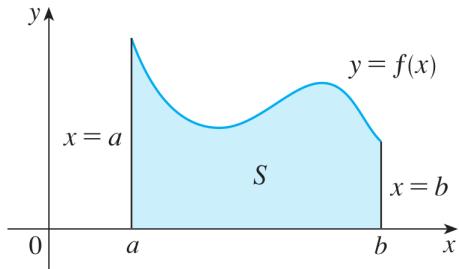


§5 Integrals

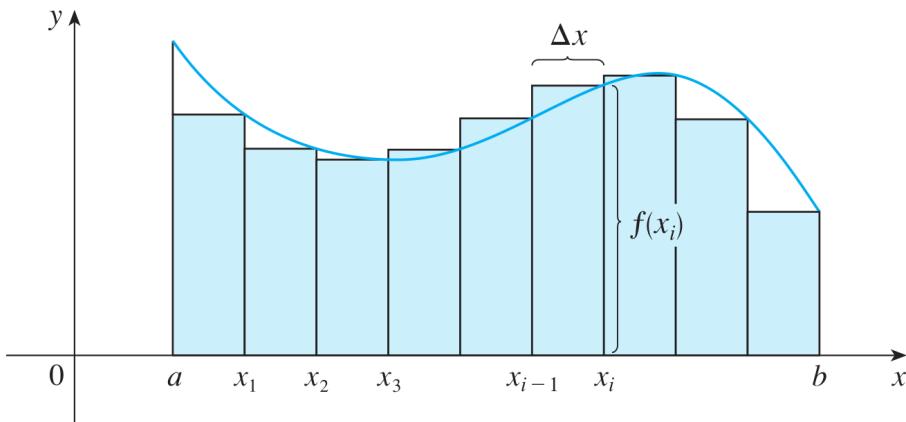
b) Riemann Sum and Definite Integrals

Goal: Given a (continuous) function f on an interval $[a, b]$, compute the area under the graph:



$$S = \{(x, y) \mid a \leq x \leq b, 0 \leq y \leq f(x)\}$$

Idea: Split the interval $[a, b]$ in n parts of length $\Delta x = \frac{b-a}{n}$ and approximate the area by n rectangles.



Approximation of the area by a sequence of rectangles (the so-called Riemann sum) is:

$$\begin{aligned} S_n &= f(a + \Delta x) \cdot \Delta x + f(a + 2\Delta x) \cdot \Delta x + \dots \\ &\dots + f(a + (n-1)\Delta x) \cdot \Delta x + f(a + n\Delta x) \cdot \Delta x \\ &= \sum_{k=1}^n f(a + k\Delta x) \cdot \Delta x. \end{aligned}$$

If the limit $\lim_{n \rightarrow \infty} S_n$ exists, it is called the *definite integral of the function f over $[a, b]$* .

$$\lim_{n \rightarrow \infty} S_n = \int_a^b \underbrace{f(x)}_{\substack{\text{integrand} \\ \uparrow}} dx$$

upper limit
↓
b
lower limit

variable of integration

Theorem. If f is a continuous function over the interval $[a, b]$, or if f has only a finite number of jump discontinuities, then the definite integral $\int_a^b f(x) dx$ exists.

c) Properties of Definite Integrals

Assume $a < b$ and define

$$\int_b^a f(x) dx = - \int_a^b f(x) dx$$

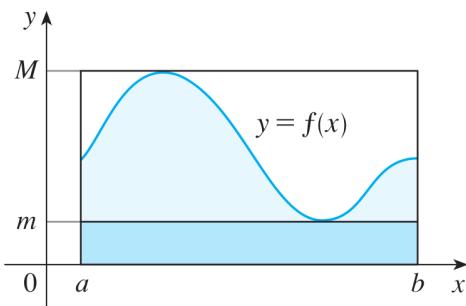
$$\int_a^a f(x) dx = 0$$

Rules:

- $\int_a^b c \cdot f(x) dx = c \cdot \int_a^b f(x) dx$
- $\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$
- If $m \leq f(x) \leq M$ (i.e. m is a lower bound and M is an upper bound of f) for $x \in [a, b]$, then

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$$

(called min-max-inequality)



Example: Find the bounds of $\int_0^1 f(x) dx$ for $f(x) = \frac{1}{\sqrt{1+x^4}}$ on $[0, 1]$.

