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Basic quantities and models

Continuous Random Variables

In general, a continuous random variable X can have values from an
interval. Its probability density function f (x) satisfying

a b

f (y) f (x) ≥ 0,

∫ ∞
−∞

f (x)dy = 1.0

P(a ≤ X ≤ b) =

∫ b

a
f (x)dx

The cumulative distribution function (CDF) is

F (x) = P(X ≤ x) =

∫ x

∞
f (u)du.
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Basic quantities and models Survival function

Survival Function of US Population

How likely a person can live beyond the age of 70 in US?

According to US Department of
Health and Human Services, in
1989, the survival probability is

White Male 0.66166
White Female 0.79839
Black Male 0.47312
Black Female 0.66730
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Basic quantities and models Survival function

Survival Function: Definition

Let X be the time until some specified event.

The survival function is the probability of an individual surviving
beyond time x (experiencing the event after time x).

S(x) = P(X > x).

Some comments.

S(x) is called the reliability function in engineering applications.

S(x) is a monotone, non-increasing function.

S(0) = 1 and S(∞) = 0.
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Basic quantities and models Survival function

Survival Function: Continuous Random Variable

When X is a continuous random variable with density f (x) and
cumulative distribution function F (x) = P(X ≤ x),

S(x) =

∫ ∞
x

f (t)dt = 1− F (x).

and

f (x) = −dS(x)

dx
.

Example: The density of Weibull distribution is

f (x) = αλxα−1 exp(−λxα), λ > 0, α > 0.

Its survival function is S(x) = exp(−λxα).
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Basic quantities and models Hazard function

Hazard Function

The hazard function is the instantaneous rate of failure at time x ,

h(x) = lim
∆→0

P(x ≤ X < x + ∆ | X ≥ x)

∆

Some comments

h(x) is nonnegative, h(x) ≥ 0.

h(x)∆ is the approximate probability of an individual of age x
experiencing the event in [x , x + ∆).

Other names: conditional failure rate (reliability), force of
mortality (demography), age-specific failure rate (epidemiology),
inverse of the Mills ratio (economics).
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Basic quantities and models Hazard function

Cumulative Hazard Function

The cumulative hazard function is the probability of death up to time
x .

H(x) =

∫ x

0

h(u)du
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Basic quantities and models Hazard function

Hazard Function: Continuous Random Variable

For a continuous random variable X with density f (x) and survival
function S(x), we have

h(x) =
f (x)

S(x)
= −d ln S(x)

dx

H(x) = − ln S(x)

S(x) = exp[−H(x)] = exp[−
∫ x

0

h(u)du]
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Basic quantities and models Hazard function

Example: Weibull Distribution

For Weibull distribution, its density is

f (x) = αλxα−1 exp(−λxα), λ > 0, α > 0.

Its survival function is

S(x) = exp(−λxα)

Its hazard function is
h(x) = αλxα−1

Its cumulative hazard function is

H(x) = λxα
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Basic quantities and models Hazard function

Hazard Rate for US Population
Hazard functions for all cause mortality for the US population in
1989.
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Basic quantities and models Mean residual life

Mean Residual Life

Mean residual life is the expected remaining life.

mrl(x) = E (X − x | X > x)

It is the area under S(x) to the right of x divided by S(x).

mrl(x) =

∫∞
x

(t − x)f (t)dt

S(x)
=

∫∞
x

S(t)dt

S(x)
.

(Hint: integration by parts and f (t)dt = −dS(t).)
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Basic quantities and models Mean residual life

Mean and Variance

The mean and variance of life can be expressed in terms of survival
function.

The mean life is µ = mrl(0).

µ = E (X ) =

∫ ∞
0

tf (t)dt =

∫ ∞
0

S(t)dt.

The variance of X is

var(X ) = 2

∫ ∞
0

tS(t)dt −
[ ∫ ∞

0

S(t)dt
]2
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Basic quantities and models Median life

Median Lifetime

The pth quantile (also 100pth percentile) of X is the smallest xp so
that

S(xp) ≤ 1− p, or xp = inf{t : S(t) ≤ 1− p}

The median lifetime is x0.5, the 50th percentile. When X is
continuous, we can find x0.5 from

S(x0.5) = 0.5.

Question: How to find the median lifetime from a plot of survival
function?
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Basic quantities and models Median life

Example: Exponential Distribution

The density of exponential distribution is

f (x) = λe−λx , λ > 0.

