \mathbb{R}^{3} and the partial derivatives of P, Q, and R all exist, then the curl of \mathbf{F} is the vector field on \mathbb{R}^{3} defined by

$$
\operatorname{curl} \mathbf{F}=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

An easy way to remember this formula is that curl $\mathbf{F}=\nabla \times \mathbf{F}$ where the vector differential operator ∇ ("del") is defined as $\nabla=\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}$.

Example 1 If $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k}$, find curl F.
Example 2-(Theorem) If f is a function of three variables that has continuous second order derivatives, then curl $(\nabla f)=\mathbf{0}$.

Since a conservative vector field is one for which $F=\nabla f$, example 2-(Theorem) can be re phrased as follows:

If F is conservative, then curl $F=0$. (This gives us a way of verifying that a vector field is not conservative.)

Example 3 Show that $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k}$ is not conservative.

Theorem If \mathbf{F} is a vector field defined on all \mathbb{R}^{3} whose component functions have continuous partial derivatives and curl $\mathbf{F}=\mathbf{0}$, then \mathbf{F} is a conservative vector field.

Example 4 Show that $\mathbf{F}(x, y, z)=\mathbf{i}+\sin z \mathbf{j}+y \cos z \mathbf{k}$ is a conservative vector field.

Divergence

Definition If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on \mathbb{R}^{3} and $\partial P / \partial x, \partial Q / \partial y$, and $\partial R / \partial z$ exist, then the divergence of \mathbf{F} is the function of three variables defined by

$$
\operatorname{div} \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=\nabla \cdot \mathbf{F}
$$

Observe that curl \mathbf{F} is a vector field but div \mathbf{F} is a scalar field.
Example 5 If $\mathbf{F}(x, y, z)=\left\langle x z, x y z,-y^{2}\right\rangle$, find div \mathbf{F}.

Theorem (\star) If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field on \mathbb{R}^{3} and P, Q, and R have continuous second-order partial derivatives, then

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=0
$$

Example 6 By considering Theorem (\star) explain whether there is a vector G or not on \mathbb{R}^{3} such that curl $\mathbf{G}=\langle x \sin y, \cos y, z-x y\rangle$?

Homework 1, 3, 12, 13, 17, 19