Here, $f(x)$ is decreasing (e.g. $f'(x) < 0$ for $x \in (0, 1)$). That means $f(0) \geq f(x) \geq f(1)$ on $x \in [0, 1]$.

Hence . . .

and

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}(1 - 0) \leq \int_0^1 f(x) dx \leq 1 \cdot (1 - 0) = 1$$

$$\frac{1}{\sqrt{2}} \leq \int_0^1 \frac{1}{1+x^4} dx \leq 1$$

which yields

$$.7070 < \int_0^1 \frac{1}{1+x^4} dx \leq 1.$$

- If $f(x) \geq g(x)$ on $[a, b]$, then

$$\int_a^b f(x) dx \geq \int_a^b g(x) dx$$

Example: Compute $\int_0^1 x dx$ using the definition of the integral in terms of the Riemann sum:

$$f(x) = x, \quad a = 0, \quad b = 1, \quad \Delta x = \frac{b - a}{n} = \frac{1}{n}$$

$$\begin{aligned} S_n &= f(a + \Delta x) \Delta x + f(a + 2\Delta x) \Delta x + \dots \\ &\quad \parallel \quad \parallel \\ &\quad 0 \quad 0 \\ \dots + f(a + (n-1)\Delta x) \Delta x + f(a + n\Delta x) \Delta x &\quad \parallel \quad \parallel \\ &\quad 0 \quad 0 \\ &= 0 + \Delta x \cdot \Delta x + 2\Delta x \cdot \Delta x + 3\Delta x \cdot \Delta x + \dots \\ &\dots + (n-1)\Delta x \cdot \Delta x + n\Delta x \cdot \Delta x \\ &= (\Delta x)^2 \left(\underbrace{1 + 2 + 3 + \dots + (n-1) + n}_{\frac{1}{2}n(n-1)} \right) \\ &= \frac{1}{n^2} \cdot \frac{1}{n} \cdot \frac{1}{2} n(n+1) \\ &= \frac{1}{2} \left(1 + \frac{1}{n} \right). \end{aligned}$$

$$\begin{aligned} \int_0^1 x dx &= \lim_{n \rightarrow \infty} S_n \\ &= \frac{1}{2} \lim_{n \rightarrow \infty} \left(1 + \frac{1}{n} \right) \\ &= \frac{1}{2}(1 + 0) = \frac{1}{2} \end{aligned}$$

Check: This is easily verified to be also the area of the triangle with vertices $(0, 0)$, $(1, 0)$ and $(1, 1)$.

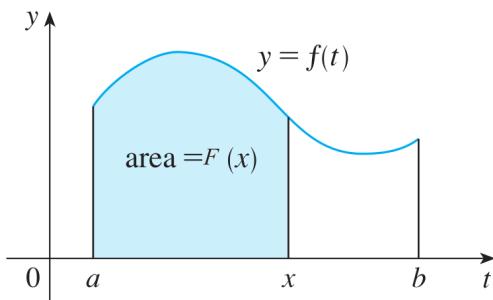
d) Antiderivatives and the Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus). Consider a continuous function f on $[a, b]$. Then

$$F(x) = \int_a^x f(t) dt$$

defines a continuous function F for $x \in [a, b]$, which is also differentiable for $x \in (a, b)$, and

$$F'(x) = \frac{dF(x)}{dx} = \frac{d \int_a^x f(t) dt}{dx} = f(x).$$

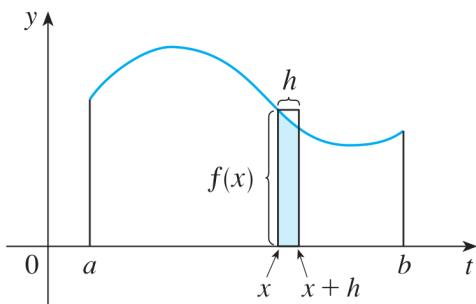


Reason:

