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Abstract
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1 Introduction

The economic analysis of intergenerational socioeconomic mobility has advanced dramatically
since the first formal model of Becker and Tomes (1979; 1986). Studies of mobility levels have
now been produced for places, populations, and time periods for which none existed previously
(Abramitzky et al., 2021; Alesina et al., 2021). Change over time in the rate of mobility has now
become an area of intense study (Song et al., 2020; Ward, 2023; Davis and Mazumder, 2024;
Nybom and Stuhler, 2024; Jácome et al., 2025). Economists have now employed tools such as
Markov chain models and constructs such as the distinction between exchange and circulation mo-
bility long used by sociologists (Blume et al., 2024). Finally, the analysis of the mechanisms that
generate correlations in outcomes across generations are being explored (Daruich and Kozlowski,
2020; Mogstad and Torsvik, 2023; Lochner and Park, 2024), along with the the ages at which
parental resources best predict child outcomes (Eshaghnia et al., 2025).

Despite this significant progress, however, one glaring deficiency in empirical work on mobility
remains the treatment of females, and mothers in particular. Existing research does not take explicit
account of the tree-like structure of family relationships that should discipline the modeling of
linkages across generations. As a result, a plethora of estimates of intergenerational mobility
appear in the literature, with little basis on which to compare them. Of even greater concern,
though, is the large number of embedded – and potentially testable – assumptions that undergird
many of these exercises.

Many of the responses to this challenge have been ad hoc and unsatisfying. Some studies focus
entirely on fathers and omit any influence from the maternal branch of the family tree (Abramitzky
et al., 2021). Others focus on parent pairs in which both parents have reported incomes (Raaum
et al., 2008; Shepherd-Banigan et al., 2019), which in many cases will be an unrepresentative and
evolving subset of the universe of households.1 Some directly substitute information from the
father of the mother herself (the grandfather of the child at the bottom of the family tree whose
outcomes are the objects of ultimate interest) for that of the mother (Eriksson et al., 2023; Buckles
et al., 2023b), an expedient which, as we show below, is appropriate only under a particular set
of circumstances. Still others avoid the problem entirely by pooling the resource such as income
observed in the parents’ generation and considering the impact of the “household” or “family”
income on the child’s outcome (Chetty et al., 2020; Carneiro et al., 2021), which abstracts from
the possibility that the effect of one parent differs from that of the other. Finally, some studies focus
only on outcomes that can generally be observed for both parents such as educational attainment

1For example, labor force non-participation among married women age 18-64 residing with their children under
age 18 was more than 60% as recently as 1960, and reached its current 30% level only in the 1990s. Calculated using
U.S. decennial census data 1900-2020 from Ruggles et al. (2024a,b).
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(Card et al., 2022). This focus can be misleading if the outcome for one parent has been shaped by
circumstances that weaken the link between the outcome (e.g. years of schooling completed) and
the innate characteristic that might be of ultimate interest (e.g. intelligence). Such was undoubtedly
the case in the U.S. for cohorts born roughly 1915-1955 when males attained B.A. degrees at twice
the rate of females in many years (Goldin et al., 2006, Figure 2).

What has prevented the full exploitation of the underlying dendriform structure that human
biology — through genetic inheritance — and social norms — in the nuclear family and historically
low maternal labor force participation — impose on intergenerational mobility is the inability in
many circumstances to observe the attributes of the mother that could be passed along to her
children. The difficulties posed by failing to take adequate account of the role of mothers in
the analysis of mobility can arise in: (1) offering policy prescriptions to enhance mobility, (2)
interpreting trends in mobility over time or differences across places, and (3) understanding the
mechanisms that generate or impede mobility. For example, we show how differences in assortative
mating can vitiate conclusions regarding trends in mobility rates over time and comparisons across
contexts when the maternal contribution to the child’s outcome is imperfectly observed.

Our work improves upon existing approaches to the empirical analysis of intergenerational
mobility in two important ways:

1. It provides an econometric approach to the analysis of mobility that is derived from the con-
straints that biology imposes on this process. Each individual has 2n ancestors at each nth

generation before their own. This structure forms an inverted triangle with the individual
in the current generation at its lower tip. The influences that cascade down from past gen-
erations and focus on the current one are linked by both cross-sectional (between fathers
and mothers) and time series (from parents to children) correlations, but those correlations
are shaped by the biology of human reproduction and are more numerous at generations
more distant from the current one. Analysis of such a structure requires a hybrid econo-
metric framework, as it is not a simple process of temporal correlation or cross-sectional
dependence or even the combination of these two forms of linkage underlying panel data.
Instead, we require a framework that has all of these elements but in addition allows for the
exponential growth in the number of cross-sectional linkages as the temporal distance back
from the present increases, and imposes a primary causal sequence that moves forward in
generational time so earlier generations impact later ones but the opposite is not generally
true.

2. This econometric structure lays bare the range of assumptions (regarding assortative mating
and the gendered effects of intergenerational transmission, for example) implicit in previous
research. These assumptions are not necessarily inappropriate, but a better understanding of
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what they actually are will allow us to assess whether they are appropriate across different
contexts (over time or across countries, for example), an assessment that may invalidate
some comparisons of mobility across contexts. Just as importantly, we demonstrate how
these assumptions can actually be tested.

We thus propose a unified treatment of the econometrics of the transmission of socioeconomic
status across generations. Unlike the Becker and Tomes (1979, 1986) framework, ours is not a
structural model of maximizing behavior subject to constraints, though we do provide a model of
this type that is consistent with our econometric structure.2 Rather, we present a fully-specified
econometric framework – a three-equation non-linear instrumental variable (NLIV) approach –
that both reveals the variety of assumptions embedded in previous mobility studies and demon-
strates how different combinations of assumptions permit the identification of a range of structural
parameters of interest. Moreover, we show how a range of results can be revealed depending on
the data available to the econometrician.

We then apply this framework to simulated data, for different ranges of the parameters, linked
across two or three generations and in a new empirical analysis of U.S. intergenerational income
mobility 1870-1940 that exploits several million families followed across two and three genera-
tions. We find that mothers contributed considerably more than fathers to the adult incomes of
their children. We also show that transmission to children can differ based on the gender of the
recipient, and that maternal uncles can be used if data on grandfathers is not available. Overall,
our work demonstrates the high return to taking seriously the econometrics of the relationships
underlying the transmission of advantage across generations, the pitfalls of ignoring those compli-
cations, and the ease with which a proper accounting for them can be adapted to different settings
as dictated by data availability, social norms, and institutional constraints.

The conventional measure of parent-to-child mobility is an intergenerational correlation of
some outcome (income, educational attainment, occupation).3 To see what the father-child corre-
lation yields when the unobserved mother makes a non-zero contribution to the child’s outcome,
consider an example where the true effect of the father is βF = 0.3, the true effect of the mother
is βM = 0.6, and the degree of assortative mating (the correlation between father and mother) is
ρ = 0.5. We show below that the estimated father-child intergenerational correlation will be 0.6
(that is, 0.6 = 0.3+0.6 ·0.5), meaning that the estimated father-child intergenerational correlation

2Appendix E extends Becker and Tomes (1979) to households with two parents that bargain à la Nash. This model
informs our econometric approach.

3A closely related measure is the intergenerational elasticity (IGE) of some outcome, which is generally estimated
through a parsimonious regression of the log of the child’s outcome (e.g. income) on the log of the parent’s corre-
sponding outcome. When the outcome in the IGE is multiplied by the ratio of the standard deviation of the outcome in
the parent generation divided by the standard deviation of the outcome in the child generation then the IGE and the in-
tergenerational correlation coincide (Mazumder, 2015). In what follows, we will use the intergenerational correlation
in occupational income ranks.
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is twice as large as the true effect of the father on the child. The intergenerational correlation here
is measuring two effects: (1) the direct effect of the father on the child βF = 0.3; and (2) the effect
of the mother indirectly measured through the father ρβM

The intergenerational correlation we estimate is no longer a single number but instead depends
on the parent whose contribution to the child’s outcome we observe. To show a single number
to summarize how much of the child’s outcome is accounted for by the previous generation’s
outcomes, one can use the total contribution of the parents outcome to the child’s outcome.4 In
this case, the total fraction of the variance in child’s outcome that can be explained by parental
factors is 0.79 (i.e., 0.79 =

√
0.32 +0.62 +0.5 ·2 ·0.3 ·0.6), which is larger than either the father-

child intergenerational correlation and the mother-child intergenerational correlation but smaller
than their sum. The total parental contribution is largest with perfect correlation of the parents’
outcome (ρ = 1). In that case, the estimated father-child correlation and the true total contribution
coincide and are equal to 0.9 (i.e., 0.9 = 0.3+0.6). The father’s effect falls to the true value of 0.3
when we use our three-equation NLIV to account fully for the mother’s impact (0.6).

Our main contribution is to provide a unified framework so that we can interpret, understand,
and contextualize the different correlations that researchers produce with different approaches to
data construction.5 In that sense, our results generalize the seminal contribution of Chadwick and
Solon (2002), by estimating all the structural parameters as well as providing more flexible results
that are applicable to other datasets. We also use grandfathers’ information, in some cases both
grandfathers, to estimate the maternal contribution to social mobility in a way that has not been
done before. Collado et al. (2023) use a similar approach, but they use direct observation of female
outcomes. They use horizontal relations; i.e., sibling and cousin observations. We use vertical
information (father-child) to estimate both vertical (mother-child) and horizontal (father-mother)
structural relationships.

2 Setup

Studies of social mobility often use outcome data on male parents and their children to assess social
mobility as in equation (1), which measures the correlation between the (standardized) outcome of
the child (XC

i ) and the (standardized) outcome of the father (XF
i ).

XC
i = β̃FXF

i +νi (1)

4If equation (2) determines the child’s outcome, then the father-child outcome correlation is E
[
XF

i XC
i
]
= βF +ρβM .

Moreover, the contribution of both parents to the child outcome is β̄ ≡ (β 2
F +β 2

M +2ρβF βM)0.5 (Althoff et al., 2024).
5Eriksson et al. (2023) provides a comprehensive review of how estimates in the literature relate to our method.

Moreover, Eriksson et al. (2023) and Keller and Shiue (2024) are already applying our method to study Massachusetts
and China, respectively.
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If the goal is merely to present a descriptive assessment, the researcher can use the father-child
empirical correlation of outcomes. However, if the goal is to assess causality, or prescribe pol-
icy, the estimation of the parameter of interest β̃F could be biased if equation (1) is misspecified.
In particular, one can think of other family members that can have an effect on the outcome of
the child. The first that comes to mind is the mother. Whether we think they directly transmit
an outcome (e.g., socioeconomic status), or that they transmit only traits that affect that outcome,
mothers will play an essential role. In particular, they are strictly as important as fathers if we think
the transmission is due to genetics and possibly as important if we think the transmission is mostly
inherited wealth or social status. Alternatively, we might think that what is transmitted from gen-
eration to generation is human capital or networks related to a particular occupation which could
be transmitted from father to child without mothers playing a major role. Even in these instances,
grandfathers might play a role in determining the outcome of the child, even after accounting for
the effect of the father (Long and Ferrie, 2013). In any case, there are reasons to believe that the
above equation might be misspecified. Our goal here is to provide a framework where this could
be tested and where β̃F and other parameters of interest could be identified. In particular, we can
think that the outcome of the child is affected by both the outcome of the father and the outcome
of the mother (XM

i ) as reflected in equation (2):

XC
i = βFXF

i +βMXM
i + ε

C
i (2)

XM
i is a measure of the mother’s status measured in the same units as the father’s status.6 It is

transmitted to the child according to βM, but it is not observed by the econometrician.
An alternative interpretation in social mobility studies is that one outcome is observed, but it

is a proxy for a latent variable (social status, human capital, networks, genetic endowment) that is
being transmitted across generations but not observed. Under this interpretation estimators might
suffer from attenuation bias. In Appendix D.2, we discuss whether and how this might affect our
estimators.

If the data is generated by equation (2) but the econometrician uses an OLS estimator for
equation (1), the estimator β̃F will be biased if E

[
XF

i
(
βMXM

i + εC
i
)]

̸= 0 (Espín-Sánchez et al.,
2022). If equation (2) is well specified we have E

[
XF

i εC
i
]
= 0 and this condition becomes ρβM ̸= 0,

where ρ = E
[
XF

i XM
i
]

is the extent of assortative mating in the couple formed by the father and the
mother. Such an estimator would be

β̃F =
E
[
XF

i XC
i
]

E
[
XF

i XF
i
] (3)

In general, the OLS estimate β̃F ≡ βF +ρβM from equation (1) is a biased estimator of both

6In our formal notation, individuals are identified by their position in the family: F=father, M=mother, C=child,
S=son, D=daughter, PU=paternal uncle (father’s brother), MU=maternal uncle (mother’s brother), PF=paternal grand-
father, PM=paternal grandmother, MF=maternal grandfather, MM=maternal grandmother.
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the effect of the father on the child βF and the effects of both parents on the child (βF +βM). In
one extreme case, where mating is perfectly assortative (ρ = 1), the estimator β̃F will consistently
estimate (βF +βM). In the other extreme case, where mating is perfectly random (ρ = 0), the
estimator β̃F will consistently estimate βF , but we would not be able to estimate βM. These ex-
treme examples are the most optimistic ones for the econometrician. In general, matching will be
somewhat assortative (1 > ρ > 0) and the estimator β̃F will lie between βF and (βF +βM), but we
would not know how close the estimator is to either end of this range without knowing the degree
of assortment ρ .

Figure 1 shows the total parental contribution as a function of the father-child correlation. Each
curve represents a different value for βM, and each panel is for a different value of ρ . When mothers
do not have an effect on children (βM = 0), the father-child correlation is a consistent estimate for
the effect of the father on the child (βF ). This is shown as the 45-degree line. When mothers
have an effect, the total contribution will be larger than the father-child correlation. The vertical
distance between a given curve and the 45-degree line measures the bias in the total contribution if
it is measured using the father-child correlation. When the effect of the mother (βM) is larger, the
bias would be larger, as we can see the lines measuring the total effects going up for larger values
of βM. When assortative mating (ρ) is lower, the bias is also larger. We can see how the lines in
panel B are substantially higher than those in panel A, even for modest changes in ρ . Moreover,
when mothers have an effect, the implied total contribution could exceed 1, e.g., ρ = 0.3, βM = 0.6,
and E[XF

i XC
i ] > 0.9, which is infeasible. In other words, if ρ = 0.3 and βM = 0.6, a father-child

correlation of 0.9 would imply an infeasibly high effect of the father on the child βF > 1.
In this paper, we restrict attention to the model depicted by equation (2), as the simplest natural

extension of equation (1). The system of equations is then:7

XC
i = βFXF

i +βMXM
i + ε

C
i (4)

XF
i = β

′
FXPF

i +β
′
MXPM

i + ε
F
i (5)

XM
i = β

′
FXMF

i +β
′
MXMM

i + ε
M
i (6)

where XPF
i is the outcome of the paternal grandfather, XPM

i is the outcome of the paternal grand-
mother, XMF

i is the outcome of the maternal grandfather, XMM
i is the outcome of the maternal

grandmother, and εC
i , εF

i and εM
i are the corresponding error terms. In the baseline model, the

relations that we are trying to estimate are depicted in Figure 2.

• Three (horizontal) relations of assortative mating: XF
i ∼ XM

i , measured by ρ; and XPF
i ∼

XPM
i and XMF

i ∼ XMM
i measured by ρ ′, none of which could be estimated directly.

7The method developed here can be easily extended to richer models that allow for direct transmission from grand-
parents, interaction effects between the parents, or direct diagonal effects of uncles. The equations presented above
could be easily extended by adding observable characteristics such as age, state of birth, or number of siblings in the
household. The results would remain true if we add any observable and exogenous variables to any equation.
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Figure 1: Total Contribution as a function of Father-Child Correlation.

A. With medium assortative mating (ρ = 0.5).
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B. With low assortative mating (ρ = 0.3).
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Notes: The father-child outcome correlation is E
[
XF

i XC
i
]
= βF +ρβM , or βF = E[XF

i XC
i ]−ρβM . The contribution of

both parents to the child outcome is β̄ ≡ (β 2
F +β 2

M +2ρβF βM)0.5. We can write β̄ as a function of βM and ρ and get
β̄ = [(E[XF

i XC
i ]−ρβM)2 +β 2

M + 2ρβM(E[XF
i XC

i ]−ρβM)]0.5. We plot the total contribution as a function of βM for
ρ = 0.5 (Panel A) and ρ = 0.3 (Panel B).

• Three causal male relations (XF
i ∼ XC

i , XPF
i ∼ XF

i and XMF
i ∼ XM

i ) that are governed by βF

(or β
′
F ) and could be estimated if mating was random.

• Three causal female relations (XM
i ∼ XC

i , XPM
i ∼ XF

i and XMM
i ∼ XM

i ) that are governed by
βM (or β

′
M), none of which could be estimated directly.
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Throughout the paper we assume that the system formed by equations (4), (5), and (6) is well
specified, i.e., that the error term is uncorrelated with the regressor in each equation. In particular,
the exclusion restrictions are:

1. E
[
XF

i εC
i
]
= 0;

2. E
[
XPF

i εC
i
]
= 0;

3. E
[
XPF

i εF
i
]
= 0;

4. E
[
XPF

i εM
i
]
= 0;

5. E
[
XMF

i εC
i
]
= 0;

6. E
[
XMF

i εF
i
]
= 0;

7. E
[
XMF

i εM
i
]
= 0.

