
§5 Integrals

b) Riemann Sum and Definite Integrals

Goal: Given a (continuous) function f on an interval [a, b], compute the area under the graph:

Idea: Split the interval [a, b] in n parts of length ∆x =
b− a

n
and approximate the area by n rectan-

gles.

Approximation of the area by a sequence of rectangles (the so-called Riemann sum) is:

Sn =f(a+∆x) ·∆x+ f(a+ 2∆x) ·∆x+ . . .

. . .+ f(a+ (n− 1)∆x) ·∆x+ f(a+ n∆x) ·∆x

=

n∑
k=1

f(a+ k∆x) ·∆x.

If the limit lim
n→∞

Sn exists, it is called the definite integral of the function f over [a, b].

1



lim
n→∞

Sn =

∫
upper limit

→

b

a

→

lower limit

f(x)︸︷︷︸
integrand

dx︸︷︷︸
variable of integration

Theorem. If f is a continuous function over the interval [a, b], or if f has only a finite number of jump

discontinuities, then the definite integral

∫ b

a
f(x) dx exists.

c) Properties of Definite Integrals

Assume a < b and define ∫ a

b
f(x) dx = −

∫ b

a
f(x) dx∫ a

a
f(x) dx = 0

Rules:

�

∫ b

a
c · f(x) dx = c ·

∫ b

a
f(x) dx

�

∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

� If m ≤ f(x) ≤ M (i.e. m is a lower bound and M is an upper bound of f) for x ∈ [a, b], then

m(b− a) ≤
∫ b

a
f(x) dx ≤ M(b− a)

(called min-max-inequality)

Example: Find the bounds of
∫ 1
0 f(x) dx for f(x) =

1√
1 + x4

on [0, 1].

Here, f(x) is decreasing (e.g. f ′(x) < 0 for x ∈ (0, 1). That means f(0) ≥ f(x) ≥ f(1) on x ∈ [0, 1].
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Hence . . .

and
1√
2
=

1√
2
(1− 0) ≤

∫ 1

0
f(x) dx ≤ 1 · (1− 0) = 1

1√
2
≤

∫ 1

0

1

1 + x4
dx ≤ 1

which yields

.7070 <

∫ 1

0

1

1 + x4
dx ≤ 1.

� If f(x) ≥ g(x) on [a, b], then ∫ b

a
f(x) dx ≥

∫ b

a
g(x) dx

Example: Compute

∫ 1

0
x dx using the definition of the integral in terms of the Riemann sum:

f(x) = x, a = 0, b = 1, ∆x =
b− a

n
=

1

n

Sn = f(a

=

0

+∆x)∆x+ f(a

=

0

+ 2∆x)∆x+ . . .

. . .+ f(a

=

0

+ (n− 1)∆x)∆x+ f(a

=

0

+ n∆x)∆x

= 0 +∆x ·∆x+ 2∆x ·∆x+ 3∆x ·∆x+ . . .

. . .+ (n− 1)∆x ·∆x+ n∆x ·∆x

= (∆x)2
(
1 + 2 + 3 + . . .+ (n− 1) + n︸ ︷︷ ︸

1
2
n(n−1)

)
=

1

n2
· 1
�n

· 1
2
�n(n+ 1)

=
1

2

(
1 +

1

n

)
.

∫ 1

0
x dx = lim

n→∞
Sn

=
1

2
lim
n→∞

(
1 +

1

n

)
=

1

2
(1 + 0) =

1

2
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Check: This is easily verified to be also the area of the triangle with vertices (0, 0), (1, 0) and (1, 1).

d) Antiderivatives and the Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus). Consider a continuous function f on [a, b].
Then

F (x) =

∫ x

a
f(t) dt

defines a continuous function F for x ∈ [a, b], which is also differentiable for x ∈ (a, b), and

F ′(x) =
dF (x)

dx
=

d
∫ x
a f(t) dt

dx
= f(x).

Reason:
Recall

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

F (x+ h)− F (x) =

∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt

=

∫ x+h

x
f(t) dt ≈ f(x) · h

Thus:
F (x+ h)− F (x)

h
≈ f(x), for small h
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and (letting h → 0)

F ′(x) = lim
h→0

F (x+ h)− F (x)

h
= f(x).

Definition. A differentiable function F (x) is said to be an antiderivative of f(x) if F ′(x) = f(x).

Example: f(x) = 3x2

Antiderivative: F (x) = x3

(since F ′(x) =
dx3

dx
= 3x2 = f(x).)

F (x) = x3 + c (where c ∈ R is a constant) is an antiderivative as well, since

F ′(x) =
d(x3 + c)

dx
= 3x2 = f(x).