Recall

$$F'(x) = \lim_{h \rightarrow 0} \frac{F(x + h) - F(x)}{h}$$

$$\begin{aligned} F(x + h) - F(x) &= \int_a^{x+h} f(t) dt - \int_a^x f(t) dt \\ &= \int_x^{x+h} f(t) dt \approx f(x) \cdot h \end{aligned}$$



Thus:

$$\frac{F(x + h) - F(x)}{h} \approx f(x), \text{ for small } h$$

and (letting $h \rightarrow 0$)

$$F'(x) = \lim_{h \rightarrow 0} \frac{F(x+h) - F(x)}{h} = f(x).$$

Definition. A differentiable function $F(x)$ is said to be an antiderivative of $f(x)$ if $F'(x) = f(x)$.

Example: $f(x) = 3x^2$

Antiderivative: $F(x) = x^3$

$$(\text{since } F'(x) = \frac{dx^3}{dx} = 3x^2 = f(x).)$$

$F(x) = x^3 + c$ (where $c \in \mathbb{R}$ is a constant) is an antiderivative as well, since

$$F'(x) = \frac{d(x^3 + c)}{dx} = 3x^2 = f(x).$$

In general: If $F(x)$ is an antiderivative of $f(x)$ (i.e. $F'(x) = f(x)$), then $F(x) + c$ is an antiderivative as well.

Remark. It is easy to show that $F(x) + c$ is an antiderivative of $f(x)$ (assuming $F'(x) = f(x)$). It is slightly more subtle to prove that there are no further antiderivatives, i.e., all antiderivatives can be written as $F(x) + c$.

Example: $f(x) = \cos x$

Antiderivative: $F(x) = \sin x + c$

$$(\text{since } F'(x) = \frac{d(\sin x + C)}{dx} = \cos x = f(x).)$$

$$(\text{since } F'(x) = \frac{d(\sin x + c)}{dx} = \cos x = f(x))$$

Theorem (Second Fundamental Theorem of Calculus). If f is continuous over $[a, b]$ and F is any antiderivative of f , then

$$\begin{aligned} \int_a^b f(x) dx &= F(b) - F(a) \\ &= F(x) \Big|_{x=a}^{x=b} \end{aligned}$$

Example: $\int_0^\pi (x + \sin x) dx$

$$f(x) = x + \sin x, \quad a = 0, \quad b = \pi$$

$$\begin{aligned} F(x) &= \frac{1}{2}x^2 + (-\cos x) + C \\ &= \frac{1}{2}x^2 - \cos x + C \\ (\text{since } F'(x) &= \frac{1}{2}2x - (-\sin x)) = f(x). \end{aligned}$$

Thus:

$$\begin{aligned} &\int_0^\pi (x + \sin x) dx \\ &= \left(\frac{1}{2}x^2 - \cos x \right) \Big|_{x=0}^{x=\pi} \\ &= \frac{1}{2}\pi^2 - \underbrace{\cos(\pi)}_{-1} - \left(\frac{1}{2}0^2 - \underbrace{\cos(0)}_1 \right) \\ &= \frac{1}{2}\pi^2 + 2 \end{aligned}$$

Notation: Let F denote an antiderivative of the function f . We denote the general antiderivative by

$$F(x) + C = \int f(x) dx,$$

and we call $\int f(x) dx$ the *indefinite integral* of f and $\int_a^b f(x) dx$ the *definite integral* of f (over $[a, b]$).

Example:

$$\int (x + \sin x) dx = \frac{1}{2}x^2 - \cos x + C$$

is the indefinite integral of $x + \sin x$ and

$$\int_0^\pi (x + \sin x) dx = \frac{1}{2}\pi^2 + 2$$

is the indefinite integral of $x + \sin x$ over $[0, \pi]$.

