SDRL: Interpretable and Data-efficient Deep Reinforcement Learning Leveraging Symbolic Planning

Daoming Lyu1, Fangkai Yang2, Bo Liu1, Steven Gustafson3

1Auburn University, Auburn, AL, USA
2NVIDIA Corporation, Redmond, WA, USA
3Maana Inc., Bellevue, WA, USA
Sequential decision-making (SDM) concerns an agent making a sequence of actions based on its behavior in the environment.

Deep reinforcement learning (DRL) achieves tremendous success on sequential decision-making problems using deep neural networks (Mnih et al., 2015).
The avatar: climbs down the ladder, jumps over a rotating skull, **picks up the key (+100)**, goes back and uses the key to **open the right door (+300)**.

Vanilla DQN achieves 0 score \((Mnih \ et \ al., \ 2015)\).
Challenge: Montezuma’s Revenge

Problem: long horizon sequential actions, sparse and delayed reward.

- poor data efficiency.
- lack of interpretability.
Our Solution

Solution: task decomposition

- Symbolic planning: subtasks scheduling (high-level plan).
- DRL: subtask learning (low-level control).
- Meta-learner: subtask evaluation.

Goal

- Symbolic planning drives learning, improving task-level interpretability.
- DRL learns feasible subtasks, improving data-efficiency.
Background: Action Language

Action language *(Gelfond & Lifschitz, 1998)*: a formal, declarative, logic-based language that describes dynamic domains.

- Dynamic domains can be represented as a transition system.
Action Language \mathcal{BC} (Lee et al., 2013) is a language that describes the transition system using a set of causal laws.

- **dynamic laws** describe transition of states

 $\text{move}(x, y_1, y_2)$ causes $\text{on}(x, y_2)$ if $\text{on}(x, y_1)$.

- **static laws** describe value of fluents inside a state

 $\text{intower}(x, y_2)$ if $\text{intower}(x, y_1), \text{on}(y_1, y_2)$.
Reinforcement learning is defined on a Markov Decision Process \((S, \mathcal{A}, P^a_{ss'}, r, \gamma)\). To achieve optimal behavior, a policy \(\pi : S \times \mathcal{A} \mapsto [0, 1]\) is learned.

An option is defined on the tuple \((I, \pi, \beta)\), which enables the decision-making to have a hierarchical structure:

- the initiation set \(I \subseteq S\),
- policy \(\pi : S \times \mathcal{A} \mapsto [0, 1]\),
- probabilistic termination condition \(\beta : S \mapsto [0, 1]\).
SDRL: Symbolic Deep Reinforcement Learning

- **Symbolic Planner**: orchestrates sequence of subtasks using high-level symbolic plan.
- **Controller**: uses DRL approaches to learn the subpolicy for each subtask with intrinsic rewards.
- **Meta-Controller**: measures learning performance of subtasks, updates intrinsic goal to enable reward-driven plan improvement.
Symbolic Planner

- Symbolic Planner
- Meta Controller
- Controller (DRL)
- External Environment

- intrinsic goal
- extrinsic reward
- state, reward
- subtasks
- action

Introduction
Background
Method
Experimental Results
Conclusion and Future Work
Symbolic Planner: Planning with Intrinsic Goal

- **Intrinsic goal**: a linear constraint on plan quality

\[
quality \geq quality(\Pi_t) \text{ where } \Pi_t \text{ is the plan at episode } t.
\]

- Plan quality: a utility function

\[
quality(\Pi_t) = \sum_{\langle s_{i-1}, g_{i-1}, s_i \rangle \in \Pi_t} \rho_{g_i}^{g_i-1}(s_{i-1})
\]

where \(\rho_{g_i} \) is the gain reward for subtask \(g_i \).

- Symbolic planner: generates a new plan that
 - **explores** new subtasks,
 - **exploits** more rewarding subtasks.
From Symbolic Transition to Subtask

- Assumption: given the set S of symbolic states and \tilde{S} of sensory input, we assumed there is an *Oracle* for symbol grounding: $F : S \times \tilde{S} \mapsto \{t, f\}$.