We have seven exclusion restrictions and they are analogous to exclusion restrictions in a time
series that follows an AR(1) process, i.e., Yt = βYt−1 + εt , where future shocks cannot affect the
past: E [Yt−1εt ] = 0. The child is at the end of the tree, so we cannot have any exclusion restriction
multiplying XC

i by any of the εi. The father is in the middle of the tree, so we can use one exclusion
restriction for XF

i : E
[
XF

i εC
i
]
= 0, i.e., E [Yt−1εt ] = 0. XF

i would be endogenous to all other error
terms, except the one at the bottom of the tree, e.g., E

[
XF

i εPF
i

]
̸= 0, i.e., E [Ytεt−1] ̸= 0. The

grandfathers are at the top of the tree. XPF
i and XMF

i are exogenous to the error terms below
them in the tree: two error terms in the middle of the tree, εF

i and εM
i (E [Yt−21εt−1] = 0) and

the one at the end of the tree εC
i (E [Yt−2εt ] = 0). These exclusion restrictions allow us to use the

grandfathers as (non-linear) instruments to construct the relevant moments. The usual analysis of
social mobility implicitly assumes that mothers play no role, or not a role independent from the
father. This would be a particular case of our tree where mothers play no role, and there are only
three relevant exclusion restrictions: E

[
XF

i εC
i
]
= 0 (E [Yt−1εt ] = 0), E

[
XPF

i εF
i
]
= 0 (E [Yt−2εt−1] =

0), and E
[
XPF

i εC
i
]
= 0 (E [Yt−2εt ] = 0). The extra exclusion restrictions coming from the maternal

side allow us to identify all structural parameters.
We now present the general data generating process of the model, represented by equations

(4), (5), and (6). At this point, we do not make any assumptions about the relationship between
grandparents. Matrix Σ below represents the variance-covariance matrix among the grandparents.
For simplicity, we normalize all variables to have zero mean and unit variance, so the correlation
and the cross-products coincide.

8



Figure 2: Structural Parameters and Empirical Relations
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Σ =Var


XPF

i

XPM
i

XMF
i

XMM
i

=


1 ρ ′ γMF

PF γPF
MM

ρ ′ 1 γPM
MF γMM

PM

γMF
PF γPM

MF 1 ρ ′

γPF
MM γMM

PM ρ ′ 1


where the nuisance parameters measure the four correlations among grandparent pairs, i.e., γMF

PF ≡
E
[
XPF

i XMF
i

]
, γPM

MF ≡ E
[
XMF

i XPM
i

]
, γMM

PM ≡ E
[
XPM

i XMM
i

]
and γPF

MM ≡ E
[
XMM

i XPF
i

]
.

With this data-generating process, we can see in Figure 2 that there are only three end nodes in
the tree: father, mother and child. Therefore, we need to use nothing more than equations (4), (5),
and (6) to estimate the model. In other words, the data is originally generated by the outcomes of
the four grandparents, with the correlations given by Σ. The transmission from the grandparents
to the father and the mother occurs according to the causal relationships in equations (5) and (6),
i.e., the outcomes of the father and mother are realized. After those realizations, the transmission
from the parents to the child occurs according to the causal relationships in equation (4), i.e., the
outcome of the child is realized.

It is worth discussing the interpretation of the three types of elements here. First, the structural
parameters (βF ,βM,ρ) – shown in Figure 2 – are our main parameters of interest. They reflect
our interest as social scientists in social phenomena. βF measures the effect of the father on the
child. βM measures the effect of the mother on the child. ρ measures assortative mating between
the mother and the father.

Second, we define the empirical relationships in the data. In the standard model of social
mobility we only observe two variables

(
XC

i ,X
F
i
)

and are thus able to obtain one empirical rela-
tionship mC

F ≡ E
[
XC

i XF
i
]
. We have four variables available

(
XC

i ,X
F
i ,XPF

i ,XMF
i

)
, so we can get six

empirical relationships, which correspond to mC
F , mF

PF , mC
MF , mF

MF , mC
PF , and mMF

PF ≡ γMF
PF (Figure

2, bottom). Section 3 shows how we use these relationships to identify the structural parameters.
Third, we have the nuisance parameters

(
γMF

PF ,γPM
MF ,γ

MM
PM ,γPF

MM
)
. We call them nuisance param-

eters because they are not our main object of interest here. With the exception of γMF
PF , they are

not directly observed in the data. Notice, however, that the nuisance parameters measure a more
complex relationship between the grandparents than is typically assumed in the literature. More-
over, we can interpret the nuisance parameters, in light of matrix Σ above, as the most general way
of thinking of family structure and assortative mating in our model. In other words, the nuisance
parameters allow us to think of a more general model of household formation and whether the
characteristics of the grandparents affect the mating between the parents in a more nuanced way,
e.g., arranged marriages.

In addition to the baseline tree, we also show identification results when the researcher has
access to data relating to one maternal uncle. The equation determining the status of a maternal
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uncle (XMU
i ) is

XMU
i = βFXMF

i +βMXMM
i + ε

MU
i (7)

With this new equation, we have a new parameter η ≡E
[
εM

i εMU
i

]
that measures household effects.

Moreover, we can extend our baseline model to allow for parental effects to be different for sons
and daughters. The system of equations in this case is:

XS
i = β S

FXF
i +β S

MXM
i + εS

i

XF
i = β S

FXPF
i +β S

MXPM
i + εF

i

XM
i = β D

F XMF
i +β D

MXMM
i + εM

i

(8)

where β S
F and β S

M are the effects of the father and mother on a son, respectively and β D
F and β D

M

are the effects of the father and mother on a daughter, respectively. We now list some assumptions
that are implicitly used in the literature.

Assumption 1 (Direct Mating). γMF
PF = γPM

MF = γMM
PM = γPF

MM.

Assumption 2 (Mating on Observables). E
[
XF

i εM
i
]
= E

[
XPF

i εPM
i

]
= E

[
XMF

i εMM
i

]
= 0.

Assumption 3 (Only Male Effects). βM = 0.

Assumption 4 (Gender Neutral). βM = βF .

Assumption 5 (No Household Effects). η = 0.

In empirical applications, one would sometimes impose some of them, but not all of them, and
we discuss what assumptions are needed for identification depending on the data available to the
researcher. It is worth emphasizing that these assumptions, or stronger ones, are implicitly used
in the literature. We are just being intentionally explicit on what they are and how they relate to
identification. A1 implies that mating is determined by individual characteristics of the spouses,
not their parents. This is implicitly assumed in the literature and in our baseline case. Nonetheless,
our framework allows for researchers to relax it, as we show in Proposition 4.

Assumption A2 imposes additional exclusion restrictions. We usually do not need to impose
these restrictions to obtain mobility parameters, but sometimes we need it to estimate assortative
mating. In the usual time series approach, where there is no tree, this would amount to E [Ytεt ] = 0,
which could not be true. With the tree structure, however, this assumption holds. The implication,
again, is that the model is correctly specified and there is no mating on unobservables, i.e., XF

i and
XM

i measure all the relevant characteristics for mating.
Assumption A3 assumes that only fathers affect their children, not mothers. Proposition 1

shows how the father effect would be overestimated if mothers have an effect on their children,
but we assume they do not. Assumption A4 assumes that each parent has the same effect on their
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children. This is implicitly assumed in most of the labor economics literature when researchers
have access to household income, rather than individual parental income. This assumption would
be violated if mothers and fathers have different preferences on how to spend their income, or on
how much time they spent with their children. Becker and Tomes (1979, 1986) assumes income
is used to invest in the human capital of the child. Higher human capital children would then earn
a higher income and will then invest a higher amount in the human capital of their own children.
The income earned by the mother could be invested in the same way as the income earned by the
father. If both parents have the same preferences on how to use that income, then βM = βF . If their
preferences are different, even if the transformation of income into human capital of the child is
the same, then βM ̸= βF (see Appendix E for details).8 Proposition 3 and Corollaries 1 and 2 make
this assumption. Finally, A5 assumes that there are not household effects, i.e., that the unexplained
component of children’s outcome is uncorrelated across siblings. Table 1 presents a summary of
the various propositions, assumptions, and identified parameters.

3 Identification

In this section, we discuss point-identification of the structural parameters (βF ,βM,ρ). Detailed
proofs are shown in Appendix A. The goal of this section is twofold. First, it provides to the
reader a cookbook: for each potential dataset that the reader may encounter, it discusses the most
reasonable sets of assumptions to provide identification. Second, it allows the reader to understand
the trade-offs between the sample generated and the parameters of the model. A sample with more
relatives generates more empirical moments. This is good because it allows the identification of
more parameters, but it may come at the expense of using a more selected sample.

In Subsection 3.1 we discuss identification using 2-generation trees. This is the simplest case
regarding data requirements and generates only three empirical moments. In Subsection 3.2, we
discuss identification using 3-generation records. In Subsection 3.3, we discuss identification using
3-generation records and one maternal uncle, allowing us to identify household effects. Finally, in
Subsection 3.4 we allow mobility parameters to vary according to the child’s gender, in addition to
the parent’s gender.

3.1 Identification Using 2-Generation Data

In this subsection, we present our baseline results. We provide the basic intuition of our approach
and how we exploit all the variation in the data to get the most flexible estimates, given the data

8Studies using modern data usually have information on household income (XF
i +XM

i ) and run OLS estimation on
XC

i = β
(
XF

i +XM
i
)
+ εi. If both parents are generating income this is equivalent to assuming β = βM = βF .
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available. We assume that the econometrician has access to two generations of data prior to the
child of interest data on male socioeconomic status

(
XF

i ,XPF
i ,XMF

i
)
. With three variables, we

can compute three empirical moments: mMF
PF , mF

MF and mF
PF . We now show how these three

empirical moments, together with the exclusion restrictions, generate three independent equations
when Assumption A1 holds.

First, we use equation (5), multiply each term by XPF
i and take expectations. Assuming

E
[
XPF

i εF
i
]
= 0 generates the first moment

E
[
XF

i XPF
i

]
= β

′
FE

[
XPF

i XPF
i

]
+β

′
ME

[
XPF

i XPM
i

]
= β

′
F +β

′
Mρ

′ (9)

This moment is the analog of an OLS estimator where we multiply the estimating equation by
one of the independent variables and take expectations. If we observe XPM

i , we would multiply
equation (5) by XPM

i and take expectations. That moment, together with equation (9), would form
a system with two equations and two unknowns (β

′
F ,β

′
M). ρ ′ = E

[
XPF

i XPM
i

]
would be directly

observable in the data. We do not observe XPM
i , but we will create a system of three independent

moments to identify (β
′
F ,β

′
M,ρ ′).

We now use equation (5), multiply each term by XMF
i , and take expectations. Assuming

E
[
XMF

i εF
i
]
= 0 and A1 generates the second moment

E
[
XF

i XMF
i

]
= β

′
FE

[
XPF

i XMF
i

]
+β

′
ME

[
XPM

i XMF
i

]
= E

[
XPF

i XMF
i

](
β

′
F +β

′
M

)
(10)

This moment is the analog of an instrumental variables (IV) estimator, where we multiply the
estimating equation by a variable that is not in the estimating equation. In that sense we use XMF

i

as an instrument. Notice, however, that this instrument is not exogenous in our model. The usual
approach to omitted variables is to find an instrument Zi such that E

[
Zi(β

′
MXPM

i + εF
i )

]
= 0. Using

that instrument, would generate the standard IV moment: E
[
XF

i Zi
]
= β

′
FE

[
XPF

i Zi
]
. The standard

approach would produce an unbiased estimate for β
′
F but would not be able to estimate β

′
M or

ρ ′. Our approach allows us to estimate all three parameters of interest, without having to find an
exogenous instrument Zi. Moreover, whereas the exogeneity of Zi with respect to XPM

i is assumed
and untestable, our method directly computes the correlation between our instrument XMF

i and the
omitted variable XPM

i through the tree structure.
Finally, we take equations (5) and (6) and multiply the left hand side in each equation, and

the right hand side in each equation, and take expectations. Using the exclusion restrictions and
Assumptions A1 and A2 we get

ρ = E
[
XMF

i XPF
i

](
β

′
F +β

′
M

)2
(11)

Equation (9) is similar to an OLS equation, i.e., we use a variable that is included in the right
hand side (XPF

i ) and multiply all terms by that variable. Because XPM
i is unobserved, the second

term would generate omitted variable bias. Equation (10) is similar to an IV equation, i.e., we use
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a variable that is not included in the right hand side (XMF
i ) and multiply all terms by that vari-

able. Because XPM
i is unobserved, the second term would generate omitted variable bias. What

we need now is a third equation that relates these unobservable terms (ρ ′ and γPM
MF ) to one an-

other and to other observable moments or structural parameters. Equation (11) comes from our
theoretical model and fulfills that role. We now have a system with three equations and seven un-
knowns: the four structural parameters (β

′
F ,β

′
M,ρ ′,ρ) and the three unknown nuisance parameters

(γPM
MF ,γ

MM
PM ,γPF

MM). Proposition 1 below shows how one can identify (β
′
F ,β

′
M,ρ) making assump-

tions on the nuisance parameters, using information on 2-generation records alone.

Proposition 1. Suppose XF
i , XPF

i , and XMF
i are observed. If assumption A1 holds and ρ ′ = ρ ,

then (β
′
F ,β

′
M,ρ) is point identified.

When assumption A1 holds ρ ′ = ρ , and we use equations (9), (10), and (11), we have a system
with three unknowns and three independent equations. Solving this system we get

ρ =

(
mF

MF
)2

mMF
PF

(12)

β
′
F =

mF
MF

mMF
PF

− mF
MF −mMF

PF mF
PF

mMF
PF −

(
mF

MF
)2 (13)

β
′
M =

mF
MF −mMF

PF mF
PF

mMF
PF −

(
mF

MF
)2 (14)

The seminal work by Chadwick and Solon (2002) uses a similar approach, but their framework
is more restrictive in two respects. First, they impose Assumption A4. Second, they implicitly as-
sume mMF

PF =mF
PFmF

MF .9 Both assumptions can be easily tested, and are rejected in our examples in
Section 5. Indeed, if we substitute this restriction into equation (12) above, we get ρ = mF

MF/mF
PF ,

which is the ratio estimator used in Chadwick and Solon (2002). Thus, their estimator is a partic-
ular case of our framework under the assumption that mMF

PF = mF
PFmF

MF .
Propositions 2 and 3 below restrict attention to the cases most commonly found in the literature:

either women do not matter (Proposition 2, β
′
M = 0), or women matter as much as men (Proposition

3, β
′
M = β

′
F ).

Proposition 2. Suppose XF
i , XPF

i , and XMF
i are observed. If assumption A3 holds, then (βF ,ρ) is

point identified.

Notice that Proposition 2 generates a system with three equations and two unknowns. This
means that the system is overidentified, or that the assumption β

′
M = 0 is testable. On the other

hand, one can see that if we do not use information on mMF
PF , we can still estimate (β

′
F ,ρ) by writing

9This restriction comes from the particular variance decomposition used. The ratio of mMF
PF over mF

MF is equal to
the effect of the parents on the child. But this effect is also equal to mF

PF . Thus mMF
PF = mF

PF mF
MF .
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β
′
F = mF

PF and ρ = mF
MFmF

PF . In this case, the formula for ρ is the product, not the ratio, of mF
MF

and mF
PF . Proposition 3 below allow us to estimate ρ and ρ ′ independently by assuming β

′
M = β

′
F .

This is a common assumption in the literature when the researcher only have data on aggregated
household income.

Proposition 3. Suppose XF
i , XPF

i , and XMF
i are observed. If assumptions A1 and A4 hold, then

(β
′
F ,ρ

′,ρ) is point identified.

