SDRL: Interpretable and Data-efficient Deep Reinforcement Learning
Leveraging Symbolic Planning

Daoming Lyu¹, Fangkai Yang², Bo Liu¹, Steven Gustafson³
¹Auburn University, Auburn, AL; ²NVIDIA, Redmond, WA; ³Maana Inc., Bellevue, WA

Problem
- Sequential decision-making with long horizon action sequence and sparse reward suffers from:
 - Poor data efficiency,
 - Lack of interpretability.
- Challenge: Montezuma’s Revenge
 - The avatar: climbs down the ladder, jumps over a rotating skull, picks up a key (+100), goes back and uses the key to open the right door (+300).
 - Vanilla DQN achieves 0 score (Mnih et al., 2015).

SDRL: Symbolic Deep Reinforcement Learning
- **Goal:**
 - Symbolic planning drives learning, improving task-level interpretability.
 - DRL learns feasible subtasks, improving data-efficiency.
- **Task decomposition.**

SDRL: Symbolic Planner
- **Symbolic Planner:** high-level symbolic planning based on intrinsic goal.
 - Intrinsic goal: a linear constraint on plan quality $\geq quality(\Pi_t)$, where Π_t is the plan at episode t.
 - Plan quality: a utility function that sums up the gain rewards of subtasks in a plan.
 - Mapping from symbolic transition to subtask.

SDRL: Controller
- **Controller:** low-level policy control with DRL.
 - Intrinsic reward: pseudo-reward crafted by the human.

SDRL: Meta-Controller
- **Meta-Controller:** subtask learning evaluation.
 - Extrinsic reward: a function about ϵ where ϵ is a criterion that measures the competence of the learned subpolicy for each subtask.
 - ϵ: success ratio (in our case).
 - Learnable subtask and unlearnable subtask.

Experimental Results
- **Symbolic representation and predefined subtasks**
- **Final solution and learning curves**

Reference

Conclusion
- We present the SDRL framework, and it is the first work on integrating symbolic planning with DRL that achieves both task-level interpretability and data-efficiency for decision-making.
- Future work will investigate on the transferability, and integration with automatic option discovery.