Recall that its survival function is S(x) = e−λx . Its mean and median
life are

µ =
1

λ
, median =

ln 2

λ
.
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Basic quantities and models Common parametric models

Common Parametric Models

Common parametric models include

exponential distribution

Weibull distribution

gamma distribution

. . .

Refer to Table 2.2 of the textbook.
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Basic quantities and models Common parametric models

Exponential and Weibull Distribution

Exponential distribution is memoryless.

P(X ≥ x + z | X ≥ x) = P(X ≥ z).

The mean residual life is a constant, and the hazard function is
also a constant.

Weibull distribution has a hazard function

h(x) = λαxα−1.

It can accommodate increasing (α > 1), decreasing α < 1, or
constant α = 1.
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Censoring and truncation Censoring

Right Censoring: Type I Censoring

For a specific individual under study, assume that

lifetime X , (iid with density f (x) and survival function S(x))

fixed censoring time Cr .

We actually observe (T , δ), where

T = min{X ,Cr}

δ =

{
1, actual lifetime

0, censoring time

T1 = X1

T2 = X2

T3 = C

start of study end of study
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Censoring and truncation Censoring

Progressive Type I Censoring

For progressive type I censoring, we may have different and fixed
censoring times. For example, sacrifice the first batch of animals at
time C1 and sacrifice the second batch time of animals at time C2.

start of study first sacrifice time second sacrifice time

T1 = X1

T2 = X2

T3 = C1

T4 = C2

T4 = X4

T6 = X6

Peng Zeng (Auburn University) STAT 7780 – Lecture Notes Fall 2017 19 / 41



Censoring and truncation Censoring

Generalized Type I Censoring

For generalized type I censoring, individuals enter the study at
different times and the terminal point of the study is predetermined
by the investigator.

T1 = X1

T2 = X2

T3 = C

start of study end of study

T1 = X1

T2 = X2

T3 = C

We can shift each individual’s starting time to 0. Note that different
individuals may have different censoring time.
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Censoring and truncation Censoring

Type II Censoring

For type II censoring, the study continues until the failure the first r
individuals, where r is some predetermined integer (r < n).

For example: In testing equipment life, the test is terminated
when r of the total n items have failed.

For progressive Type II censoring, when the first r1 items fail, remove
n1 − r1 of the remaining n − r1 unfailed items. Continue the
experiment until the next r2 items fail.
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Censoring and truncation Censoring

Left Censoring

For left censoring, the event of interest has already occurred for the
individual before that person is observed in the study.

In early childhood learning center, an investigator is interested in
when a child learns to accomplish certain tasks. It is quite often
that some children can already perform the task when they start
in the study.

Let X be the exact lifetime and Cl be the left censoring time. We
actually observe (T , ε), where

T = max{X ,Cl}, ε =

{
1, T is the actual lifetime

0, T is the censoring time
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Censoring and truncation Censoring

Double Censoring and Interval Censoring

For double censoring, we are able to observe the actual lifetime X
only when X falls within (Cl ,Cr ). We actually observe (T , δ), where

T = max{min{X ,Cr},Cl},

δ =


1, T is the actual lifetime

0, T is the right censoring time

−1, T is the left censoring time

For interval censoring, we only know that the individual’s event time
falls in an interval (Li ,Ri ].
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Censoring and truncation Truncation

Truncation
Truncation occurs when only those individuals whose event time lies
within a certain observational window (YL,YR) are observed.

(left truncation) A study involved residents of a retirement
center. Since an individual must survive to a sufficient age to
enter the retirement center, all individuals who died earlier are
out of the investigator’s cognizance.

(right truncation) A study considered patients with transfusion
induced AIDS. The registry was sampled on June 30, 1986. So
only those whose waiting time from transfusion to AIDS was less
than the time from transfusion to June 30, 1986 were available
for observation. Patients transfused prior to June 30, 1986, who
developed AIDS after June 30, 1986, were not observed.

censoring: partial information. truncation: no information.
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Likelihood function

Likelihood Function

Assume that X1, . . . ,Xn are iid with density f (x ; θ). Then the joint
density function is

f (x1, . . . , xn; θ) =
n∏

i=1

f (xi ; θ).

The likelihood function is essentially the joint density function, but
we treat it as a function of θ.

L(θ) = f (x1, . . . , xn; θ) =
n∏

i=1

f (xi , θ).