3.2 Identification Using 3-Generation Data

We now discuss what parameters can be identified with 3-generation data. We now combine equa-
tions (4), (5), and (6) with the seven exclusion restrictions above to generate six moments.10 With
the exclusion restrictions above we can generate the following moments.
Using equation (4) and E

[
XF

i εC
i
]
= 0 we get

mC
F ≡ E

[
XC

i XF
i

]
= βFE

[
XF

i XF
i
]
+βME

[
XM

i XF
i
]

= βF +ρβM (15)

Using equation (5) and E
[
XPF

i εF
i
]
= 0 we get

mF
PF ≡ E

[
XF

i XPF
i

]
= β

′
FE

[
XPF

i XPF
i

]
+β

′
ME

[
XPM

i XPF
i

]
= β

′
F +ρ

′
β

′
M (16)

Using equations (4) and (6) and E
[
XMF

i εM
i
]
= 0 and E

[
XMF

i εC
i
]
= 0 we get

mC
MF ≡ E

[
XMF

i XC
i

]
= βFE

[
XMF

i XF
i
]
+βME

[
XMF

i XM
i
]

= βFE
[
XMF

i XF
i
]
+βM

(
β

′
FE

[
XMF

i XMF
i

]
+β

′
ME

[
XMF

i XMM
i

])
= βFmF

MF +βM

(
β

′
F +ρ

′
β

′
M

)
(17)

Using equation (5) and E
[
XMF

i εF
i
]
= 0 we get

mF
MF ≡ E

[
XF

i XMF
i

]
= β

′
FE

[
XPF

i XMF
i

]
+β

′
ME

[
XPM

i XMF
i

]
= β

′
Fγ

MF
PF +β

′
Mγ

PM
MF (18)

10In each case, we multiply one of the equations for one of the observable variables and take expectations, e.g., we
take equation (4) and multiply by XF

i , and then take expectations and use E
[
XF

i εC
i
]
= 0 to get equation (15). See

Appendix A for details.
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Using equation (4) and E
[
XPF

i εC
i
]
= 0 and E

[
XPF

i εM
i
]
= 0 we get

mC
PF ≡ E

[
XPF

i XC
i

]
= βFE

[
XPF

i XF
i
]
+βME

[
XPF

i XM
i
]

= βFE
[
XPF

i XF
i
]
+βM

(
β

′
FE

[
XPF

i XMF
i

]
+β

′
ME

[
XPF

i XMM
i

])
= βFmF

PF +βM

(
β

′
Fγ

MF
PF +β

′
Mγ

PF
MM

)
(19)

Using equations (5) and (6) we get

E
[
XF

i XM
i
]
= E

[(
β

′
FXPF

i +β
′
MXPM

i

)(
β

′
FXMF

i +β
′
MXMM

i

)]
and solving we get

ρ =
(

β
′
F

)2
γ

MF
PF +

(
β

′
M

)2
γ

MM
PM +β

′
Fβ

′
M
(
γ

PM
MF + γ

PF
MM

)
(20)

Our estimator can be seen as a generalization of both IV in cross-sectional data and time series
data.11 Equation (15) is as a standard equation with omitted variables in cross-sectional data where
XC

i is the dependent variable, XF
i is the regressor and XM

i is the omitted variable. The standard
solution in such a case would be to use an instrumental variable that is correlated with the regressor
XF

i but not with the omitted variable XM
i . What we do here instead is to use a variable that is

correlated with the omitted variable XM
i , and estimate that correlation. For example, equation

(17) is equivalent to using XMF
i as an instrument in equation (4). However, instead of the usual

assumption that the instrument is uncorrelated with the omitted variable, e.g., E
[
XMF

i XM
i
]
= 0, our

model indicates that this correlation is a function of the structural parameters, e.g., E
[
XMF

i XM
i
]
=

β
′
F + ρ ′β

′
M. In that sense, our model is a generalization of the usual IV approach where we put

structure on the correlation of our instrument and the omitted variable, instead of assuming that it
is zero.

Mathematically, all six moments, i.e., equations (15), (16), (17), (18), (19), and (20), are gen-
erated using exclusion restrictions and the data. However, there is a qualitative difference between
the first three and the last three moments. In the first three moments, i.e., equations (15), (16), and
(17), the exclusion restrictions come from using the error term of a person and the status of their
father, e.g., εC

i and XF
i ; εF

i and XPF
i ; and εM

i and XMF
i . These moments are analogous to a time

series model that follows an AR(1) process. In that case the model is Yt = βYt−1+εt and the exclu-
sion restriction is E [Yt−1εt ] = 0. When β

′
M = 0 our model is identical to that AR(1) process. This

is the implicit assumption in Becker and Tomes (1979, 1986) and most of the literature after that.
In that sense, time series is a particular case of econometric trees where only the patrilineal effects
matter. The availability of the matrilineal line provides extra exclusion restrictions that allow us
to identify βM and ρ . We can think of our estimator as a generalization of the instruments used in

11When we use data on maternal uncles we face a problem similar to that in panel data in that there could be
household effects. Our estimator in that case can be seen as a generalization of Arellano and Bond (1991).
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time series, where we also use the matrilineal lags in the data, e.g., XMF
i .

There are no nuisance parameters in equations (15), (16), and (17). This means that if we have
one extra identifying assumption that does not relate to the nuisance parameters, we just need to
use the first three equations, together with a new independent assumption and we will get a system
of four independent equations and four unknowns. Notice that, assuming ρ = ρ ′ does not provide
a new independent equation, because it would make equations (15) and (16) collinear. When the
parameters are constant across two generations, i.e., (βF ,βM,ρ) = (β

′
F ,β

′
M,ρ ′), equations (18),

(19), and (20) contain the nuisance parameters
(
γPM

MF ,γ
MM
PM ,γPF

MM
)
, as well as the parameters relating

to the child’s equation (βF ,βM,ρ). Thus, if we can identify (βF ,βM,ρ) from other equations, we
can use the last three equations to identify the nuisance parameters.12

Combining equations (16) and (17) we can express βM as a function of βF and empirical mo-
ments

βMmF
PF = mC

MF −βFmF
MF (21)

Thus, we can use two identifying equations to get an equation that is a linear combination of
βF and βM alone. Figure 3 (left) shows an equation that depends only on βF and βM and data,
by combining equations (16) and (17). Notice that all the other moments depend on ρ , ρ ′, and
the nuisance parameters. Thus, without further assumptions, this line is our identified set for βF

and βM. We now show that we can get point identification on (βF ,βM,ρ ′,ρ) when we only make
a mild assumption on the nuisance parameters, relaxing assumptions A1. This would be useful
for settings where there are arranged marriages, or the status of the parents of the groom or bride
have a direct effect on mating, beyond the status of the groom and bride. When the econometrician
has access to 3-generation data on male socioeconomic status

(
XC

i ,X
F
i ,XPF

i ,XMF
i

)
, we have four

variables, we can compute six empirical moments:
(
mMF

PF ,mC
F ,m

F
PF ,m

C
MF ,m

F
MF ,m

C
PF

)
(see Figure

2). Thus, we only need one restriction on the nuisance parameters to get point identification. To
illustrate this point, we assume that the correlation among grandparents across genders is equal
to the product of the standard deviations, i.e., γPM

MF = γPF
MM. This is, in our opinion, the weakest

assumption on the nuisance parameters. Proposition 4 shows how this assumption generates point
identification.

Proposition 4. Suppose XC
i , XF

i , XPF
i and XMF

i are observed. If we assume γPM
MF = γPF

MM, then

(βF ,βM,ρ ′,ρ) is point identified.

Combining equations (16) and (17), we get an equation that depends only on βF and βM and
data. This equation is the black line on the right panel on Figure 3. Assuming γPM

MF = γPF
MM, and

combining equations (18) and (19), we get an independent equation that depends only on βF and

12The intuition also works conversely: if we can identify
(
γPM

MF ,γ
MM
PM ,γPF

MM
)
, then we can identify (βF ,βM,ρ). This

intuition is the basis for the proofs of the propositions below.
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Figure 3: Set Identification and Point Identification
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Notes: In this example, we use βF = 0.3, βM = 0.6, and ρ = 0.5. Simulating data using this set of parameteres
generates a set of correlations that we insert in our estimating moments. Panel A. The equation comes from using

equations (16) and (17). The equation is βM =
mC

MF
mF

PF
− mF

MF
mF

PF
βF = 0.62−0.59βF . Panel B. Black line is the same as in

panel A. The second equation (red line) comes from using equations (18) and (19) and the assumption γPM
MF = γPF

MM .

The resulting equation is βM =
mC

PF
mF

MF
− mF

PF
mF

MF
βF = 1.32−1.71βF .

βM and data. This equation is the red line on the right panel on Figure 3. Thus, using these four
moments and the restriction on the nuisance parameters, we can identify βF and βM. Identification
on ρ ′ and ρ follows using the other moments.13

Proposition 5 shows identification results when we do not observe XPF
i , but assume A1 and

that parameters are constant across generations. Observing only XC
i , XF

i , and XPF
i will not produce

identification of all structural parameters, even with the same assumptions as Proposition 5. We
can see this by noting that the moment generated by E

[
XC

i XF
i
]

is colinear with equation (9).
This demonstrates the importance of the male relatives on the mother side. Maternal grandfathers
and maternal uncles can be used as instruments to obtain identification. Paternal grandfathers (or
paternal uncles) alone would not help in identifying all parameters.

Proposition 5. Suppose XC
i , XF

i , and XMF
i are observed. If assumption A1 holds and ρ ′ = ρ , then

(βF ,βM,ρ) is point identified.

Summarizing, in Proposition 1, we use Assumption A1 but let the mobility parameters vary
across generations. In Proposition 4 we relax Assumption A1, but impose that the mobility param-
eters are constant across two consecutive generations. Proposition 5 relaxes the data requirement in
Proposition 4, but requires similar assumptions as Proposition 1. Appendix A.5 discusses several
intermediate cases when we make assumptions weaker than A1 about the nuisance parameters,

13Proposition 4 implicitly identifies all the nuisance parameters, too. With γPM
MF = γPF

MM , this means that the six
empirical moments produce a vector of six parameters

(
βF ,βM,ρ ′,ρ,γPM

MF ,γ
MM
PM

)
.
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and we impose some restrictions on mobility parameters across time, without imposing they are
constant.

3.3 Identification Using Maternal Uncles

In this section, we discuss identification when we have information on one maternal uncle (XMU
i ).

In addition to the six moments generated using
(
XC

i ,X
F
i ,XMF

i ,XPF
i

)
, we can get additional mo-

ments if we have information on one maternal uncle. Proposition 6 below shows that we can get
identification of all structural parameters, including household effects η , without any additional
assumptions. Typically one needs to observe the status of two siblings in order to estimate house-
hold effects. Here, we can do it without observing the status of a pair of siblings. We observe the
status of one sibling (the maternal uncle) and some relatives of the other sibling (the mother).

Proposition 6. Suppose XC
i , XF

i , XMU
i , and XMF

i are observed. Then (βF ,βM,ρ ′,ρ,η) is point

identified.

Proposition 6 uses only four variables and generates six equations and six empirical moments(
mC

F ,m
C
MF ,m

F
MF ,m

F
MU ,m

MF
MU ,m

C
MU

)
. We use six equations, where there are no nuisance parame-

ters and estimate five structural parameters (βF ,βM,ρ ′,ρ,η). Unlike in the case in Proposition 4,
where we have information on the paternal grandfather, but not on the maternal uncle, here we
can estimate all structural parameters and η , with six empirical moments. The difference is that
the equations using the paternal grandfather typically involve nuisance parameters, but the equa-
tions that we get using the uncles do not. Therefore, for a researcher interested in the structural
parameters, the information provided by a maternal uncle is much more valuable. Of course, re-
quiring information on a maternal uncle would restrict the sample to families where the mother
had a brother.

Proposition 7. Suppose XC
i , XF

i , XMU
i and XPF

i are observed. Then (βF ,βM,ρ ′,ρ,η) is point

identified.

Proposition 7 shows that we can identify all the parameters of interest using XPF
i instead of

XMF
i . Finally, Proposition 8 below shows how we can still get identification on our main param-

eters of interest (βF ,βM,ρ), having data only on
(
XC

i ,X
F
i ,XMU

i
)
, when we assume there are no

household effects. This result requires some assumptions on the structural parameters. However,
no assumptions are needed on the nuisance parameters. The reason is that we are not using any
data or any equation involving grandparents.

Proposition 8. Suppose XC
i , XF

i , XMU
i are observed. If assumption A5 holds and ρ ′ = ρ , then

(βF ,βM,ρ) is point identified.
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3.4 Gendered Effects

In this subsection, we present identification results when we allow for gendered effects according
to equation (8). Proposition 9 shows that we can identify all six parameters of interest in the
model with gendered effects when Assumption 1 holds. This is a somewhat surprising result. In
the previous propositions we were able to identify the effect of the mother on her child, without
observing her outcome XM

i . Proposition 9 goes one step further and shows that we are able to
identify the effect of mothers on daughters β D

M without observing the outcome of either one of
them (XMM

i and XM
i ).

Proposition 9. Suppose XS
i , XF

i , XPF
i , and XMF

i are observed. If assumption A1 holds, then(
β S

F ,β
S
M,β D

F ,β D
M,ρ ′,ρ

)
is point identified.

4 Simulation Results

We now present the structural model estimates using simulated data, using the estimators devel-
oped in Section 3. In all the results, we have a system with exactly identified parameters which
we estimate using GMM (Hansen, 1982). We use efficient standard errors by using the inverse of
the Jacobian of the moments matrix as a weighting matrix. We simulate outcomes for the grand-
parents using a multivariate normal distribution with variance-covariance matrix Σ as a function
of

(
γMF

PF ,γPM
MF ,γ

MM
PM ,γPF

MM;ρ ′). We also simulate idiosyncratic normal random shocks for the father,
mother, and child

(
eF

i ,e
M
i ,eC

i
)

with zero mean. We use the structural parameters to create the ap-

propriate standard deviation for the shocks, e.g., σS =
√

1−β 2
F −β 2

M −2ρ ′βFβM. We then use
equations (4), (5), and (6) to forward simulate the outcome of the father, mother, and child.14

For the analysis we compute both the standard deviation (across simulations) of the estimated
parameters and the median of the estimated standard errors calculated by the GMM asymptotic
variance formula. In each analysis we run 1,000 simulations, and we vary the sample size n.15

Figure 4 shows the estimation results using our estimator for Proposition 1 in simulated samples
of size ranging 200-1000. The sample parameters are βF = 0.6, βM = 0.3, and ρ = 0.5 for panel A
and βF = 0.3, βM = 0.6, and ρ = 0.5 for panel B. In panel A, we can see how the point estimates
are always very close to the true value. At n = 400 all parameters are statistically different than
zero, and βF is statistically different than βM. In panel B, the effect of the mother is larger than that
of the father. That makes it more difficult for the estimator to estimate the errors more precisely,

14The simulation for the analysis with the maternal uncle is similar. We simulate the maternal uncle’s outcome XMU
i

with a correlation among siblings of ρMU and get η = σ2
S ρMU .

15In Appendix B we also show results using both the standard deviation (SD) of the estimated parameter across
simulations and the median of the estimated standard errors (SE) calculated by the GMM asymptotic variance formula.
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Figure 4: Simulation Results from Proposition 1.

A. Simulations with βF = 0.6, βM = 0.3, and ρ = 0.5.
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B. Simulations with βF = 0.3, βM = 0.6, and ρ = 0.5.
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Notes: Estimated parameters and confidence intervals at p = 0.05 using Proposition 1.

due to the way each parameter enters the moment. Even in this case, all parameters are statistically
different than zero at n = 400, but we need to go to n = 600 to see βF statistically different than
βM.

Figure 5 shows the estimation results using our estimator for Propositions 2 and 3 in simulated
samples of size ranging 200-1000. Notice that the model is intentionally mispecified here. The
sample parameters are βF = 0.6, βM = 0.3, and ρ = 0.5 for both panels, but the estimator assumes
βM = 0 in panel A (Proposition 2) and βM = βF in panel B (Proposition 3). Unsurprisingly, βF

is estimated at 0.9 in panel A (the sum of the effects of both parents), and at 0.45 in panel B
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Figure 5: Simulation Results from Propositions 2 and 3

A. Simulations with βF = 0.3, βM = 0.6, and ρ = 0.5, assuming βM = 0
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B. Simulations with βF = 0.3, βM = 0.6, and ρ = ρ ′ = 0.5, assuming βM = βF

0

.2

.4

.6

.8

1

Es
tim

at
e

0 n=200 n=400 n=600 n=800 n=1000
Number of Observations

Father (βF) Assortative Mating (ρ) Assortative Mating (GPs) (ρ′)

Notes: Estimated parameters and confidence intervals at p = 0.05 using Propositions 2 and 3.

(the average of the effects of both parents). Regarding assortative mating, in both cases, ρ ′ is
consistently estimated and with very small error even at small samples. Notice, however, that in
panel B, ρ is inconsistently (and imprecisely) estimated and hovering below 0.4.16

Figure 6 shows the estimation results using maternal uncles as non-linear instruments, for
Propositions 6, 7, and 8 in simulated samples of size ranging 200-1000. In panels A and B,
we see that the results are very similar when we use a maternal or a paternal grandfather as non-
linear instruments. In both cases all parameters but η are significantly different than zero, even at

16For results about Propositions 4 and 5 see Appendix B.
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n = 200, and the effects of the father and the mother are significantly different at n = 400. The
parameter measuring household effects η has the largest confidence intervals, and is only statis-
tically significant at n = 1,000. Panel C shows the estimates when we mispecify the model and
impose η = 0. In this case, assortative mating is consistently estimated, but the effect of the father
is underestimated and the effect of the mother is overestimated. In other words, by imposing no
correlation with the maternal uncle, we are over-attributing effects to the mother.

Figure 7 shows the estimation results using maternal uncles as non-linear instruments, for
Proposition 9 in simulated samples of size ranging 1,000-5,000. Panels A and B show results
with different parameters. In Panel A, fathers have a larger effect. In Panel B, mothers have a
larger effect. In both panels we see gendered effects, i.e., the effects are stronger when the parent
and the child have the same gender. We use larger samples here because some parameters do not
show statistical significance at lower sample sizes. The parameters that have slower convergence
are those related to the daughters: β D

F and β D
M . β D

F is statistically different than zero at n = 3,000
in Panel A, but even at n = 5,000 it is not statistically significant in Panel B. Notice, however, that
all parameters are always very close to the true values for all sample sizes. Looking at Figure 8,
we can see why β D

F and β D
M have larger confidence intervals. In the tree, we can see that whereas

the other mobility parameters appear twice: in the arrows leading to the child and to the father; β D
F

and β D
M only appear once, in the arrows leading to the mother. In the six moments that we use to

identify all parameters, β D
F and β D

M always appear multiplying other parameters (non-linearly) but
β S

F and β S
M sometimes appear linearly (see Appendix A.4 for details).