- Given F and a pair of symbolic states $s, s' \in S$:
 - initiation set $I = \{\tilde{s} \in \tilde{S} : F(s, \tilde{s}) = t\}$,
 - $\pi : \tilde{S} \mapsto \tilde{A}$ is the subpolicy for the corresponding subtask,
 - β is the termination condition such that

$$
\beta(\tilde{s}') = \begin{cases}
1 & F(s', \tilde{s}') = t, \text{ for } \tilde{s}' \in \tilde{S}, \\
0 & \text{otherwise}.
\end{cases}
$$
Controllers: DRL with Intrinsic Reward

- **Intrinsic reward**: pseudo-reward crafted by the human.
- Given a subtask defined on \((I, \pi, \beta)\), intrinsic reward

\[
r_i(\tilde{s}') = \begin{cases}
\phi & \beta(\tilde{s}') = 1 \\
\ r & \text{otherwise}
\end{cases}
\]

where \(\phi\) is a positive constant encouraging achieving subtasks and \(r\) is the reward from the environment at state \(\tilde{s}'\).
Meta-Controller

- **Symbolic**
- **Deep**
- **Reinforcement Learning**

Lyu, Yang, Liu, Gustafson

Introduction

Background

Method

Experimental Results

Conclusion and Future Work

- **Meta-Controller**
 - **Intrinsic goal**
 - **Extrinsic reward**
 - **Controller (DRL)**
 - **State, reward**
 - **External Environment**
 - **Subtasks**
 - **Action**
Meta-Controller: Evaluation with Extrinsic Reward

- **Extrinsic rewards**: \(r_e(s, g) = f(\epsilon) \) where \(\epsilon \) can measure the competence of the learned subpolicy for each subtask.

 For example, let \(\epsilon \) be the **success ratio**, \(f \) can be defined as

 \[
 f(\epsilon) = \begin{cases}
 -\psi & \epsilon < \text{threshold} \\
 r(s, g) & \epsilon \geq \text{threshold}
 \end{cases}
 \]

 - \(\psi \) is a positive constant to punish selecting unlearnable subtasks,
 - \(r(s, g) \) is the cumulative environmental reward by following the subtask \(g \).
Experimental Results I.

% object declaration
location(mp;rd;ls;lll;lrl;key).
% dynamic causal law declaration
move(L) causes loc=L if location(L).
move(L) causes cost=1+Z if rho((at(Ll)),move(L))=Z,
 loc=Ll,picked(key)=false.
move(L) causes cost=1+Z if rho((at(Ll),picked(key)),
 move(L))=Z,loc=Ll,picked(key)=true.
inertial loc. inertial quality.
% static causal law declaration
picked(key)=true if loc=key.
nonexecutable move(key) if picked(key).
default rho((at(Ll)),move(L))=10.
default rho((at(Ll),picked(key)),move(L))=10.

<table>
<thead>
<tr>
<th>No.</th>
<th>subtask</th>
<th>policy learned</th>
<th>in optimal plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MP to LRL, no key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>LRL to LLL, no key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>LLL to key, no key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>key to LLL, with key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>LLL to LRL, with or without key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>LRL to MP, with or without key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>MP to RD, with key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>LRL to LS, with or without key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>LS to key, with or without key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>MP to RD, no key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>LRL to key, with or without</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>key to LRL, with key</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>LRL to RD, with key</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

MP: middle platform
LRL: lower right ladder
LLL: lower left ladder
KEY: key
LS: left of rotating skull
RD: right door
Experimental Results II.

Conclusion

- We present a **SDRL** framework features:
 - **High-level symbolic planning** based on intrinsic goal
 - **Low-level policy control** with DRL.
 - **Subtask learning evaluation** by a meta-learner.

- This is the first work on integrating symbolic planning with DRL that achieves both **task-level interpretability** and **data-efficiency** for decision-making.

- Future work.