Example: Write out the likelihood function for X1, . . . ,Xn, which are
iid exponential(λ).
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Likelihood function

Maximum Likelihood Estimate

The maximum likelihood estimate (MLE) maximizes the likelihood
function.

θ̂ = arg max L(θ; x1, . . . , xn) = arg max `(θ; x1, . . . , xn),

where `(θ) = ln L(θ) is the log-likelihood.

`(θ; x1, . . . , xn) =
n∑

i=1

ln f (xi ; θ).

Example: Suppose that X1, . . . ,Xn are iid exponential(λ). Find MLE
of λ.
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Likelihood function

Properties of Maximum Likelihood Estimate

Maximum likelihood estimate is the most popular method for
estimating unknown parameters in a statistical model.

When the sample size is large, the MLE θ̂ approximately follows a
normal distribution.

E (θ̂) ≈ θ, and in many cases, E (θ̂) = θ.

var(θ̂) ≈
{
n E
(∂ ln f (X ; θ)

∂θ

)2}−1

where f (x ; θ) is the density or probability mass function of a single
observation.

Example: Suppose that X1, . . . ,Xn are iid exponential(λ). Find the
asymptotic distribution of MLE of λ.
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Likelihood function

Delta Method

If θ̂ is the MLE of θ, then τ(θ̂) is the MLE of τ(θ) and τ(θ̂) is
approximately normal with

E [τ(θ̂)] ≈ τ(θ), var [τ(θ̂)] ≈ [τ ′(θ)]2 var(θ̂)

where τ is any differentiable function and τ ′ is the first-order
derivative of τ .

Example: Suppose that X1, . . . ,Xn are iid exponential(λ). Find the
MLE of λ2 and the asymptotic distribution of the estimate.
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Likelihood function

Likelihood for Data With Censoring and Truncation
Assemble the likelihood using the following components

exact lifetime f (x)
right-censored observations S(Cr )
left-censored observations 1− S(Cl)
interval-censored observations S(L)− S(R)
left-truncated observations f (x)/S(YL)
right-truncated observations f (x)/[1− S(YR)]
interval-truncated observations f (x)/[S(YL)− S(YR)]

Example: Write out the likelihood function for the following
observations

(t1, 1), (t2, 0), (t3, 1), (t4, 0), (t5, 1).
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Likelihood function

Likelihood for Right Censoring

For right censoring, assume that the observations are
{(ti , δi), i = 1, . . . , n}. The density function can be written as

f (t, δ) = [f (t)]δ[S(t)]1−δ

Example: Assume that the observations are {(ti , δi), i = 1, . . . , n},
where the lifetime follows exponential distribution. The likelihood
function is

L(λ) = λre−λST ,

where r =
∑
δi is the observed number of events and ST =

∑
ti is

the total time for n individuals under study.
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Likelihood function

Calculation of MLE

The MLE is the maximizer of L(θ) or `(θ), or equivalently, the root of

U(θ) =
∂`(θ)

∂θ
=


∂`(θ)
∂θ1
...

∂`(θ)
∂θp

 =
n∑

i=1

∂ log f (xi ; θ)

∂θ
= 0.

In many applications, there exists no explicit solution for MLE.
Hence, a numerical approach has to be applied.

When θ is a vector, the partial derivative is also a vector.

U(θ) is referred to as the score function.

Peng Zeng (Auburn University) STAT 7780 – Lecture Notes Fall 2017 31 / 41



Likelihood function

Linearization

Suppose that θ0 is the maximizer. We approximate U(θ0) using
Taylor expansion in a neighborhood of θ,

0 = U(θ0) ≈ U(θ) + H(θ)(θ0 − θ),

where H is usually called a Hessian matrix

H(θ) =
∂U(θ)

∂θT
=
∂2`(θ)

∂θ∂θT
=

(
∂2`(θ)

∂θi∂θj

)
p×p

Therefore, we can calculate θ0 if θ is close to θ0.

θ0 ≈ θ − [H(θ)]−1U(θ).
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Likelihood function

Newton-Raphson Algorithm

Starting from an initial guess of θ, say θ(0), we iteratively apply the
following formula,

θ(k+1) = θ(k) − [H(θ(k))]−1U(θ(k)).

Stop if one of the following two criteria is satisfied.

k is too large

‖θ(k+1) − θ(k)‖2 is small enough.