In summary, our framework allows us to estimate the effects of women (and effects on women)
without observing outcome variables for them. The array of results that we provide will allow the
researcher to estimate the parameters of interest under different sets of assumptions and available
data. In addition to the list of econometric results summarized in Table 1 we validate the results
using simulated data under different specifications, and use our GMM estimators to estimate struc-
tural parameters using these samples. In most cases the estimates converge to the true parameters
at very small sample sizes. Indeed, when the model is well specified the estimates are never statis-
tically different than the true values, even with n = 200, and are usually statistically different than
zero at n = 400. This suggests that our results could be applied to many other settings when the
researcher have access to datasets with small sample sizes. Moreover, our propositions allow for
a variety of assumptions regarding the structural parameters, the nuisance parameters, and house-
hold effects. But how do we choose among these assumptions? One answer is that the choice is
context-dependent. Another is that we can sometimes rely on ancillary information on outcomes
other than the outcome that is the primary focus.

23



Figure 6: Simulation Results from Propositions 6, 7 and 8

A. Simulations with βF = 0.3, βM = 0.6, ρ = ρ ′ = 0.5, and η = 0.185, using XMF
i
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B. Simulations with βF = 0.3, βM = 0.6, ρ = ρ ′ = 0.5, and η = 0.185, using XPF
i
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C. Simulations with βF = 0.3, βM = 0.6, ρ = ρ ′ = 0.5, and η = 0.185, assuming A5.
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Notes: Estimated parameters and confidence intervals at p = 0.05 using Propositions 6, 7, and 8. Assuming ρMU = 0.5
we get η = σ2

S ρMU = (1−β 2
F −β 2

M −2ρ ′βF βM)ρMU = 0.185.
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Figure 7: Simulation Results from Proposition 9

A. Simulations with β S
F = 0.7, β S

M = 0.2, β D
F = 0.5, β D

M = 0.4, and ρ = ρ ′ = 0.5
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B. Simulations with β S
F = 0.4, β S
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M = 0.7, and ρ = ρ ′ = 0.5
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Notes: Estimated parameters and confidence intervals at p = 0.05 using Proposition 9.

5 Empirical Application

5.1 Data

We now employ our econometric framework to assess intergenerational mobility in the U.S. from
1870 to 1940. This requires linkages of families across two (parent-child) or three (grandparent-
parent-child) generations, with an outcome measure that is defined and measured consistently
across a span of 70 years. We use the 100% U.S. Census of Population manuscript files 1870-
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1880 and 1900-1940 as the basis for our linkages (Ruggles et al., 2024a), and follow recent prac-
tice in historical studies of intergenerational mobility to generate income measures for our linked
individuals.17

5.1.1 Family Tree Construction

To construct family trees, we use the Buckles et al. (2023a) linkages of individuals in the censuses.
This collection is the largest, most comprehensive, and most accurate set of census linkages ever
generated. It relies on both algorithmic linkage and the Family Search collection of genealogies.
We rely on three family trees: (1) 2-generation trees which contain a married couple (F, M), his
parents (PF, PM), and her parents (MF, MM); (2) 3-generation trees which contain an adult male
child (S), their parents (F and M), both of their paternal grandparents (PF, PM), and both of their
maternal grandparents (MF, MM); and (3) The 3-generation trees but additionally with a maternal
uncle (MU).

To start, we take the 1880 Census and every individual who is listed as a male child in a
household with their parents present.18 The starting population is 11,851,814 individuals. Of
these, 6,683,159 (56.4%) can be linked to themselves 30 years later, in the 1910 Census. Of these
individuals, 4,987,881 (74.6%) are married in 1910 with a spouse present. We then use the wife’s
age to look for her as a child, and hence find the father-in-law of the adult male F originally
observed in 1880, in the Census in which she would have been a child less than 10 years old.
This step results in 1,745,280 separate trees (35.0% of the brides being able to be traced to the
father-in-law).

The second set of trees is constructed by starting with the 2-generation trees, taking the 2,686,082
children (S) of the 1,745,280 fathers and mothers, and searching for them in the 1940 Census. We
find 1,991,768 of these (74.4% of the total), which completes the 3-generation trees. Finally, we
take the maternal grandfathers (that is, the fathers-in-law in the two generation trees), identify their
male children, and search for them 30 years later. This generates the 3-generation-with-uncle trees,
of which we have 2,704,830.19

Ward (2023) shows that measurement error can substantially bias estimates of intergenerational
mobility. To account for this, for each matched individual, we look for them one Census earlier
and/or later, depending on the availability of the Census. We require that an individual have at
least two observations with a valid occupation in these Censuses, in which case we take the two

17The manuscript schedules of the 1890 census were destroyed, so there is no 100% file for this census.
18These are restricted-access data available from the IPUMS project at the Minnesota Population Center. By child,

we mean that that they are recorded as a child of the head-of-household. They need not be a minor, though in practice
the vast majority are. We assess the sensitivity of our results to starting our family trees from 1880 in Appendix C.

19Adding maternal uncles can make the number of trees either smaller or larger. In particular, if two brothers each
have two sons, that makes four possible trees, as a tree in this case is defined by a son-uncle dyad.
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observations closest to age 40. We assess the sensitivity of our results to this in Appendix C.

5.1.2 Occupational Incomes

The outcome most often examined in studies of intergenerational mobility is income. The U.S.
Census did not begin to collect data on the income of respondents until 1940. The U.S. Census
did, however, report age, sex, race, location, and occupation for all respondents from 1850 forward.
Several recent studies have followed a common practice to generate pre-1940 income measures:
predicting incomes for pre-1940 censuses based on the relationship between 1940 income and a
set of characteristics observed in the census, where the latter are available in 1940 and before
(Abramitzky et al., 2021; Collins and Wanamaker, 2022; Jácome et al., 2025). The relationship we
estimate and use for prediction is described by the regression

lnWi =
S

∑
s=1

δsSTs +
A

∑
a=1

(δaAGEa + γaAGE2
a)+

R,I

∑
r=1,i=1

δr,iREGr ×CLAi +ηREG +ηCLA + ei

where W is income in 1940 and ST , AGE, REG, and CLA are, respectively, fixed effects for
state of residence, age, fixed effects for Census region of residence, and fixed effects for one-
digit occupational categories (derived from the three-digit numeric code assigned using the 1950
Census coding scheme which is in turn a standardization of the reported occupational title; e.g.
“blacksmith”=501).20

There are three adjustments we make to income, again in line with past practice, before esti-
mating this relationship:

1. The 1940 Census reports only wage and salary income, so self-employment income is ex-
cluded. Self-employment income is, however, reported in 1950 in addition to wage and
salary income. For all occupations except farmers, we calculate the 1950 ratio of self-
employment income to wage and salary income for each state and three-digit occupational
category. We then use these ratios to calculate each respondent’s total 1940 income (wage
and salary income + self-employment income). For occupations with no wage and salary
income in 1940 (e.g. proprietors such as grocers), we estimate their total income in 1940 as
the 1950 self-employment income in their state/occupation cell, deflated to 1940 prices.

2. Farmers’ incomes are complicated not just by the fact that they are generally self-employed
and therefore do not have 1940 wage and salary income but also by their receipt of income
in-kind from their farms (e.g. food, fuel, lodging) and by the nature of their income as the net
product of a business enterprise with a variety of inputs and outputs. To account for these

20This regression-based adjustment approach has been shown to yield more accurate measures of income for the
analysis of intergenerational mobility than other approaches (Saavedra and Twinam, 2020).
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complications, we follow Abramitzky et al. (2021) and Collins and Wanamaker (2022) in
assuming that the relationship between farmers’ incomes and the incomes of farm laborers
is relatively stable. We calculate the ratio of farmers’ 1950 total income to farm laborers’
1950 wage and salary income by state and county and use this ratio together with average
1940 farm laborers’ wage and salary income by state and county to assign farmers a 1940
income.21

3. Two occupations (farm laborer, and farm manager) received a significant part of their income
as in-kind payments (e.g. food, lodging, garden plots). The USDA estimated the total value
of these perquisites by region for both 1925 (Folsom, 1931) and 1945 (Reagan, 1946). We
used the employment-weighted mid-point of these regional figures to scale up the 1940 wage
and salary incomes of farm laborers and farm managers and added this to their 1940 total
income calculated in (1) above.

5.2 Empirical Results

In Table 2, we show the results from the estimation of Proposition 1. Recall that this estimation
requires data from a male individual, his father, and his father-in-law. The transmission from the
maternal side is considerably stronger than that from the paternal side.22 Table 2 also shows the
results from the estimation of Propositions 2 and 3. The results are identified from 2-generation
data, but imposing stronger assumptions on the parameters than those usually found in the litera-
ture. Proposition 2 assumes that there is no maternal effect (βM = 0). Thus, all the mobility effect
is attributed to the father, resulting in an estimate for the paternal effect that is the sum of the two
effects using Proposition 1. Proposition 3 assumes that maternal and paternal effects are identical
(βF = βM), resulting in an estimate for each of the effects that is the average of the two effects us-
ing Proposition 1. The results for Propositions 1 through 3 yield an assortative matching measure
for the parents that is neither perfect nor random (ρ = 0.339). This means that excluding mothers

21In making this adjustment, both Abramitzky et al. (2021) and Collins and Wanamaker (2022) used the the 5%
sample from the 1960 Census to calculate this ratio. The 5% sample from the 1950 Census provided too few obser-
vations as income in that year was a "sample line" question asked of only 20% of respondents, a substantial fraction
of whom were under age 18. We instead use the recently released 100% 1950 Census file as the source for the ratio
of farm laborer income to farmer income, and are able to do this both for each of 3,100 state/county cells rather than
states or regions as they used and for a census year (1940) closer to our own linked data.

22These results for βF and βM are in line with the structural estimations in Eriksson et al. (2023) using Massachusetts
marriage registers, although we find stronger assortative mating. One possible reason for the difference is that mating
takes place within local geographies, and so measured relative to the national distribution, spouses are more alike than
measured relative to local distributions. We formally test the restriction used in the literature that mMF

PF = mF
PF mF

MF .
We use a Fisher’s z-transformation. The value of the Z-statistic is 261.35 and the p-value is smaller than 10−11. We
strongly reject that this restriction is valid in our sample.
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Table 1: Summary of Identification Results

Proposition Data Literature Assumptions Parameters

Identification using 2-generation data

Proposition 1 (F,PF,MF) A1, A2 ρ = ρ ′ (βF ,βM,ρ)

Proposition 2 (F,PF,MF) A2, A3 (βF ,ρ)

Proposition 3 (F,PF,MF) A1, A2, A4 (βF ,ρ
′,ρ)

Identification using 3-generation data

Proposition 4 (S,F,PF,MF) A2 γPM
MF = γPF

MM , (βF ,βM) = (β
′
F ,β

′
M) (βF ,βM,ρ ′,ρ)

Proposition 5 (S,F,MF) A1, A2 Θ = Θ′ (βF ,βM,ρ)

Identification from maternal uncles

Proposition 6 (S,F,MU,MF) (βF ,βM) = (β
′
F ,β

′
M) (βF ,βM,ρ ′,ρ,η)

Proposition 7 (S,F,MU,PF) (βF ,βM) = (β
′
F ,β

′
M) (βF ,βM,ρ ′,ρ,η)

Proposition 8 (S,F,MU) A5 Θ = Θ′, η = 0 (βF ,βM,ρ)

Identification allowing heterogeneous effects by gender

Proposition 9 (S,F,PF,MF) A1, A2
(
β S

F ,β
S
M,β D

F ,β D
M ,ρ ′,ρ

)
Notes: Θ ≡ (βF ,βM,ρ) refers to the full vector of parameters. Assumption A2 in Proposition 3 is only needed to
identify ρ .

from the analysis has two consequences: the estimator for the father’s effect provides neither a
consistent estimator of the combined effect of both parents nor the actual effect of the father alone.

The first column uses only one assumption: that the four nuisance parameters measuring the
correlations across the two sets of grandparents are identical. The measured mother’s effect in
this case is more than three times the measured father’s effect, and both are precisely estimated.
If we are interested in understanding causal pathways from parental income to child’s income,
this finding provides strong evidence that it is likely much more than just the family’s material
resources that matter in producing outcomes in the next generation – even if the mother is not
working outside the home, she contributes something to the child’s earning capacity that is much
more valuable than what the father’s actual income provides.

The second column assumes that there is no “mother effect” and only the father matters. The
third column assumes both that the nuisance parameters are identical and that the impact on the
child’s income is identical for both parents. These are all plausible assumptions, but some might
be appropriate in some contexts but not others. The key insight the analysis provides is how the
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estimates vary dramatically with the particular assumptions underlying them.23

In Table 3, we turn to Propositions 4 through 9. Again, varying the assumptions results in
different estimates. With 3-generation data (Propositions 4 and 5 in the first and second columns),
going from assuming only that the within-marriage correlation is the same for both sets of grand-
parents to again assuming that both the two within-marriage male-female correlations and the two
cross-marriage male-female correlations are identical reduces the gap between the paternal and
maternal effects. Moving to the use of maternal uncles (Propositions 6 through 8 in the third,
fourth, and fifth columns) which imposes the least restrictive assumptions (none in the first two
cases and only η = 0 so no household fixed effects in the third) yields parental effects broadly
similar to those in Proposition 5 (second column). Finally, when we allow the effect to differ by
the sex of the child (Proposition 9, last column), the mother’s impact is greater than the father’s for
both sons and daughters and the mother’s effect on the son is substantially greater than her effect
on the daughter.

This pattern suggests that whatever it is that mothers convey in income-generating capacity is
provided in greater quantity to both sons and daughters than what the father provides to them. At
the same time, if what is provided to both sons and daughters is provided in equal quantity to each,
the son derives greater benefit. A mother’s provision of human capital in the home simultaneously
to both sons and daughters that later in their lives has a larger return in the labor market than in
home production would fit this pattern of coefficients.

We are not prepared to say which of the specifications in Tables 2 and 3 we prefer. This
exercise is undertaken not to find the single correct measure of intergenerational mobility, but
rather to demonstrate how different sets of assumptions generate different sets of results. Some
assumptions will be more appropriate in some contexts than in others. What we can unambiguously
conclude, however, is that the omission of mothers from this sort of analysis leaves out a potentially
substantial part of the process of the intergenerational transmission of (dis)advantage.

6 Discussion

We now discuss the implications of our model and the problems that may arise when a model is
mispecified in this context. Subsection 6.1 discusses the main implicit assumptions in the literature
and the problem that arises when these models are mispecified but our model is correct. Subsection
6.2 discusses potential extensions to our model, and how researchers could address whether the
extended models are correct and our model is mispecified.

23With the estimated parameter vector and the corresponding variance-covariance matrix in the first column, we
compute a Wald statistic to test the hypothesis H0 : βF = βM . Under the null hypothesis, this statistic follows a chi-
square distribution with one degree of freedom. The value of the Wald statistic is 2,834.27 and the null hypothesis is
rejected with a p-value smaller than 10−10.
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Table 2: Empirical Results for Propositions 1, 2, and 3

Parameter Prop. 1 Prop. 2 Prop. 3
βF 0.194 0.868 0.427

(0.003) (0.002) (0.001)

βM 0.674
(0.005)

ρ 0.339 0.339 0.339
(0.002) (0.002) (0.001)

N 817,962 817,962 817,962
MSE 3.534e-16 7.538e-16 6.179e-05

Notes: Empirical results from the estimation of Propositions 1, 2, and 3, for 1880 cohort. A cohort is defined as any
male child in the Census for the specified year; hence, there can be some overlap in the individuals in these trees.

6.1 Model Mispecification in the Literature

We want to emphasize the importance of being explicit about the assumptions that the researcher
is making. If the goal of the researcher is to describe correlations in the data, and how they change
over time and space, then the use of raw correlations is appropriate. However, if the researcher
wants to asses causality or to test a particular model, empirical correlations commonly used as
“proxies” in the literature could create biased estimates. Moreover, these biases may change over
time, making claims about trends invalid (Olivetti et al., 2024). We show below how many com-
mon, and usually unremarked upon, assumptions made in the literature would produce unbiased
estimates only in extreme cases, such as βM = 0 and ρ = 1.

Only Male Effects (βM = 0) This is the most common case in the literature. As explained
in Section 2, researchers would use the empirical correlation between father and child (mF

S ) and
interpret it as the effect of the father on the child (βF ). However, in our model, this is only true
when mothers do not contribute to their children’s outcome so that βM = 0. The bias here (bias ≡
E
[
XF

i XC
i
]
−βF = ρβM) is increasing on the degree of assortment ρ and in the effect of mothers

βM.