In general: If F (x) is an antiderivative of f(x) (i.e. F ′(x) = f(x)), then F (x) + c is an antiderivative as
well.

Remark. It is easy to show that F (x) + c is an antiderivative of f(x) (assuming F ′(x) = f(x)). It
is slightly more subtle to prove that there are no further antiderivatives, i.e., all antiderivatives can be
written as F (x) + c.

Example: f(x) = cosx

Antiderivative: F (x) = sinx) + c

(since F ′(x) =
d(sinx) + C)

dx
= cosx = f(x).)

(since F ′(x) =
d(sinx) + c)

dx
= cosx = f(x))

Theorem (Second Fundamental Theorem of Calculus). If f is continuous over [a, b] and F is any
antiderivative of f , then ∫ b

a
f(x) dx = F (b)− F (a)

= F (x)
∣∣∣x=b

x=a

Example:

∫ π

0
(x+ sinx)) dx
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f(x) = x+ sinx), a = 0, b = π

F (x) =
1

2
x2 + (− cosx) + �c

=
1

2
x2 − cosx+ �c

(since F ′(x) =
1

2
2x− (− sinx)) = f(x).)

Thus: ∫ π

0
(x+ sinx)) dx

=

(
1

2
x2 − cosx

)∣∣∣∣x=π

x=0

=
1

2
π2 − cos(π)︸ ︷︷ ︸

−1

−
(1
2
02 − cos(0)︸ ︷︷ ︸

1

)
=

1

2
π2 + 2

Notation: Let F denote an antiderivative of the function f . We denote the general antiderivative
by

F (x) + C =

∫
f(x) dx,

and we call

∫
f(x) dx the indefinite integral of f and

∫ b

a
f(x) dx the definite integral of f (over [a, b]).

Example: ∫
(x+ sinx)) dx =

1

2
x2 − cosx+ c

is the indefinite integral of x+ sinx) and∫ π

0
(x+ sinx)) dx =

1

2
π2 + 2

is the indefinite integral of x+ sinx) over [0, π].

Example:
Compute the definite integral ∫ π

0
f(x) dx,

where

f(x) =

{
cosx if 0 ≤ x ≤ π/2

sinx) if π/2 < x ≤ π.
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Solution:

∫ π

0
f(x) dx =

∫ π/2

0
f(x)︸︷︷︸
cosx

dx+

∫ π

π/2
f(x)︸︷︷︸
sinx)

dx

=

∫ π/2

0
cosx dx+

∫ π

π/2
sinx) dx

= sinx)
∣∣∣x=π/2

x=0
+ (− cosx)

∣∣∣x=π

x=π/2

= sin(π/2)︸ ︷︷ ︸
1

− sin(0)︸ ︷︷ ︸
0

− cos(π)︸ ︷︷ ︸
−1

+cos(π/2)︸ ︷︷ ︸
0

= 2.

Example:

∫ 1/2

0

1√
1− x2

dx

Here, f(x) = 1√
1−x2

F (x) =?, F ′(x) =
1√

1− x2

(Recall that
d arcsinx)

dx
=

1√
1− x2

)

So F (x) = arcsinx) = sin−1(x).

∫ 1/2

0

1√
1− x2

dx = arcsinx)
∣∣∣x=1/2

x=0

= arcsin(1/2)︸ ︷︷ ︸
π/6

− arcsin(0)︸ ︷︷ ︸
0

= π/6 (since sin(π/6) = 1/2).

Integral Methods (or Methods of Integration)

(i) Substitution Method

Let F (x) denote an antiderivative of f(x), i.e., F ′(x) = f(x). Then,∫
f(x)dx = F (x) + c
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Consider the composition F (g(x)), then the chain rule tells us that

dF (g(x))

dx
= F ′(g(x)) · g′(x)

= f(g(x))g′(x).

That means the antiderivative of f(g(x)) · g′(x) is given by F (g(x)). Hence,∫
f(g(x))g′(x)dx = F (g(x)) + c.

Using the abbreviation u = g(x),
du

dx
= g′(x) we have that

∫
f(g(x))g′(x)dx

=

∫
f(u)

du

dx
dx =

∫
f(u)du = F (u) + c.

Theorem. If u = g(x) is a differentiable function whose range is an interval I, and if f is a continuous
function on I then

∫
f(g(x))g′(x)dx =

∫
f(u)du.

Example: Evaluate

∫
2x√
x2 + 5

dx

Substitution: u = x2 + 5. Then
du

dx
= 2xdx. So,∫

2x√
x2 + 5

dx =

∫
1√

x2 + 5︸ ︷︷ ︸
1/

√
u

2xdx︸ ︷︷ ︸
du

=

∫
1√
u
du

= 2
√
u+ c (back substitution of u = x2 + 5 gives)

= 2
√
x2 + 5 + c.