The second criterion can be replaced by ‖U(θ(k+1))‖2 is small enough
or |`(θ(k+1))− `(θ(k))| is small enough.
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Likelihood function

Example

Suppose that X1, . . . ,Xn are iid Weibull(α, λ) random variables. Find
the MLE of α and λ.

The log-likelihood function is

`(α, λ) =
n∑

i=1

ln(αλxα−1
i e−λx

α
i )

= n lnα + n lnλ + (α− 1)
∑

ln(xi)− λ
∑

xαi

Let θ = (α, λ)T . The score function U(θ) is

U(θ) =

(
nα−1 +

∑
ln(xi)− λ

∑
xαi ln(xi)

nλ−1 −
∑

xαi

)
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Likelihood function

Hessian Matrix

The Hessian matrix is

H(θ) =

(
−nα−2 − λ

∑
xαi [ln(xi)]2 −

∑
xαi ln(xi)

−
∑

xαi ln(xi) −nλ−2

)
Therefore, the updating formula is

θ(k+1) = θ(k) − [H(θ(k))]−1U(θ(k))
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Likelihood function

Simulation

Randomly generate 200 samples from Weibull distribution with
α = 2.0 and λ = 4.0.

α̂ λ̂ α̂ λ̂
step 0 1.000000 2.249427 0.5000000 1.000000
step 1 1.581915 3.137301 0.9024095 1.565138
step 2 1.965795 3.869274 1.4370040 2.402186
step 3 2.049438 4.086029 1.8644937 3.343296
step 4 2.052623 4.099165 2.0254037 3.939896
step 5 2.052630 4.099215 2.0514540 4.091416
step 6 2.052630 4.099215 2.0526276 4.099196
step 7 2.0526305 4.099215
step 8 2.0526305 4.099215
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Likelihood function

Some Comments

A good initial guess usually leads to faster convergence.

local minimum.

Change step length if necessary. Use a value s ∈ [0, 1].

θ(k+1) = θ(k) − s[H(θ(k))]−1U(θ(k))

The estimate of variance of θ̂ is I (θ̂)−1, the inverse of observed
information matrix,

I (θ) = −∂U(θ)

∂θT
= −∂

2`(θ)

∂θ∂θT
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Likelihood function

Multivariate Normal Distribution

A random vector Y follows multivariate normal distribution
MVN(µ,Σ) if and only if for any vector a, aTY follows a univariate
normal distribution.

E (Y ) = µ and var(Y ) = Σ.

Y + a ∼ N(µ + a,Σ) for any constant vector a.

aTY ∼ N(aTµ, aTΣa) for any constant vector a.

AY ∼ N(Aµ,AΣAT ) for any constant matrix A.

(Y − µ)TΣ−1(Y − µ) ∼ χ2
p, where p is the dimension of Y .
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Likelihood function

MLE and Score Function

The MLE θ̂ follows a normal distribution

θ̂ ∼ MVN(θ,E (I (θ))−1),

where I (θ) is the Fisher’s information matrix.

The score function U(θ) follows a normal distribution

U(θ) ∼ MVN(0,E (I (θ))).
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Likelihood function

Hypothesis Testing
Three different approaches to test

H0 : θ = θ0, Ha : θ 6= θ0,

where θ0 is a given value (or vector).

Wald’s test. Notice that θ̂ asymptotically follows a normal
distribution with mean θ0 and variance E [I (θ0)]−1 under H0.

X 2
W = (θ̂ − θ0)T I (θ̂)(θ̂ − θ0) ∼ χ2

p

Likelihood ratio test.

X 2
LR = 2[`(θ̂)− `(θ0)] ∼ χ2

p

Scores test. Notice that U(θ0) asymptotic follows a normal
distribution with mean 0 and covariance E [I (θ0)] under H0.

X 2
SC = U(θ0)T [I (θ0)]−1U(θ0) ∼ χ2

p
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Likelihood function

Some Comments

For all three tests,

The number of degrees of freedom is p, the dimension of θ.

The p-value is P(χ2
p > X 2), where X 2 can be X 2

W , X 2
LR , or X 2

SC .

Reject H0 if X 2 > χ2
p,α.

The tests can be used for more complicated hypothesis.

H0 : θ ∈ Θ0, Ha : θ /∈ Θ0,

The number of degrees of freedom becomes the difference of the
number of free parameters in H0 and Ha.
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