Gender Neutral (βM = βF ) This is another common assumption in labor economics, where
the sum of the incomes of both parents is used which assigns the same weight to the mother’s
and father’s contribution to the child’s outcome (Jácome et al., 2025; Chetty et al., 2014). This
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Table 3: Empirical Results from Propositions 4-9

Param. Prop. 4 Prop. 5 Prop. 6 Prop. 7 Prop. 8 Param. Prop. 9
βF 0.303 0.189 0.199 0.195 0.175 β S

F 0.200
(0.020) (0.004) (0.002) (0.003) (0.004) (0.002)

β D
F 0.105

(0.004)

βM 0.312 0.547 0.451 0.479 0.514 β S
M 0.691

(0.020) (0.008) (0.004) (0.006) (0.013) (0.004)

β D
M 0.440

(0.007)

ρ 0.215 0.332 0.381 0.381 0.381 ρ 0.246
(0.049) (0.002) (0.001) (0.001) (0.001) (0.002)

ρ
′

0.579 0.551 0.644 ρ
′

0.410
(0.027) (0.005) (0.005) (0.003)

η 0.051 0.000
(0.002) (0.004)

N 575,170 575,170 586,931 586,931 586,931 575,170
MSE 4.381e-14 9.163e-16 2.819e-16 6.050e-04 1.357e-16 2.909e-16

Notes: Results from the estimation of Propositions 4, 5, 6, 7, 8, and 9, for 1880 cohort. A cohort is defined as any
male child in the census for the specified year; hence, there can be some overlap in the individuals in these trees.

assumption is motivated by only having household outcome data, but not individual outcomes
for the father and the mother. Our Proposition 3 shows the consequences of this assumption.
The estimated β is usually between the true values of βM and βF . These maternal and paternal
contributions need not be equal, nor constant over time. For example, Brandén et al. (2024), using
modern data from both the US and Sweden, find an increasing contribution of mothers to overall
persistence over recent decades. They find a larger contribution of fathers, attributable in part to
the greater variation of the income of fathers.

Perfect Assortment (ρ = 1) This assumption is usually combined with the previous one (βM =

βF ). The researcher implicitly assumes that the status of a wife is fully determined by the status of
her husband (ρ = 1). In that case, one can use the correlation between the husband (father) and the
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wife’s father (maternal grandfather) E
[
XF

i XMF
i

]
to measure the effect of the wife’s father on her

(βC
F ̸= β D

F ). Propositions 9 shows the results when the researcher assumes that the effect of each
parent is different depending on the gender of the child, but without assuming perfect assortment.
ρ = 1 is a very strong assumption.

Proxies for assortative mating Many papers use E
[
XPF

i XMF
i

]
or E

[
XF

i XMF
i

]
as a proxy for

ρ . These proxies are biased estimates of ρ and the bias may or may not change over time. This
approach is common in cases where researchers can link a man to his father-in-law, using marriage
records or similar sources. Our moments in Proposition 1 state

ρ = E
[
XPF

i XMF
i

]
(βF +βM)2

ρ = E
[
XF

i XMF
i

]
(βF +βM)

E
[
XPF

i XMF
i

]
and E

[
XF

i XMF
i

]
would only be a proxy for ρ when βF +βM = 1. In the typical case

in which βF +βM < 1, we have ρ < E
[
XPF

i XMF
i

]
and ρ < E

[
XF

i XMF
i

]
; i.e., both proxies would

overestimate ρ , and in more mobile societies the bias for using proxies is larger. Moreover, when
using the most common proxy E

[
XPF

i XMF
i

]
, the bias grows quadratically in 1− (βF +βM).

6.2 Model Mispecification in Our Empirical Analysis

We now discuss the sensitivity of our results to our assumptions and how they could be extended
to other settings.24 To this point, we have used the simplest model that accounts for the effects of
fathers and mothers on their children. This econometric model is derived from a model similar to
Becker and Tomes (1979, 1986) but having two parents, that bargain à la Nash (see Appendix E).
In certain settings, the researcher may want to use a more general model. We could generalize our
model to allow for non-linear parental effects, or interaction terms, as

XC
i = βFXF

i +βMXM
i +ζ (XF

i XM
i )+ ε

S
i (22)

where ζ measures the interaction effect (matching surplus). Edwards and Roff (2016) argue that
the matching surplus has an added effect on the child. Again, since this would require more than
three parameters, we would need to use a three generation tree, or maternal uncles.

We could also generalize our model to allow for direct grandparent effects. The evidence for
grandparent effects is mixed. Long and Ferrie (2007) show evidence of direct grandparent ef-
fects in the US and England. Braun and Stuhler (2018) provide evidence from intergenerational
correlations of educational status consistent with our model. In a variety of German samples, in
regressions of educational status on that of relatives, the coefficient on grandparents falls dramat-
ically when mothers are included directly, leading them to caution against a causal interpretation

24Appendix D.1 provides more details on comparative statistics and measurement error.
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of grandparent effects. In a horse race of different models, they find that latent variable models
perform best in out-of-sample tests. Bratsberg et al. (2023) similarly find that the inclusion of
grandparent measures does not substantially change estimates of a production function for edu-
cation and occupational rank of earnings of children when mothers’ characteristics are directly
measurable. Our 3-generation tree allow us to identify up to six parameters. Thus, we could esti-
mate two assortment parameters (ρ and ρ ′), two first-generation mobility parameters (βF and βM),
and two second-generation mobility parameters (ξGF and ξGM) according to following equation

XC
i = βFXF

i +βMXM
i +ξGF(XPF

i +XMF
i )+ξGM(XPM

i +XMM
i )+ ε

S
i (23)

Identifying this would require symmetry assumptions similar to Assumption A1.
Finally, the researcher could be concerned about that the measure of socioeconomic status is

measured with error.25 This could be because there is an unobservable component that is inherita-
ble and affects the status of the child (see Appendix E.3 for details)

eC
i = λFeF

i +λMeM
i +νi

where λF measures the inheritability from the father and λM measures the inheritability from the
mother. In that case, our estimating equation becomes

XC
i = (λF +βF)XF

i +(βM +λM)XM
i −λFβFXPF

i −λFβMXPM
i −λMβFXMF

i −λMβMXMM
i +νi (24)

There are six variables in the right hand side (two parents and four grandparents), but there are
only four parameters: the mobility coefficients βF and βM and the heritability coefficients λF and
λM. Therefore, we could use a 3-generation tree, which generates six moments, to identify these
four parameters and the two assortment parameters ρ and ρ ′.

The variables in the right hand side of equations (23) and (24) are the same. However, equation
(23) predicts that the coefficients on the grandparents would be weakly positive, whereas equa-
tion (24) predicts that they would be negative and small. This generalizes the discussion in the
monoparental case as to whether the status transmission declines more slowly than geometrically
(Solon, 2014).

More generally, one could use recent results to assess the validity of the instruments, whether
the model is well-specified, and the sensitivity of the estimates to each of the empirical moments
(Andrews et al., 2017, 2020; Bonhomme and Weidner, 2022).26 The goal of this paper is not to
present the definitive estimator of social mobility, but rather, to provide a series of results that
any researcher could apply depending on the restrictions on available data and what assumptions

25Appendix D.2 discusses how some of our estimators are immune to classical measurement error and how we
could assess the direction and magnitude of biases in this case.

26Appendix D.1 computes the derivatives of each estimator in Proposition 1 with respect to each empirical moment,
and their signs.
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about the parameters they are willing to make. Moreover, as mentioned above, the simple model
presented here could be extended to allow for other effects using the techniques that we developed.

7 Conclusions

We have provided a systematic and coherent framework for the analysis of intergenerational mobil-
ity. That framework takes seriously the ways in which family formation, social norms, and biology
shape how (dis)advantage is transmitted across generations in a pattern of influence that fans out
backward from the current generation. In doing so, we show how women can matter for social
mobility, both through their direct effect on their children and indirectly through the correlation
in status between spouses. Our framework could be easily extended in a number of ways, two of
which we discuss briefly here:

1. In the third moment of our main specification (equation (11)) we assume that the error terms
in the equation for the father and the mother are uncorrelated, i.e., we are assuming that mating is
done only on observables (outcome). We do not actually use this assumption in most of our results,
which means that we could relax it and estimate this correlation. This will give us a measure of
mating on unobservables. This estimate would be similar in spirit to the household effects η we
estimate using maternal uncles.

2. The estimators here can be easily extended by adding covariates or dummy variables or
applying our estimators to subpopulations to better understand the mechanisms underlying the
transmission of status. How are the estimates different for children whose fathers die when they
were young? or their mothers? How about the children of divorced parents? Does it matter whether
the divorce happened when the son/daughter was a child? These and many other questions can be
analyzed by looking at subpopulations (or adding dummy variables) to study status transmission
under different circumstances.

Just in its current form, however, our framework delivers results that shed new light on how
different assumptions on the parameters of an econometric model of mobility, especially the often
unstated assumptions on nuisance parameters, can affect mobility estimates. We demonstrate how
strong effects on mobility from the maternal side of the family line can be uncovered even without
directly observing female labor market outcomes. In fact, in our new analysis of linked U.S. data
from 1870 to 1940, the effects of mothers on their children’s outcomes are consistently larger than
those of fathers. We also show the importance of accounting for underlying patterns of assortative
mating that shape links across generations. And we identify a number of previous studies that
embody assumptions that are captured by our framework, potentially crucial, and in many cases
directly testable.

Our model is econometric, not economic, in nature. We are agnostic here on how households
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choose investment in their children, or how parents bargain over their resources. This is inten-
tional, as we envision our methodology as one that can be applied to a large class of models of
the intergenerational transmission of human capital and intra-household bargaining. Our approach
could be applied to different regions and different population subgroups and of course to other
countries and periods. The goal of this article is not to provide the last word on social mobility,
or even the role of women in social mobility. Rather, we provide a set of tools for researchers to
use that will be applied to a wide range of settings thereby helping paint a more nuanced picture
of social mobility, especially the roles of women and prior generations.
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A Econometrics Appendix

A.1 Identification Using 2-Generation Data (proofs)
Proof of Proposition 1.

Proof. We use equations (9), (10), and (11), and γMF
PF ≡ mMF

PF . With equation (10), we can directly

get the sum of the mobility effects as a function of the data
(

β
′
F +β

′
M

)
= mF

MF/mMF
PF . Using this

and equation (11), we get

ρ =
(
mF

MF
)2
/mMF

PF .

We can now solve for β
′
F as a function of β

′
M and data using the second equation, i.e, β

′
F =

mF
MF

mMF
PF

−

β
′
M. Plugging in this and the formula for ρ in the first equation we get

mF
PF =

mF
MF

mMF
PF

−β
′
M +

(
mF

MF
)2

mMF
PF

β
′
M

rearranging we get

β
′
M =−mMF

PF mF
PF −mF

MF

mMF
PF −

(
mF

MF
)2

β
′
F =

mF
MF

mMF
PF

+
mMF

PF mF
PF −mF

MF

mMF
PF −

(
mF

MF
)2

Proof of Proposition 2.

Proof. With the stated assumptions we can write the system of equations as

mF
PF = β

′
F ; mF

MF = β
′
FmMF

PF ; ρ =
(

β
′
F

)2
mMF

PF

This is a system with two unknowns and three equations. Thus, it is overidentified. Similar to
Proposition 1, we can use the second and third moment and we have ρ =

(
mF

MF
)2
/mMF

PF . Alterna-
tively, we can substitute the first two moments into the third moment and get ρ = mF

PFmF
MF . The

second moment then gives us β
′
F = mF

MF/mMF
PF . The system is overidentified, and the first equation

implies β
′
F = mF

PF . If in the data we have mF
PF ̸= mF

MF/mMF
PF . We should reject the assumption

β
′
M = 0.

Proof of Proposition 3.

Proof. With the stated assumptions we can write the system of equations as

mF
PF = β

′
F (1+ρ ′) ; mF

MF = 2β
′
FmMF

PF ; ρ =
(

2β
′
F

)2
mMF

PF

This is a system with three unknowns
(

β
′
F ,ρ

′,ρ
)

and three independent equations, so it is iden-
tified. Similar to Proposition 1, we can use the second and third moment and we have ρ =
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(
mF

MF
)2
/mMF

PF . From the second equation we get β
′
F = mF

MF/2mMF
PF . We can then plug this in

the first equation to get ρ ′ = mF
PF/β

′
F −1 = 2mMF

PF mF
PF/mF

MF −1.

A.2 Identification Using 3-generation Data (proofs)
Proof of Proposition 4.

Proof. We now use three moments to get identification

• E
[
XPF

i εC
i
]
= 0 and E

[
XPF

i εM
i
]
= 0. Multiplying equations (4) and (6) by XPF

i and then
substituting the definition of XM

i , and taking expectations, we get

mC
PF −βFmF

PF = βM
(
βFγ

MF
PF +βMγ

PM
MF

)
(25)

• E
[
XMF

i εF
i
]
= 0. Multiplying the second equation by XMF

i and taking expectations and using
γPM

MF = γPF
MM, we get

mF
MF = βFγ

MF
PF +βMγ

PM
MF (26)

By imposing γPM
MF = γPF

MM, we can now identify the model. First, we can take equation (26) and
insert it in equation (25). This way we get

mC
PF −βFmF

PF = βMmF
MF (27)

Now we have four equations ((15), (16), (17) and (27)) and four unknowns (βF ,βM,ρ ′,ρ). Notice
that equations (16) and (17) combined create an equation on βF and βM only. This together with
equation (27) above, creates a system with two equations and two unknowns βF and βM. We can
then use equation (15) to solve for ρ and equation (16), to solve for ρ ′. The solution to this system
is

βF =
mF

PF mC
PF−mC

MF mF
MF

(mF
PF)

2−(mF
MF)

2

βM =
mF

PF mC
MF−mC

PF mF
MF

(mF
PF)

2−(mF
MF)

2

ρ =
mC

F

(
(mF

PF)
2−(mF

MF)
2
)
−(mF

PF mC
PF−mC

MF mF
MF)

mF
PF mC

MF−mC
PF mF

MF

ρ ′ =
mF

PF

(
(mF

PF)
2−(mF

MF)
2
)
−(mF

PF mC
PF−mC

MF mF
MF)

mF
PF mC

MF−mC
PF mF

MF

A.3 Identification Using Maternal Uncles (proofs)

Using similar assumptions as above we can get the following moments using XMU
i

mC
MU = βFmF

MU +βM
(
β

2
F +β

2
M +2ρ

′
βFβM +η

)
(28)

mF
MU = ρ

′ (29)

mMF
MU = βF +ρ

′
βM (30)

mPF
MU = βFγ

MF
PF +βMγ

PF
MM (31)

where η ≡ E
[
εM

i εMU
i

]
measures household effects.
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Proof of Proposition 5.

Proof. First, we impose γMF
PF = γPM

MF = γMM
PM = γPF

MM and ρ = ρ ′ in the system of equations above
and we get

mC
F = βF +ρβM

mC
MF = βFmF

MF +βM (βF +ρβM)

mF
MF = (βF +βM)γ

MF
PF

ρ = (βF +βM)2
γ

MF
PF

Notice that now, because we do not observe XPF
i , we do not observe mF

PF , mC
PF and γMF

PF . Nonethe-
less, we can take the last two equations and write ρ = mF

MF (βF +βM). This equation and the first
two form a system of three independent equations and three unknowns (βF ,βM,ρ). Thus, we can
identify all three structural parameters.

Proof of Proposition 6.

Proof. The moments that do not use XPF
i are equations (15), (17) and (18). Equation (18) includes

two nuisance parameters that are unobserved here
(
γMF

PF ,γPM
MF

)
. There are two unobservable nui-

sance parameters in the same equation so we cannot identify them. Since we are not interested in
the nuisance parameters, we do not need to use this equation. In addition to equations (15) and
(17), we can use equations (28), (29) and (30). This is a system of five independent equations
and five unknowns. We now show that the equations are indeed independent and how to solve the
system. We can substitute ρ , which is directly observable in equation (29) into equation (15). We
can also substitute βF +ρ ′βM from equation (30) into the equation (17). Equations (15) and (16)
become

mC
F = βF +βMmF

MU

mC
MF = βFmF

MF +βMmMF
MU

This is a system with two equations and two unknowns βF and βM, so they are both identified.
With these two parameters we can go to equation (30) and solve for ρ ′. We can use equation (28)
to identify the household fixed effects η .

Proof of Proposition 7.

Proof. The moments that do not use XMF
i are equations (15), (16) and (19). Equation (17) includes

two nuisance parameters that are unobserved here
(
γMF

PF ,γPF
MM

)
. However, this would not be a

problem as we see below. In addition to equations (15), (16) and (19), we can use equations (28),
(29) and (31). These six equations form a system of five independent equations, when we substitute
equation (31) into the equation (19). Thus, this is a system of five independent equations and five
unknowns. We now show that the equations are indeed independent and how to solve the system.

We can substitute ρ , which is directly observable in equation (29) into equation (15). We can
also substitute

(
βFγMF

PF +βMγPF
MM

)
from equation (31) into the equation (19). Equations (15) and

(19) become

mC
F = βF +βMmF

MU

43



mC
PF = βFmF

PF +βMmPF
MU

This is a system with two equations and two unknowns βF and βM, so they are both identified.
With these two parameters we can go to equation (16) and solve for ρ ′. We can use equation (28)
to identify the household fixed effects η .

