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Motivation I

Let
u = G(x ; θ)

and consider the problem of
finding θ, an input to a math-
ematical model, given u an
observation of solution to the
model at point x .
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Motivation II

Consider the most basic coupled epidemic model

ds(t)

dt
= −α s(t) i(t), s(0) = s0

di(t)

dt
= −α s(t) i(t)− βi(t), i(0) = i0

dr(t)

dt
= −β i(t), r(0) = r0

where
s = susceptible population density,
i = infected population density,
r = recovered population density,
θ = (α, β) is a random field that may depend on t, i , r and s.
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Remarks

We are interested in estimating the model parameters given
some realizations {ui}mi=1.

There are uncertainties in the governing equation due to
incomplete knowledge of the underlying physics and/or
inevitable errors in measurements.

These uncertainties are encapsulated in the model parameters
α, β and initial and boundary conditions, for some problems
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Brief History

Finite element requires high resolution to capture stochastic
information
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Naive Approach

First, we explore the forward model.

A naive approach is to convert the problem into a deterministic
one by replacing θ with a statistic and solving analytically or
numerically using finite difference, finite element or finite volume
method. Simple example:

du(t)

dt
= −θu(t); u(0) = u0

Naive solution:
u(t) = u0e

−θ̄t

Stochastic solution:
u(t) = u0

∫
Ω
e−θtdµ(θ)

Perturbation and homogenization methods have also been
considered.

Chinedu. E.; Hans-Werner (Auburn) optimal upscaling JMM 2022 7 / 20



Monte Carlo Sampling (MCS) Methods

The discovery of MCS algorithms was a huge breakthrough in
better explaining the effects of uncertainties in models.

Metropolis-Hastings update step for the inverse case:

θ(k+1) =

{
θ∗ with probability min

{
1, L(u|θ∗)π(θ∗)
L(u|θk )π(θk )

}
θk otherwise

assuming a symmetric proposal.

MCMC sampling has a very slow convergence rate, it is mostly
not suitable for practical purposes.

MCMC samples are often correlated
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Karhunen-Loeve Expansions I

A very successful approach also considered stem from the
Kosambi–Karhunen–Loève theorem

For a random field θ(t), let µθ(t) be the mean of the process
and let C (t, s) = cov(θt , θs) be its covariance function. The
Karhunen–Loève expansion of θt is

θt(ω) = µθ(t) +
∞∑
i=1

√
λiφi(t)θi(ω)

where φi ’s are the orthogonal eigenfunctions and λi ’s are the
corresponding eigenvalues of the eigenvalue problem∫

T

C (t, s)φi(s)ds = λiφi(t), t ∈ T
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Karhunen-Loeve Expansions II

and

θi(ω) =
1√
λ

∫
T

(θt(ω)− µθ(t))φi(t)dt

are mutually uncorrelated random variables with zero mean and
unit variance.

KKL modes are the principal components of the covariance
kernel and are expensive to compute

KKL requires prior knowledge of the covariance kernel C (t, s)
and the underlying distribution.
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Pause and Ponder

Naive approach does not carry forward any stochastic
information

Monte Carlo Simulation is very slow

Karhunen-Loeve expansions require prior knowledge of the
underlying distribution, which is not known for many problems.

What then is a way forward?
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Polynomial Chaos

Generalized polynomial chaos, in many cases, is arguably the only
feasible method for stochastic simulations of complex systems [Xiu,
2010] [1]

Theorem (Cameron & Martin, 1947)

Let L2(Ω,A,P) be a Hilbert space of real-valued random variables and
D ⊂ L2(Ω,A,P), a complete subspace. Suppose for any n ∈ N,
Bn(D) = {f (ξ1, · · · , ξm) : f an m-variate polynomial of degree ≤ m
, ξi ∈D, i ∈ [m], m ∈ N} and {Bn}n∈N ⊂ L2(Ω,A,P) is a strictly
increasing complete subspace and Gaussian for n = 1 . Then, there exists
{Dn}n∈N such that

∞⊕
n=0

Dn = L2(Ω, σ(D),P)

Specifically, for σ(D) = A,
⊕∞

n=0 Dn = L2(Ω,A,P)
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Generalized Polynomial Chaos

The work of [Xiu & Karniadakis, 2002] is pivotal in understanding,
applying and generalizing polynomial chaos method. They coined the
term generalized polynomial chaos expansion

Let {ξn}n∈N be a sequence of (not necessarily identically distributed)
basic random variables satisfying conditions

1 E[|ξn|m] <∞ for all n,m ∈ N
2 Fξn(x) := P(ξn ≤ x) is continuous for each n ∈ N

Definition
A distribution is said to be determinate, in the Hamburger sense (aka
solvability of the moment problem if the distribution function is uniquely
defined by the sequence of its moments

E[ξm] =

∫
R
xmdFξ(x)
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Generalized Polynomial Chaos

With conditions (1) and (2) and the preceding definition, it follows that:

Theorem
The sequence of orthogonal polynomials associated with a real random
variable ξ satisfying the two conditions above is dense in L2(R,B(R), dFξ)
if and only if the moment problem is uniquely solvable for its distribution.

Following this development and other equivalent formulations, [Ernst etal,
2012] proved conditions under which a random vector admits generalized
polynomial chaos expansion
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Generalized Polynomial Chaos

Theorem
If the distribution function Fξ of a random vector ξ = (ξ1, · · · , ξn) with
continuous distribution and finite moments of all orders satisfies one of
the following conditions, then the multivariate polynomials in ξ1, · · · , ξn
are dense in L2(Ω, σ(ξ),P). In this case any random variable
ζ ∈ L2(Ω, σ(ξ),P) is the limit of its generalized polynomial chaos
expansion, which converges in quadratic mean.

(a) The distributiion function Fξ has compact support, i.e., there exists a
compact set S ⊂ Rn such that P(ξ ∈ S) = 1

(b) The random vector is exponentially integrable, i.e., there exists c > 0
such that

E(ec‖ξ‖) <∞
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Wiener-Askey Scheme

Courtesy: [Ernst etal, 2010]
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Transport Maps

Polynomial chaos expansion method is not without faults

Its computational complexity increases fast with increase in the
number of parameters θ [Moselhy & Marzouk, 2012]

Transport maps were introduced to mitigate the computational
burden involved modeling with polynomial chaos

A transport map, T : Rn → Rn is a deterministic transformation
that pushes forward µ to ν, yielding [Parno & Marzouk, 2012]

ν(B) = µ(T−1(B))

Uniqueness of T is ensured by assuming the triangular
formulation
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Numerical Experiments

First, we consider the case where θ is a scalar random variable

θ ∼ Uniform(0, 1) θ ∼ exp(0.5)
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Numerical Experiments

Consider the exponential decay model given by the differential
equation

du(t; θ)

dt
= −θu(t, θ); u0 = c

where θ > 0 is a random variable.
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Conclusion

Most, if not all biology inspired mathematical models depend on
certain random parameter(s)

Successes in making inference from or validating these models
depend on how well the stochastic information from these
parameters are propagated into the state variables

We demonstrated that transport maps are powerful and handy in
this regard

In progress, we are looking to leverage the expressive power of
Deep Neural Networks in constructing transport maps
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