Remark: Substitution rule for definite integrals, u = g(x) is
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∫ x=b

x=a
f(g(x)) · g′(x)dx =

∫ u=g(b)

u=g(a)
f(u)du.

Example: Evaluate

∫ 1

−1
3x2

√
x3 + 1 dx

Substitution: Let u = x3 + 1. Then du = 3x2 dx.

When x = 1, u = g(1) = 2 and when x = −1, u = g(−1) = 0.

∫ 1

−1

√
x3 + 13x2dx =

=

∫ 2

0

√
udu (since x = −1 implies u = 0 and x = 1 implies u = 2)

=
2

3
u3/2

∣∣∣u=2

u=0

=
2

3
23/2 − 0 =

4

3

√
2.

Example: Find ∫
cosx√

2 + sinx)
dx

Substitution:

u = 2 + sinx)

du = cosxdx

∫
1√

2 + sinx)︸ ︷︷ ︸
1√
u

· cosxdx︸ ︷︷ ︸
du

=

∫
1√
u
du

= 2
√
u+ c = 2

√
2 + sinx) + c.

Example: Find

∫
1√

x− x2
dx
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Substitution:

u =?

u =
√
x ⇒ u2 = x

du =
1

2
√
x
dx

∫
1√

x− x2
dx =

∫
1√

x(1− x)
dx

=

∫
1√
x

1√
1− x

dx

= 2

∫
1

2
√
x
· 1√

1− x
dx

= 2

∫
1√
1− x︸ ︷︷ ︸

1√
1−u2

1

2
√
x
dx︸ ︷︷ ︸

du

= 2

∫
1√

1− u2
du

= 2 · arcsin(u) + c

= 2 · arcsin(
√
x) + c.

(ii) Integration by Parts

Recall the product rule

d(f(x)g(x))

dx
= f(x)g′(x) + f ′(x)g(x)

That means f(x)g(x) is an antiderivative of f(x)g′(x) + f ′(x)g(x), i.e.,

f(x)g(x) + c =

∫
(f(x)g′(x) + f ′(x)g(x))dx

=

∫
f(x)g′(x)dx+

∫
f ′(x)g(x)dx

Hence: ∫
f(x)g′(x)dx = f(x)g(x) + c−

∫
f ′(x)g(x)dx

Notice that the constant c cancels in a definite integral! So, we write∫ b

a
f(x)g′(x)dx = f(x)g(x)

∣∣∣b
a
−
∫ b

a
f ′(x)g(x)dx.

10



Alternatively, letting u = f(x), v = g(x), we have du = f ′(x)dx, dv = g′(x)dx which implies∫
udv = uv −

∫
vdu.

Example: Find ∫
x2ex dx.

Letting u = x2, dv = ex dx, we get du = 2xdx and v = ex.

So, integration by parts yields,

∫
x2ex dx = uv −

∫
vdu

= x2ex − 2

∫
xexdx

This integral requires another round of integration by parts, since we have

∫
xexdx in the second inte-

gral.

Again, letting u = x, dv = ex dx, we get du = dx and v = ex.

(Notice that we are using the same u and v in both rounds of the integration by parts, to avoid the clutter
in the notation.)

So, we get

= x2ex − 2

(
xex −

∫
exdx

)
= x2ex − 2xex + 2

∫
exdx

= x2ex − 2xex + 2ex + c.

Example: For x > 0, find ∫
lnxdx.

Letting u = lnx, dv = dx, we get du =
1

x
dx and v = x.

So, integration by parts yields, ∫
ln |x|dx = (lnx)x−

∫
x · 1

x
dx

= x lnx−
∫

1dx

= x lnx− x+ c.
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Example: Find ∫
ex cosxdx.

Letting u = cosx, dv = exdx, we get du = − sinx)dx and v = ex.

So, integration by parts yields,∫
ex cosxdx = ex cosx−

∫
ex(− sinx))dx

= ex cosx+

∫
ex sinx)dx

This integral requires another round of integration by parts, since we have

∫
ex sinx)dx in the second

integral.

Again, letting u = sinx), dv = ex dx, we get du = cosxdx and v = ex.

(Notice that we are using the same u and v in both rounds of the integration by parts, to avoid the clutter
in the notation.)

So, we get ∫
ex cosxdx = ex cosx+

(
ex sinx)−

∫
ex cosxdx

)
2

∫
ex cosxdx = ex cosx+ ex sinx)

which implies ∫
ex cosxdx =

ex(sinx) + cosx)

2
.
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