Proof of Proposition 8.

Proof. We can generate three moments (28), (29) and (30). Assuming ρ ′ = ρ and η = 0 we get

mC
F = βF +ρβM

mF
MU = ρ

mC
MU = βFmF

MU +βM
(
β

2
F +β

2
M +2ρβFβM

)
This is a system with three equations and three unknowns (βF ,βM,ρ). The second equation iden-
tifies ρ directly. We can then use the first equation to write βF as a function of βM and substitute
that into the last equation. Then we only need to solve for a cubic equation on βM.

A.4 Gendered Effects (proofs)
Following the same steps as before, we get the following set of moments.

mF
MU = β

S
F +ρβ

S
M (32)

mF
PF = β

S
F +ρ

′
β

S
M (33)

mS
MF = β

S
FmF

MF +β
S
M
(
β

D
F +ρ

′
β

D
M
)

(34)

mF
MF = β

S
Fγ

MF
PF +β

S
Mγ

PM
MF (35)

mS
PF = β

S
FmF

PF +β
S
M
(
β

D
F γ

MF
PF +β

D
Mγ

PF
MM

)
(36)

ρ = β
S
Fβ

D
F γ

MF
PF +β

D
F β

S
Mγ

PM
MF +β

S
Fβ

D
Mγ

MM
PF +β

S
Mβ

D
Mγ

MM
PM (37)

The system above shows six equations with six structural parameters
(
β S

F ,β
S
M,β D

F ,β D
M,ρ ′,ρ

)
,

and three nuisance parameters
(
γPM

MF ,γ
MM
PM ,γPF

MM
)
. Thus the system is not point identified. To get

point identification we need at least three independent restrictions in the parameters. Proposition 9
below shows a set of sufficient conditions for point identification of gendered effects in our model.

Proof of Proposition 9.

Proof. First, we impose γMF
PF = γPM

MF = γMM
PM = γPF

MM in the system of equations above. Notice that
γMF

PF is observable. Second, take the system of six equations above and notice that: ρ only appears
in equations (32) and (37); and ρ ′ only appears in equations (33) and (34). We can take equation
(32), solve for ρ and substitute it in equation (37) and take equation (33), solve for ρ ′ and substitute

44



in equation (34). We get
mS

F −β S
F

β S
M

=
(

β
S
F +β

S
M

)(
β

D
F +β

D
M
)

γ
MF
PF

mS
MF = β

S
FmF

MF +β
S
Mβ

D
F +

(
mF

PF −β
S
F

)
β

D
M

The two equations above, together with equations (35) and (36) form a system of four independent
equations with four unknowns

(
β S

F ,β
S
M,β D

F ,β D
M
)
. Once we solve this system, we can just use

equation (32) to solve for ρ and equation (33) to solve for ρ ′.

A.5 Identification of Generational Effects
In the baseline model in Section 2, we were implicitly imposing that the mobility effects were the
same in both generations. In this subsection, we present identification results when we allow for
different generational effects, but impose restrictions on the nuisance parameters. The system of
equations that we are considering is the following

XC
i = βFXF

i +βMXM
i + εC

i
XF

i = β
′
FXPF

i +β
′
MXPM

i + εF
i

XM
i = β

′
FXMF

i +β
′
MXMM

i + εM
i

(38)

where βF and βM are the effects of the father and mother in the second generation, respectively
and β

′
F and β

′
M are the effects of the father and mother in the first generation, respectively. We now

show several results showing sufficient conditions for identification of effects that differ across
generations in our model.

Proposition 10. Suppose XC
i , XF

i , XPF
i and XMF

i are observed. If we assume γPM
MF = γPF

MM, then
(βF ,βM,ρ) and β

′
(with β

′ ≡ β
′
F +β

′
M) is point identified. However, ρ ′, β

′
F and β

′
M are not point

identified.

Proposition 10 shows that imposing assumptions on the nuisance parameters, but no assump-
tions on the structural parameters, is not enough to get point identification here. Nonetheless,
identifying (βF ,βM,ρ,β

′
) could be of interest in many settings. For example, the econometrician

might be willing to assume that the coefficients for father and mother for the first generations are
equal to each other, i.e., β

′
F = β

′
M. Corollary 1 below shows that, with this extra assumption, all

parameters are identified.

Corollary 1. Suppose XC
i , XF

i , XPF
i and XMF

i are observed. If we assume γMF
PF = γPM

MF = γPF
MM and

β
′
F = β

′
M, then (βF ,βM,β

′
F ,ρ

′,ρ) is point identified.

Proposition 11 below shows that we can get identification on all the structural parameters with-
out imposing any restrictions on them, if we impose slightly different restrictions on the nuisance
parameters. The new restrictions break the dependency across moments that was created by the
restrictions imposed in Proposition 10.

Proposition 11. Suppose XC
i , XF

i , XPF
i and XMF

i are observed. If we assume γPM
MF = γPF

MM = 0 and
γMF

PF = γMM
PM , then (βF ,βM,β

′
F ,β

′
M,ρ ′,ρ) is point identified.
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Figure 8: Family Trees for Gendered Effects
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Notes: The horizontal lines in red represent the degree of assortative matching; the vertical relations in green (arrows)
represent the masculine effect on mobility; the vertical relations in blue (arrows) represent the feminine relations on
mobility. The solid circles represent individuals (males) with observed outcomes while the dashed circles represent
individuals (females) with unobserved outcomes.

A reasonable assumption that one can make is that the degree of assortative mating is con-
stant across generations, i.e., ρ ′ = ρ . Proposition 12 shows that this assumption provides point
identification in all the other structural parameters.

Notice that this result contrasts with the negative results shown at the beginning of this section.
In the simple model, assuming ρ ′ = ρ did not add any identification to our model, but here, it
provides an independent equation, with respect to the results in proposition 10. The reason behind
this somewhat surprising result is that in the baseline case, we were imposing that the mobility
parameters βF and βM were constant across generations. Thus, imposing also that the mating
parameters were constant did not add more degrees of freedom. Here, we are allowing the mobility
parameters to differ across generations, i.e., βF ̸= β

′
F and βM ̸= β

′
M. Thus, assuming that the mating

parameters are constant, i.e., ρ ′ = ρ , does add more identification power here.

Proposition 12. Suppose XC
i , XF

i , XPF
i and XMF

i are observed. If we assume γMF
PF = γPM

MF = γPF
MM

and ρ ′ = ρ , then (βF ,βM,β
′
F ,β

′
M,ρ), is point identified.

Propositions 10 and 11 are two different ways to get point identification in the structural pa-
rameters. In both cases, we are adding three restrictions to the nuisance parameters and that allows
us to form a system with six equations and six parameters of interest. In Proposition 11, the six
equations are independent and thus we can get point identification in all six parameters of interest.
In Proposition 10, however, the equations are not independent and we get point identifications in
all parameters but β

′
F and β

′
M. We get identification in their sum β

′
and we end up with a system

of over-identifying restrictions. Proposition 13 below extends this intuition and shows how we can
also get point identification on (βF ,βM,ρ ′,ρ), with a weaker assumption on the nuisance parame-
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ters: γPM
MF = γPF

MM = (γMF
PF γMM

PM )0.5. The downside is that now we cannot point identify the mobility
parameters in the older generation β

′
F and β

′
M, or the nuisance parameter γMM

PM , but we can identify
β̃

′ ≡ β
′
F(γ

MF
PF )0.5 +β

′
F(γ

MM
PM )0.5.

Proposition 13. Suppose XC
i , XF

i , XPF
i and XMF

i are observed. If we assume γPM
MF = γPF

MM =√
γMF

PF γMM
PM , then (βF ,βM,ρ) and β̃

′
(with β̃

′ ≡ β
′
F

√
γMF

PF +β
′
M

√
γMM

PM ) is point identified. How-

ever, β
′
F , β

′
M, and ρ ′ are not point identified.

Proposition 13 presents a negative result when we use the assumption γPM
MF = γPF

MM =
√

γMF
PF γMM

PM .
Corollary 1 above shows how the negative result in Proposition 10 can be overcome by a simple
restriction on the structural parameters such as β

′
F = β

′
M. Corollary 2 below shows how the same

assumption does not solve the identification issues from Proposition 13.

Corollary 2. Suppose XC
i , XF

i , XPF
i and XMF

i are observed. If we assume γPM
MF = γPF

MM =
√

γMF
PF γMM

PM

and β
′
F = β

′
M, (βF ,βM,ρ) and β̃

′
(with β̃

′ ≡ β
′
F

(√
γMF

PF +
√

γMM
PM

)
) is point identified. However,

β
′
F , β

′
M, and ρ ′ are not point identified.

A.6 Generational Effects (proofs)
Following the same steps as before, we get the following set of moments.

mC
F = βF +ρβM (39)

mF
PF = β

′
F +ρ

′
β

′
M (40)

mC
MF = βFmF

MF +βM

(
β

′
F +ρ

′
β

′
M

)
(41)

mF
MF = β

′
Fγ

MF
PF +β

′
Mγ

PM
MF (42)

mC
PF = βFmF

PF +βM

(
β

′
Fγ

MF
PF +β

′
Mγ

PF
MM

)
(43)

ρ =
(

β
′
F

)2
γ

MF
PF +

(
β

′
M

)2
γ

MM
PM +β

′
Fβ

′
M
(
γ

PM
MF + γ

PF
MM

)
(44)

Proof of Proposition 10.

Proof. First, we impose γPM
MF = γPF

MM in the system of equations above. Notice that γMF
PF is observ-

able. We can substitute equation (40) into equation (41) and substitute equation (42) into equation
(43). We have now a system with two equations and two unknowns (βF ,βM).

mC
MF = βFmF

MF +βMmF
PF

mC
PF = βFmF

PF +βMmF
MF

We can go to equation (39) and identify ρ . This is as far as we can get. In equations (42), (43)
and (44) we can only identify β

′
but not each component. In equations (40) and (41) we can

only identify
(

β
′
F +ρ ′β

′
M

)
. Thus we have two independent equations, say (40) and (42), for three

unknowns ρ ′, β
′
F and β

′
M.

47



Proof of Corollary 1.

Proof. We can follow the same steps as in Proposition 10 to get identification on (βF ,βM,ρ).
Unlike before, we have now an extra assumption β

′
F = β

′
M. Moreover, we are imposing γMF

PF = γPM
MF

now. We can use equation (42) and get mF
MF = 2β

′
FγMF

PF to identify β
′
F . We can then use equation

(40) to identify ρ ′.

Proof of Proposition 11.

Proof. First, we impose γPM
MF = γPF

MM = 0 and γMF
PF = γMM

PM in the system of equations above. Notice
that γMF

PF is observable. Second, take the system of six equations above and notice that: ρ only
appears in equations (39) and (44); and ρ ′ only appears in equations (40) and (41). We can take
equation (39), solve for ρ and substitute it in equation (44) and take equation (40), solve for ρ ′ and
substitute in equation (41). We get

mC
F −βF

βM
=

((
β

′
F

)2
+
(

β
′
M

)2
)

γ
MF
PF

mC
MF = βFmF

MF +βMmF
PF

With the assumption here, equation (42) identifies β
′
F directly, i.e, β

′
F =mF

MF/γMF
PF . If we substitute

this in equation (43), we get

mC
PF = βFmF

PF +βMmF
MF

This, together with the second equation above forms a system with two equations and two un-
knowns and identifies βF and βM. Using the values for β

′
F , βF and βM, together with the first

equation above, we can identify β
′
M. Finally, we can use the mobility parameters β

′
F , β

′
M, βF and

βM and using equations (39) and (40), we get the mating parameters ρ and ρ ′.

Proof of Proposition 12.

Proof. First, we impose γMF
PF = γPM

MF = γPF
MM in the system of equations above. Notice that γMF

PF
is observable. Second, take the system of six equations above and notice that ρ ′ only appears in
equations (40) and (41). We can take equation (40), solve for ρ ′ and substitute in equation (41).
We get

mC
MF = βFmF

MF +βMmF
PF

We can take equation (42) and substitute in equation (43) to get

mC
PF = βFmF

PF +βMmF
MF

The previous two equations form a system of two equations and two unknowns (βF ,βM). In fact,
this is the same system depicted in Figure 3 (right). Now we can just use equation (39) to solve for
ρ .

mC
F = βF +ρβM

Now imposing ρ = ρ ′ means that we can use equations (40) and (42) for form the system below.

mF
PF = β

′
F +ρβ

′
M

mF
MF =

(
β

′
F +β

′
M

)
γ

MF
PF
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The previous two equations form a system of two equations and two unknowns
(

β
′
F ,β

′
M

)
.

Proof of Proposition 13.

Proof. We can substitute equation (40) into equation (41) and get

mC
MF = βFmF

MF +βMmF
PF

Using γPM
MF = γPF

MM we can substitute equation (42) into equation (43) and get

mC
PF = βFmF

PF +βMmF
MF

These two equations above form a system with two equations and two unknowns βF and βM.
Solving for βF and βM and using equation (39) we can solve for ρ . If we would write ρ = ρ ′ we
can write equation (40) as

mF
PF = β

′
F +ρβ

′
M

This gives us one equation to identify β
′
F and β

′
M. Notice, however, that β

′
F and β

′
M appear in

all other equations as β̃
′ ≡ β

′
F

√
γMF

PF +β
′
M

√
γMM

PM .27 This means we have only one independent

equation to estimate β̃
′

and equation (40) that relates β
′
F and β

′
M. Without further assumptions on

γMM
PM we do not get point identification.

Proof of Corollary 2.

Proof. First, we impose γPM
MF = γPF

MM =
√

γMF
PF γMM

PM and β
′
F = β

′
M in the system of equations above.

Notice that γMF
PF is observable. Second, take the system of six equations above and notice that: ρ

only appears in equations (39) and (44); and ρ ′ only appears in equations (40) and (41). We can
take equation (39), solve for ρ and substitute it in equation (44) and take equation (40), solve for
ρ ′ and substitute in equation (41). We get

mC
F −βF

βM
=
(

β
′
F

)2
(√

γMF
PF +

√
γMM

PM

)2

=

(
β

′
F

)2

γMF
PF

(
γ

MF
PF +

√
γMF

PF γMM
PM

)2

mC
MF = βFmF

MF +βMmF
PF

The previous two equations, together with equations (42) and (43), below, form a system with four
equations and four unknowns.

mF
MF = β

′
F

(
γ

MF
PF +

√
γMF

PF γMM
PM

)
mC

PF = βFmF
PF +βMβ

′
F

(
γ

MF
PF +

√
γMF

PF γMM
PM

)
We can take the last two equations and get mC

PF = βFmF
PF +βMmF

MF . This together with the second
equation above (mC

MF = βFmF
MF +βMmF

PF ) creates a system of two equations and two unknowns
and identifies βF and βM. With βF and βM and using equation (39), we can identify ρ .

27Equation (42), dividing both sides by
√

γMF
PF , can be written as mF

MF√
γMF

PF
= β̃

′
and similarly for equation (43).
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Notice that β
′
F appears three times in the equations above, but each time appears in the same form

β
′
F

(
γMF

PF +
√

γMF
PF γMM

PM

)
thus, we only have one independent equation for β

′
F and γMM

PM . The other

time that β
′
F appears is in equations (11) and 12. In both cases it appears together with ρ ′ as

β (1+ρ ′). Thus, we have two independent equations to estimate three parameters
(

β
′
F ,ρ

′,γMM
PM

)
.

Thus, without further assumptions, β
′
F , ρ ′, and γMM

PM , are not point identified.

B Extra Simulation Results
Figure 9 shows the estimation results using our estimator for Propositions 4 and 5 in simulated
samples of size ranging 200-1000. Unlike in other results, Panel A shows that the point estimates
are not at the true value for small samples sizes. Even with n = 1,000 the point estimates seem a
bit off. This highlights how Assumption A1 helps identification by making some moments simpler
and, thus, making some structural parameter linear in those moments. Without using Assumption
A1, even if it holds in reality as in this simulated case, makes the estimates much less precise.
We would recommend the researcher use results that use Assumption A1, unless she has a specific
model in mind of arranged marriages, or settings where the parents of the groom and the bride may
have a direct and asymmetric effect on mating. In contrast to Proposition 4 in Panel A, Proposition
5 in Panel B uses no information on the paternal grandfather XPF

i but imposes Assumption A1.
We can see here how the point estimates are right at the true values and statistically significant
for very small sample sizes (n = 400). This, again, highlights the importance of Assumption A1
and the little importance that males in the patrilineal side such as the paternal grandfather has for
identification and estimation.

Table 4 shows results from Proposition 1, similar to those used in Figure 4. We report three
magnitudes for each parameter and sample size: 1) the mean of the estimated parameters across
simulations; 2) the standard deviation (SD) of the estimated parameter across simulations; and
3) the median of the estimated standard errors (SE) calculated by the GMM asymptotic variance
formula. We can see how the mean of the parameters converges very quickly to the true value for
all parameters. Moreover, both the SD and the SE are small, and quickly become smaller for all
parameters. This is particularly true for ρ where we get statistical significance even at n = 200.

