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Introduction

Let
u = G(x; θ(ξ))

and consider the prob-
lem of finding θ, an input
function to a mathemati-
cal model, given u an
observation of solution to the model at point x [1].

Goals

We aim to:
•Find a representation of θ(ξ) that captures the
stochasticity in u.
•Learn a low dimensional representation of G,
the observation operator via transport maps.

Background

•When θ(ξ) is rough and G is a forward solver,
FEM requires high resolution to capture fine
details in u.

This leads to computational complications and
intractability.
•Techniques such as midpoint (MP), spatial
averaging (SA), shape function (SF) and series
expansion (SE) are used to homogenize the
random field [2].
•The method of moments approach easily leads to
the long-standing well known unsolved closure
problem [3].
•When θ(ξ) is a random variable and is � 1, u is
also amenable to perturbation techniques.
•Monte Carlo sampling is great but we have to
wrestle with burn-out and slow convergence.

If all existing methods are defied, what
then is a way forward?

Transport Maps

•Transport maps are measure preserving
transforms.
•Given measures µ and ν, find a map T s.t.
T] µ = ν. i.e., find T s.t.

min
T

E
[
||ξ − T (ξ)||

]
s. t. ν = T] µ (1)

•When the measure µ has no atoms, problem (1)
has been shown to have a unique and monotone
solution [4].

Karhunen-Loeve Expansion

•When the covariance kernel of a random field is
known, the Kosambi-Karhunen-Loeve theorem
guarantees the representation

θt(ω) = µθ(t) +
∞∑
i=1

√
λiφi(t)θi(ω)

where φi’s are the orthogonal eigenfunctions and
λi’s are the corresponding eigenvalues of the
integral equation∫

T
C(t, s)φi(s)ds = λiφi(t), t ∈ T

Important Result

McCann [1995]:
Given that µ and ν are Borel probability meausres on Rn with µ vanishing on subsets of Rn having
Hausdorff dimension less than or equal to n− 1. Then the optimization problem (1) has a uniquely
determined µ-almost everywhere solution. This map is the gradient of a convex function and is
therefore monotone [5]

Generalized Polynomial Chaos
Expansion

•Generalized polynomial chaos are orthogonal
polynomials w.r.t to the standard probability
distributions.

Figure 1:Wiener-Askey Scheme

•Cameron & Martin [1947] first proved the space
of the chaos polynomials is dense in L2, for the
case when the distribution is Gaussian.
•Ernst etal [2012] extended this result to an
arbitrary distribution whose moment problem is
uniquely solvable.

Results

Figure 2:Soln of u′(x) = −θu(x)

Fig (2) compares a 5, 9 degrees chaos representation
for the parameter θ & the solution u respectively
with 10, 000 Monte Carlo samples [6].

Conclusion

•Most, if not all mathematical models depend on
certain random parameter(s)
•Successes in making inference from or validating
these models depend on how well the stochastic
information from these parameters are
propagated into the state variables
•We demonstrated that transport maps are
powerful and handy in this regard
• In progress, we are looking to leverage the
expressive power of Deep Neural Networks in
constructing transport maps
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