C Extra Empirical Results
We now show other empirical results as a robustness check to our main empirical estimates. Tables
5 and 6 show results when we use only one measure of income for each individual. In other
words, we observe each individual only once in adulthood. Due to measurement error, the pairwise
correlations in this sample are lower than the pairwise correlations when observing each individual
twice. The effects on the empirical estimates could go up, down, or not be affected. On the other
hand, there is sample attrition when requiring that each individual is observed in two different
census records. In that sense, the sample here are larger and less selected.

As a second robustness check, we compute income measures for the 1870 cohort, similarly to
the ones for the 1880 cohort. Tables 7 and 8 display these results. The results are similar than those
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Figure 9: Simulation Results from Propositions 4 and 5

A. Simulations with βF = 0.3, βM = 0.6, and ρ = ρ ′ = 0.5. Proposition 4
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B. Simulations with βF = 0.3, βM = 0.6, and ρ = 0.5. Proposition 5
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Notes: Estimated parameters and confidence intervals at p = 0.05 using Propositions 4 and 5.

for the 1880 cohort. The effect of the mother and the degree of assortative mating is larger for the
1870 cohort.

D Model Mispecification Analysis

D.1 Comparative Statistics
In this section, we show a comparative statistics analysis for Proposition 1. Matrix J below shows
the derivative of each estimator for each structural parameter (βF ,βM,ρ) over each empirical mo-
ment (xMF

F ,xPF
F ,xMF

PF ). We restrict attention to the case with 0 < βF ,βM,ρ < 1. Without further
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Table 4: Simulation Results from Proposition 1

Sample Size 200 400 600 800 1000

0.269 0.270 0.262 0.294 0.291
βF = 0.3 (0.218) (0.141) (0.135) (0.117) (0.109)

0.267 0.161 0.142 0.111 0.097

0.640 0.639 0.650 0.608 0.608
βF = 0.6 (0.284) (0.195) (0.183) (0.165) (0.154)

0.342 0.228 0.193 0.153 0.136

0.517 0.505 0.515 0.505 0.498
ρ = 0.5 (0.101) (0.069) (0.060) (0.061) (0.050)

0.112 0.078 0.063 0.055 0.048

Notes: We report three magnitudes for each parameter and sample size: 1) the mean of the estimated parameters across
simulations; 2) the standard deviation (SD) of the estimated parameter across simulations, in parenthesis; and 3) the
median of the estimated standard errors (SE) calculated by the GMM asymptotic variance formula, in italics.

Table 5: Empirical Results for Propositions 1, 2, and 3 (one measure)

Parameter Prop. 1 Prop. 2 Prop. 3
βF 0.140 0.874 0.382

(0.003) (0.003) (0.001)

βM 0.734
(0.006)

ρ 0.287 0.287 0.287
(0.002) (0.002) (0.001)

N 2,552,748 2,552,748 2,552,748
MSE 2.710e-16 6.633e-16 0.0028

Notes: Empirical results from the estimation of Propositions 1, 2, and 3, for 1880 cohort, using one measure. A cohort
is defined as any male child in the Census for the specified year; hence, there can be some overlap in the individuals
in these trees.

restrictions, three of the nine derivatives have an ambiguous sign.

J =


∂ρ

∂xMF
F

∂ρ

∂xPF
F

∂ρ

∂xMF
PF

∂βF
∂xMF

F

∂βF
∂xPF

F

∂βF
∂xMF

PF
∂βM
∂xMF

F

∂βM
∂xPF

F

∂βM
∂xMF

PF

=


2xMF

F
xPF

F
− (xMF

F )2

(xPF
F )2 0

1
xPF

F
+

2xMF
F ·xPF

F ·xMF
PF −(xMF

F )2−xPF
F

(xPF
F −(xMF

F )2)2
xMF

F (1−xMF
PF ·xMF

F )

(xPF
F −(xMF

F )2)2 − xMF
F

(xPF
F )2

xPF
F (xPF

F −(xMF
F )2)

(xPF
F −(xMF

F )2)2

xPF
F −2xMF

F ·xPF
F ·xMF

PF +(xMF
F )2

(xPF
F −(xMF

F )2)2
xMF

F (xMF
PF ·xMF

F −1)
(xPF

F −(xMF
F )2)2

xPF
F ((xMF

F )2−xPF
F )

(xPF
F −(xMF

F )2)2


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Table 6: Empirical Results from Propositions 4-9 (one measure)

Param. Prop. 4 Prop. 5 Prop. 6 Prop. 7 Prop. 8 Param. Prop. 9
βF 0.227 0.128 0.147 0.158 0.143 β S

F 0.147
(0.023) (0.003) (0.001) (0.002) (0.016) (0.002)

β D
F 0.077

(0.002)

βM 0.338 0.591 0.468 0.456 0.478 β S
M 0.733

(0.023) (0.007) (0.004) (0.005) (0.058) (0.003)

β D
M 0.431

(0.005)

ρ 0.165 0.262 0.287 0.287 0.287 ρ 0.185
(0.057) (0.002) (0.001) (0.001) (0.001) (0.001)

ρ
′

0.476 0.406 0.537 ρ
′

0.329
(0.035) (0.003) (0.004) (0.002)

η 0.000 0.000
(0.002) (0.003)

N 2,800,897 2,800,897 507,885 507,885 507,885 2,800,897
MSE 9.816e-07 1.770e-16 5.741e-05 9.493e-04 8.877e-17 2.986e-16

Notes: Results from the estimation of Propositions 4, 5, 6, 7, 8, and 9, for 1880 cohort, using one measure. A cohort
is defined as any male child in the census for the specified year; hence, there can be some overlap in the individuals in
these trees.

Given ρ =
(xMF

F )2

xPF
F

and 0 < ρ < 1:

0 <
(xMF

F )2

xPF
F

< 1

⇒ 0 < (xMF
F )2 < xPF

F

This gives us our first key relationship: (xMF
F )2 < xPF

F , which means the denominator xPF
F −

(xMF
F )2 is positive.

From 0 < βM < 1
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Table 7: Empirical Results for Propositions 1, 2, and 3 (1870 cohort)

Parameter Prop. 1 Prop. 2 Prop. 3
βF 0.163 0.900 0.448

(0.006) (0.004) (0.002)

βM 0.738
(0.010)

ρ 0.385 0.385 0.385
(0.003) (0.003) (0.002)

N 254,341 254,341 254,341
MSE 3.821e-16 8.668e-16 6.106e-06

Notes: Empirical results from the estimation of Propositions 1, 2, and 3, for 1870 cohort, using two measures. A cohort
is defined as any male child in the Census for the specified year; hence, there can be some overlap in the individuals
in these trees.

Given βM =
xMF

F −xPF
F ·xMF

PF
xPF

F −(xMF
F )2 and 0 < βM < 1:

0 <
xMF

F − xPF
F · xMF

PF
xPF

F − (xMF
F )2 < 1

Since we know from our previous constraint that xPF
F − (xMF

F )2 > 0, we can multiply all terms
by this positive denominator:

0 < xMF
F − xPF

F · xMF
PF < xPF

F − (xMF
F )2

⇒ 0 < xMF
F − xPF

F · xMF
PF

⇒ xPF
F · xMF

PF < xMF
F

For the upper bound:

xMF
F − xPF

F · xMF
PF < xPF

F − (xMF
F )2

⇒ xMF
F +(xMF

F )
2
< xPF

F + xPF
F · xMF

PF

⇒ xMF
F (1+ xMF

F )< xPF
F (1+ xMF

PF )

From 0 < βF < 1
Given βF =

xMF
F

xPF
F

− xMF
F −xPF

F ·xMF
PF

xPF
F −(xMF

F )2 and 0 < βF < 1:

Since βM =
xMF

F −xPF
F ·xMF

PF
xPF

F −(xMF
F )2 , we can rewrite βF as:

βF =
xMF

F
xPF

F
−βM
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Table 8: Empirical Results from Propositions 4-9 (1870 cohort)

Param. Prop. 4 Prop. 5 Prop. 6 Prop. 7 Prop. 8 Param. Prop. 9
βF 0.102 0.160 0.193 0.207 0.184 β S

F 0.187
(0.042) (0.005) (0.002) (0.003) (0.005) (0.002)

β D
F 0.112

(0.003)

βM 0.505 0.591 0.461 0.442 0.480 β S
M 0.741

(0.042) (0.009) (0.004) (0.007) (0.014) (0.004)

β D
M 0.410

(0.006)

ρ 0.526 0.351 0.386 0.386 0.386 ρ 0.244
(0.040) (0.002) (0.001) (0.001) (0.001) (0.002)

ρ
′

0.758 0.539 0.673 ρ
′

0.401
(0.020) (0.004) (0.006) (0.002)

η 0.000 0.000
(0.002) (0.003)

N 684,663 684,663 626,490 626,490 626,490 684,663
MSE 9.297e-14 2.739e-15 5.244e-05 9.612e-04 1.382e-16 2.814e-16

Notes: Results from the estimation of Propositions 4, 5, 6, 7, 8, and 9, for 1870 cohort, using two measures. A cohort
is defined as any male child in the census for the specified year; hence, there can be some overlap in the individuals in
these trees.

With 0 < βF < 1:

0 <
xMF

F
xPF

F
−βM < 1

⇒ βM <
xMF

F
xPF

F
< 1+βM

Since βM < 1, we know:
xMF

F
xPF

F
< 2

We now analyze the partial derivatives of ρ , βF , and βM with respect to each of the three
variables.
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• Derivatives of ρ

– With respect to xMF
F

∂ρ

∂xMF
F

=
∂

∂xMF
F

(
(xMF

F )2

xPF
F

)
=

2xMF
F

xPF
F

Sign: POSITIVE
Since xMF

F > 0 and xPF
F > 0, we have ∂ρ

∂xMF
F

> 0.

– With respect to xPF
F

∂ρ

∂xPF
F

=
∂

∂xPF
F

(
(xMF

F )2

xPF
F

)
=−(xMF

F )2

(xPF
F )2

Sign: NEGATIVE
Since xMF

F > 0 and xPF
F > 0, we have ∂ρ

∂xPF
F

< 0.

– With respect to xMF
PF

∂ρ

∂xMF
PF

=
∂

∂xMF
PF

(
(xMF

F )2

xPF
F

)
= 0

Sign: ZERO
Since ρ does not depend on xMF

PF , we have ∂ρ

∂xMF
PF

= 0.

• Derivatives of βF

– With respect to xMF
F

∂βF

∂xMF
F

=
∂

∂xMF
F

(
xMF

F
xPF

F
− xMF

F − xPF
F · xMF

PF
xPF

F − (xMF
F )2

)
=

1
xPF

F
+

2xMF
F · xPF

F · xMF
PF − (xMF

F )2 − xPF
F

(xPF
F − (xMF

F )2)2

Sign: INDETERMINATE
The first term 1

xPF
F

> 0 is clearly positive.

For the second term, the denominator (xPF
F − (xMF

F )2)2 > 0 is positive.
The numerator 2xMF

F · xPF
F · xMF

PF − (xMF
F )2 − xPF

F has no clear sign based on our con-
straints.
Therefore, the overall sign of ∂βF

∂xMF
F

cannot be determined without additional informa-
tion.
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– With respect to xPF
F

∂βF

∂xPF
F

=
∂

∂xPF
F

(
xMF

F
xPF

F
− xMF

F − xPF
F · xMF

PF
xPF

F − (xMF
F )2

)
=− xMF

F
(xPF

F )2 +
xMF

F (1− xMF
PF · xMF

F )

(xPF
F − (xMF

F )2)2

Sign: INDETERMINATE
The first term − xMF

F
(xPF

F )2 < 0 is negative.

For the second term, the denominator (xPF
F − (xMF

F )2)2 > 0 is positive.
For the numerator xMF

F (1−xMF
PF ·xMF

F ), since xMF
PF ·xMF

F < 1 (as both xMF
PF ,xMF

F < 1), we
have xMF

F (1− xMF
PF · xMF

F )> 0.
This means the first term is negative and the second term is positive.
The overall sign depends on which term has greater magnitude.
Therefore, the sign of ∂βF

∂xPF
F

cannot be determined without additional information.

– With respect to xMF
PF

∂βF

∂xMF
PF

=
∂

∂xMF
PF

(
xMF

F
xPF

F
− xMF

F − xPF
F · xMF

PF
xPF

F − (xMF
F )2

)
=

xPF
F

xPF
F − (xMF

F )2

=
xPF

F
xPF

F − (xMF
F )2 ·

xPF
F − (xMF

F )2

xPF
F − (xMF

F )2

=
xPF

F (xPF
F − (xMF

F )2)

(xPF
F − (xMF

F )2)2

Sign: POSITIVE
Since xPF

F > (xMF
F )2 (from our constraints), the numerator xPF

F (xPF
F − (xMF

F )2) > 0 is
positive.
The denominator (xPF

F − (xMF
F )2)2 > 0 is positive.

Therefore, ∂βF
∂xMF

PF
> 0 is positive.

• Derivatives of βM
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– With respect to xMF
F

∂βM

∂xMF
F

=
∂

∂xMF
F

(
xMF

F − xPF
F · xMF

PF
xPF

F − (xMF
F )2

)
=

(xPF
F − (xMF

F )2)− (xMF
F − xPF

F · xMF
PF )(2xMF

F )

(xPF
F − (xMF

F )2)2

=
xPF

F − (xMF
F )2 −2xMF

F (xMF
F − xPF

F · xMF
PF )

(xPF
F − (xMF

F )2)2

=
xPF

F − (xMF
F )2 −2(xMF

F )2 +2xMF
F · xPF

F · xMF
PF

(xPF
F − (xMF

F )2)2

=
xPF

F − (xMF
F )2 −2(xMF

F )2 +2xMF
F · xPF

F · xMF
PF

(xPF
F − (xMF

F )2)2

=
xPF

F −2(xMF
F )2 − (xMF

F )2 +2xMF
F · xPF

F · xMF
PF

(xPF
F − (xMF

F )2)2

=
xPF

F −3(xMF
F )2 +2xMF

F · xPF
F · xMF

PF
(xPF

F − (xMF
F )2)2

Sign: INDETERMINATE
The denominator (xPF

F − (xMF
F )2)2 > 0 is positive.

For the numerator, the term xPF
F −3(xMF

F )2 could be positive or negative, and the term
2xMF

F · xPF
F · xMF

PF is positive.
Without additional constraints on the relative magnitudes of these terms, the sign of
∂βM
∂xMF

F
cannot be determined.

– With respect to xPF
F

∂βM

∂xPF
F

=
∂

∂xPF
F

(
xMF

F − xPF
F · xMF

PF
xPF

F − (xMF
F )2

)
=

−xMF
PF · (xPF

F − (xMF
F )2)− (xMF

F − xPF
F · xMF

PF ) ·1
(xPF

F − (xMF
F )2)2

=
−xMF

PF · xPF
F + xMF

PF · (xMF
F )2 − xMF

F + xPF
F · xMF

PF
(xPF

F − (xMF
F )2)2

=
−xMF

PF · xPF
F + xMF

PF · (xMF
F )2 − xMF

F + xPF
F · xMF

PF
(xPF

F − (xMF
F )2)2

=
xMF

PF · (xMF
F )2 − xMF

F
(xPF

F − (xMF
F )2)2

=
xMF

F (xMF
PF · xMF

F −1)
(xPF

F − (xMF
F )2)2

Sign: NEGATIVE
The denominator (xPF

F − (xMF
F )2)2 > 0 is positive.

For the numerator, since xMF
PF < 1 and xMF

F < 1, we have xMF
PF · xMF

F < 1.
Therefore, the term (xMF

PF · xMF
F −1)< 0 is negative.
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Since xMF
F > 0, the numerator xMF

F (xMF
PF · xMF

F −1)< 0 is negative.
Therefore, ∂βM

∂xPF
F

< 0 is negative.

– With respect to xMF
PF

∂βM

∂xMF
PF

=
∂

∂xMF
PF

(
xMF

F − xPF
F · xMF

PF
xPF

F − (xMF
F )2

)
=

−xPF
F

xPF
F − (xMF

F )2

=− xPF
F

xPF
F − (xMF

F )2 ·
xPF

F − (xMF
F )2

xPF
F − (xMF

F )2

=−xPF
F (xPF

F − (xMF
F )2)

(xPF
F − (xMF

F )2)2

=
xPF

F ((xMF
F )2 − xPF

F )

(xPF
F − (xMF

F )2)2

Sign: NEGATIVE
Since xPF

F > (xMF
F )2 (from our constraints), the term ((xMF

F )2 − xPF
F )< 0 is negative.

The denominator (xPF
F − (xMF

F )2)2 > 0 is positive.
Therefore, ∂βM

∂xMF
PF

< 0 is negative.

We can arrange all these derivatives in a 3× 3 matrix form, where rows correspond to the
functions (ρ , βF , βM) and columns correspond to the variables (xMF

F , xPF
F , xMF

PF ). In summary,
the constraints 0 < βF ,βM,ρ < 1, allow us to determine the signs of six out of the nine partial
derivatives. The most critical constraint is xPF

F > (xMF
F )2, which derives directly from 0 < ρ < 1,

and ensures that denominators are positive and helps establish the signs of several derivatives. For
the three derivatives with indeterminate signs, additional constraints or specific parameter values
would be needed to determine their signs conclusively. Matrix J below shows the derivatives of
each estimator (structural parameter) as a function of each empirical moment

J =


∂ρ

∂xMF
F

∂ρ

∂xPF
F

∂ρ

∂xMF
PF

∂βF
∂xMF

F

∂βF
∂xPF

F

∂βF
∂xMF

PF
∂βM
∂xMF

F

∂βM
∂xPF

F

∂βM
∂xMF

PF

; sign(J) =

+ − 0
? ? +
? − −



D.2 Measurement Error
In studies of intergenerational mobility, measurement error and attenuation bias could be a concern.
Social status is transmitted across generations, but it is hard to measure precisely. Researchers usu-
ally have access to some variable, such as income, that is only imperfectly correlated with status.
Therefore, the correlation in outcomes between father and child is lower than the correlation of
their status. The difference (bias) between these two correlations would be a function of how cor-
related the outcome used is to status. Historical data very rarely have information on income, but
usually contain information on occupation. Our approach here is to improve the usual estimates
for income in a given occupation by allowing variation across time and space, and, more impor-

59



tantly, providing better estimates for farmer’s income. Song et al. (2020) take a different approach
and create a measure of normalized literacy by occupation. Instead of looking at the literacy of
each individual, they look at the fraction of individuals that are literate and have the same occupa-
tion, and then assign that index to all individuals with the same occupation. Ward (2023) takes a
similar approach but computes indexes not only by occupation, but by occupation, race, and state.
The goal of these alternative measures of status is to reduce the attenuation bias in the mobility
estimates. We now discuss whether some estimators could be immune to attenuation bias.

Curtis (2022) uses the ratio estimator in Chadwick and Solon (2002) to measure assortative
mating, i.e., ρ ′ = mF

MF/mF
PF , and notes that this estimator is not subject to attenuation bias if the

bias θ when computing the correlation in the numerator is the same as the bias when computing
the correlation in the denominator. Recent papers have used this estimator to compute the degree
of marital assortment (Clark and Cummins, 2022; Clark et al., 2022; Clark, 2023). Let m̂F

PF and

m̂F
MF be the income correlation between XF

i and XPF
i , and XF

i and XMF
i , respectively; and let mF

PF

and mF
MF be the status correlations. Then, ρ̂ ′ ≡ m̂F

MF

m̂F
PF

=
θmF

MF
θmF

PF
=

mF
MF

mF
PF

≡ ρ ′. In other words, the

ratio estimator is immune to attenuation bias.28 In general, any estimator would be immune to
attenuation bias if

1. The bias θ in any pairwise correlation is the same.

2. The degree of the correlations in the numerator is the same as that in the denominator.

To illustrate this point, we can look at our mobility estimators in Proposition 4 (see Appendix A
for details). Following the notation above we can write.

β̂F ≡ m̂F
PFm̂C

PF − m̂C
MFm̂F

MF

m̂F
PF

2
− m̂F

MF

2 =
θmF

PFθmC
PF −θmC

MFθmF
MF(

θmF
PF

)2 −
(
θmF

MF

)2 =
mF

PFmC
PF −mC

MFmF
MF(

mF
PF

)2 −
(
mF

MF

)2 ≡ βF

β̂M ≡ m̂F
PFm̂C

MF − m̂C
PFm̂F

MF

m̂F
PF

2
− m̂F

MF

2 =
θmF

PFθmC
MF −θmC

PFθmF
MF(

θmF
PF

)2 −
(
θmF

MF

)2 =
mF

PFmC
MF −mC

PFmF
MF(

mF
PF

)2 −
(
mF

MF

)2 ≡ βM

In other words, our mobility estimators in Proposition 4 are immune to attenuation bias.29 If
the researcher is very concerned about attenuation bias in their sample, but it is not very concerned
about changes in mobility over time, Proposition 4 would be the right choice for her.

D.3 Occupational Scores
One particular type of measurement error common in the literature is generated by using occu-
pational scores. In historical data, it is common to have information on occupation, but not on
income. The solution is to impute income based on occupation, and maybe other characteristics

28We have emphasized that there are inherent trade-offs between the assumptions imposed and the parameters that
can be estimated. The ratio estimator is one point on that set of trade-offs that is particularly useful when particular
data requirements are encountered. For example, the ratio estimator is particularly useful in settings, like the PSID,
where one cannot construct trees, but can independently estimate husband/father correlations and husband/father-in-
law correlations.

29Notice that this property need not apply to all our estimators.
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such as state of residency, year, and race. We perform a sensitivity exercise to assess how this type
of measurement error could affect our estimates. We replicate the simulation exercise as explained
in Appendix B. Once the simulated data is generated, using our underlying structure, we fix the
number of quantiles q and compute the median income of each quantile. These median incomes
are the reference points, or income scores. We then assign each individual the income score that
is closest to their simulated income. In practice, this is a dataset that introduces non-classical
measurement error and would induce lower pairwise correlations. It is a more extreme version of
non-classical measurement than what we would see in the data. If we consider each quantile as an
occupation, our simulation exercise assumes that there is no income overlap between occupations.

Figure 10 displays simulation results using Proposition 1 for different quantile sizes. The
measurement error produces attenuation bias in all pairwise correlations. This attenuation bias
has an a priori ambiguous effect on the structural estimates. From formula 12 we see that the
power in the numerator is 2 and the power in the denominator is 1. If the degree of attenuation
bias is the same in both correlations, then due to attenuation bias, using Proposition 1 would
underestimate ρ . With a small number of quantiles (q = 10) we see that βM is over-estimated and
βF and ρ are underestimated. With an intermediate number of quantiles (q = 50), the bias has
vanished and the estimates and not statistically different from the true values. For reference, in
the 1900 US Decennial census there are 264 occupations reported. In summary, we learn several
things from this exercise. First, unsurprisingly, using occupational scores instead of actual incomes
would underestimate all pairwise correlations, due to attenuation bias. Second, the effect on each
structural parameters is ambiguous, but we can use comparative statics using the formulas for
our estimators to predict whether they would be overestimated or underestimated. The simulation
results confirm the analytical results. Third, the biases disappear at relatively low quantile sizes
(q = 50). This suggest that the type of measurement error induce by using occupational scores
would not have an effect on our estimators.

Figure 11 displays simulation results using Proposition 4 for different quantile sizes. As shown
above in Appendix D.2, we would expect our mobility estimates βF and βM to be immune to
measurement error. Indeed, this is what we see. Even at very small quantile sizes (q = 10 and
q = 20) we see the estimates for βF and βM be not statistically different from the true values. The
estimates for assortative mating ρ and ρ ′, however, remain far from the true values until we reach
intermediate quantile sizes (q = 50 and q = 100). This exercise corroborates the results in Figure
10 using Proposition 1. In addition to that, it we learn that the intuition above regarding estimates
being immune to classical measurement error, extends to the type of non-classical measurement
error study here, which is commonly found in the literature.

E Economic Model
In this section, we show a simple economic model in the spirit of Becker and Tomes (1979) when
there are two parents, instead of one. Each parent care about their own consumption and about
investing in a public good: their child. Unlike in Becker and Tomes (1979), where the investment
decision by a single parent is a simple trade off between utility today (consumption) and utility in
the future (investment in my child), the problem here is complicated by the bargaining between
the parents. We first present the problem and the notation in subsection E.1, and then solve the
bargaining problem à la Nash in subsection E.2.
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Figure 10: Simulation Results from Proposition 1 with aggregated data.

A. Simulations with βF = 0.3, βM = 0.6, and ρ = ρ ′ = 0.5.
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E
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B. Simulations with βF = 0.6, βM = 0.3, and ρ = ρ ′ = 0.5.
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Notes: Estimated parameters and confidence intervals at p = 0.05 using Proposition 1, and data generated aggregating
at the median of the nearest quantile. We use a sample size of n = 10,000 and 1,000 simulations.

E.1 Becker and Tomes (1979) with mother and father
Here we reproduce a simple version of the model in Becker and Tomes (1979), as written in Solon
(2014), but extending the analysis to two parents. We modify the formulas slightly by removing
the logs to adapt to our utility function. Each parent j ∈ {F,M} must allocate their lifetime income
X j

i between the parent’s own consumption C j
i and investment in the child’s human capital I j

i :

XF
i =CF

i + IF
i (45)
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Figure 11: Simulation Results from Proposition 4 with aggregated data.

A. Simulations with βF = 0.3, βM = 0.6, and ρ = ρ ′ = 0.5.
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B. Simulations with βF = 0.6, βM = 0.3, and ρ = ρ ′ = 0.5.
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Notes: Estimated parameters and confidence intervals at p = 0.05 using Proposition 4, and data generated aggregating
at the median of the nearest quantile. We use a sample size of n = 10,000 and 1,000 simulations.

XM
i =CM

i + IM
i (46)

The technology translating total investment Ii ≡ IF
i + IM

i into the child’s human capital hi is

hi = θ Ii +νi (47)

where θ > 0 represents a positive marginal product for human capital investment, and νt denotes
the human capital endowment of the child. The child life-time income XC

i is determined by the
semi-log earnings function

XC
i = µ + phi (48)
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where p is the earning return to human capital. Substituting equation (47) into equation (48) yields

XC
i = µ + γIi + pνi (49)

where γ = θ p is the elasticity of the child’s income with respect to investment in the child’s human
capital. The parents divide their income income X j

i between the parent’s own consumption C j
i and

investment in the child’s human capital I j
i , so as to maximize the following utility function

UF
i = (1−αF)CF

i +αFXC
i (50)

UM
i = (1−αM)CM

i +αMXC
i (51)

The altruism parameters αF and αM, which lie between 0 and 1, measure the parent’s taste for
investing in their child’s human capital relative to their own consumption. This utility function can
be rewritten as

UF
i = (1−αF)

(
XF

i − IF
i
)
+αF µ +αFγ

(
IF
i + IM

i
)
+αF pνi (52)

UM
i = (1−αM)

(
XM

i − IM
i
)
+αMµ +αMγ

(
IF
i + IM

i
)
+αM pνi (53)

which expresses the objective functions in terms of the choice variables IF
i and IM

i . In the next
subsection we derive the solution of this model when parents bargain à la Nash.

E.2 Bargaining with a Public Good
Here we follow the simple setting of intra-household bargaining in Manser and Brown (1980). We
first define the elements needed for the analysis and their formulation when utility preferences are
hedonic. In particular the utility functions are

UF (
IF
i , I

M
i
)
= (1−αF)

(
XF

i − IF
i
)
+αFγ

(
IF
i + IM

i
)
+αF µ +αF pνi (54)

UM (
IF
i , I

M
i
)
= (1−αM)

(
XM

i − IM
i
)
+αMγ

(
IF
i + IM

i
)
+αMµ +αM pνi (55)

We now compute the optimal choice for each of the parents if they were in autarky. In this case,
each parent will invest all their income in their child’s education and the solution is:30

I j
i = X j

i

C j
i = X j

i − I j
i = 0

We can use this autarky solution to compute the threat points for each of the parents

V F
i = αFγ

(
XF

i
)
+αF µ +αF pνi (56)

V M
i = αMγ

(
XM

i
)
+αMµ +αM pνi (57)

The Nash bargaining solution objective function is

max
IF
i ,I

M
i

N =
[(

UF (
IF
i , I

M
i
)
−V F

i
)(

UM (
IF
i , I

M
i
)
−V M

i
)]

We define ∆F (
IF
i , I

M
i
)
≡UF (

IF
i , I

M
i
)
−V F

i . We can simplify and get

∆
F (

IF
i , I

M
i
)
= (1−αF (1+ γ))

(
XF

i − IF
i
)
+αFγIM

i (58)

30With the hedonic preferences, in autarky, they would invest all their income if (1−αi) < αiγ +αiµ +αi pet .
Notice that this is a threat point because in autarky, one parent does not enjoy the benefits invested in the children by
the other parent, since they are not their children.
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The expression for ∆M (
IF
i , I

M
i
)

is analogous. Notice that ∆F (
IF
i , I

M
i
)

depends on both IF
i and IM

i .
Moreover, the expression in equation (58) depends on the ability νi and the market term p, since
γ = θ p. We can write the objective function now as

max
IF
i ,IM

i

N =
[(
(1−αF (1+ γ))

(
XF

i − IF
i
)
+αF γIM

i
)(

(1−αM (1+ γ))
(
XM

i − IM
i
)
+αMγIF

i
)]

This can be rewritten as

max
IF
i ,I

M
i

N =
[
A · IM

i · IF
i +B

(
IM
i
)2

+C
(
IF
i
)2

+D · IF
i +E · IM

i +F
]

where A = (1−αF(1+ γ))(1−αM(1+ γ)),
B =−αFγ (1−αM(1+ γ)),
C =−αMγ (1−αF(1+ γ)),
D = αMγ (1−αF(1+ γ))XF

t−1 − (1−αF(1+ γ))(1−αM(1+ γ))XM
t−1,

E = αFγ (1−αM(1+ γ))XM
t−1 − (1−αM(1+ γ))(1−αF(1+ γ))XF

t−1,
F = (1−αF(1+ γ))XF

t−1 (1−αM(1+ γ))XM
t−1.

The FOC are
∂N
∂ IF

i
= AIM

i +2CIF
i +D = 0

∂N
∂ IM

i
= AIF

i +2BIM
i +E = 0

The solution to this system is

IF
i =

2BD−AE
A2 −4BC

IM
i =

2CE −AD
A2 −4BC

Notice that the only terms that contains the parents incomes XF
i and XM

i , are D, E, and F . F is
a constant and does not appear in the FOC. The terms D and E appear in the numerator in both
expressions, and they appear additively. Therefore, we can write the solution of this problem in
the form

IF
i = aFXF

i +bFXM
i + cF (59)

IM
i = aMXF

i +bMXM
i + cM (60)

where a j, b j, and c j are constants that are known functions of the original parameters (αF ,αM,γ)
and the endowments

(
XF

i ,XM
i
)
. The total investment in the child is then Ii ≡ IF

i + IM
i = aXF

i +

bXM
i + c.31 With that investment, using equation (49), we get the equation for the income of the

child

XC
t = aγXF

i +bγXM
i +µ + cγ + pνi (61)

Equation (61) corresponds to equation (2) with βF = aγ and βM = bγ , and where we normalized the
variables so that there is no constant term in the equation. In summary, the model proposed here,
under Nash bargaining shows that the investment in the child’s education, and thus the child’s
income in the next period, is a linear combination of the income of each parent in the previous

31With dF = aF +aM , b = bF +bM and c = cF + cM .
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generation.

E.3 Inheritability
Becker and Tomes (1979); Solon (2014) shows, for the monoparental case, that when there is an
unobservable inherited component, we can write the income of the child as a linear function of
the income of the father and the income of the paternal grandfather. In that case, the coefficient
on the paternal grandfather will be negative and small. We now extend our model to allow for
unobserved inheritability of traits (Lochner, 2016). This is represented by equation (62), with
two extra parameters: λF is the heritability coefficient from the father and λM is the heritability
coefficient from the mother

eC
i = λFeF

i +λMeM
i +νi (62)

This is just an extension of our previous model where the unobservable component in the equation
of the child eC

i is not exogenous, but rather it is a linear combination function of the unobservable
components in the equations of the father and the mother. The new equations for the child and
parents are then

XC
i = βFXF

i +βMXM
i + eC

i (63)

XF
i = βFXPF

i +βMXPM
i + eF

i (64)

XM
i = βFXMF

i +βMXMM
i + eM

i (65)
We now take equation (64) and multiply it by λF , and we take equation (65) and multiply it by
λM. We then take equation (63) and subtract, equation (64) (multiplied by λF ) and equation (65)
(multiplied by λM), and we get

XC
i −λFXF

i −λMXM
i = βFXF

i +βMXM
i + eC

i −λF
(
βFXPF

i +βMXPM
i + eF

i
)
−λM

(
βFXMF

i +βMXMM
i + eM

i
)

XC
i = (λF +βF)XF

i +(βM +λM)XM
i −λFβFXPF

i −λFβMXPM
i −λMβFXMF

i −λMβMXMM
i +νi (66)

where νi = eC
i −λFeF

i −λMeM
i . The income of the child is now a function of the incomes of the

parents and the grandparents. The coefficients on the parents are the sum of the mobility coeffi-
cients βF and βM and the heritability coefficients λF and λM. The coefficients on the grandparents
are are the products of the mobility coefficients βF and βM and the heritability coefficients λF and
λM. Notice that there are six variables in the right hand side (two parents and four grandparents),
but there are only four parameters: the mobility coefficients βF and βM and the heritability coeffi-
cients λF and λM. Therefore, we could use a 3-generation tree, which generates six moments, to
identify these four parameters and the two assortment parameters ρ and ρ ′. This model is a nat-
ural extension to the monoparental model with inheritable characteristics and our baseline model
with two parents, but no unobservable inherited characteristics. First, if there is no inheritability
of unobserved characteristic, i.e., λF = λM = 0, then we are back to our baseline model. Equation
(66) becomes

XC
i = βFXF

i +βMXM
i +νi

which is our original equation. Second, if there are no maternal effects, i.e., βM = λM = 0. Equation
(66) becomes

XC
i = (λF +βF)XF

i −λFβFXPF
i +νi
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which is the equation in the literature with monoparental households with unobserved inheritability
Becker and Tomes (1979); Solon (2014).
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