Example:

Compute the definite integral

$$\int_0^\pi f(x) dx,$$

where

$$f(x) = \begin{cases} \cos x & \text{if } 0 \leq x \leq \pi/2 \\ \sin x & \text{if } \pi/2 < x \leq \pi. \end{cases}$$

Solution:

$$\begin{aligned}
\int_0^\pi f(x) dx &= \int_0^{\pi/2} \underbrace{f(x)}_{\cos x} dx + \int_{\pi/2}^\pi \underbrace{f(x)}_{\sin x} dx \\
&= \int_0^{\pi/2} \cos x dx + \int_{\pi/2}^\pi \sin x) dx \\
&= \sin x \Big|_{x=0}^{x=\pi/2} + (-\cos x) \Big|_{x=\pi/2}^{x=\pi} \\
&= \underbrace{\sin(\pi/2)}_1 - \underbrace{\sin(0)}_0 - \underbrace{\cos(\pi)}_{-1} + \underbrace{\cos(\pi/2)}_0 \\
&= 2.
\end{aligned}$$

Example: $\int_0^{1/2} \frac{1}{\sqrt{1-x^2}} dx$

Here, $f(x) = \frac{1}{\sqrt{1-x^2}}$

$$F(x) = ?, \quad F'(x) = \frac{1}{\sqrt{1-x^2}}$$

(Recall that $\frac{d \arcsin x}{dx} = \frac{1}{\sqrt{1-x^2}}$)

So $F(x) = \arcsin x = \sin^{-1}(x)$.

$$\begin{aligned}
\int_0^{1/2} \frac{1}{\sqrt{1-x^2}} dx &= \arcsin x \Big|_{x=0}^{x=1/2} \\
&= \underbrace{\arcsin(1/2)}_{\pi/6} - \underbrace{\arcsin(0)}_0 \\
&= \pi/6 \quad (\text{since } \sin(\pi/6) = 1/2).
\end{aligned}$$

Integral Methods (or Methods of Integration)

(i) Substitution Method

Let $F(x)$ denote an antiderivative of $f(x)$, i.e., $F'(x) = f(x)$. Then,

$$\int f(x) dx = F(x) + c$$

Consider the composition $F(g(x))$, then the chain rule tells us that

$$\begin{aligned}\frac{dF(g(x))}{dx} &= F'(g(x)) \cdot g'(x) \\ &= f(g(x))g'(x).\end{aligned}$$

That means the antiderivative of $f(g(x)) \cdot g'(x)$ is given by $F(g(x))$. Hence,

$$\int f(g(x))g'(x)dx = F(g(x)) + c.$$

Using the abbreviation $u = g(x)$, $\frac{du}{dx} = g'(x)$ we have that

$$\begin{aligned}\int f(g(x))g'(x)dx &= \int f(u) \frac{du}{dx} dx \\ &= \int f(u)du = F(u) + c.\end{aligned}$$

Theorem. If $u = g(x)$ is a differentiable function whose range is an interval I , and if f is a continuous function on I then

$$\int f(g(x))g'(x)dx = \int f(u)du.$$

Example: Evaluate

$$\int \frac{2x}{\sqrt{x^2 + 5}}dx$$

Substitution: $u = x^2 + 5$. Then $\frac{du}{dx} = 2x$. So,

$$\begin{aligned}\int \frac{2x}{\sqrt{x^2 + 5}}dx &= \int \underbrace{\frac{1}{\sqrt{x^2 + 5}}}_{1/\sqrt{u}} \underbrace{2x dx}_{du} \\ &= \int \frac{1}{\sqrt{u}} du \\ &= 2\sqrt{u} + c \quad (\text{back substitution of } u = x^2 + 5 \text{ gives}) \\ &= 2\sqrt{x^2 + 5} + c.\end{aligned}$$

Remark: Substitution rule for definite integrals, $u = g(x)$ is

$$\int_{x=a}^{x=b} f(g(x)) \cdot g'(x) dx = \int_{u=g(a)}^{u=g(b)} f(u) du.$$

Example: Evaluate

$$\int_{-1}^1 3x^2 \sqrt{x^3 + 1} dx$$

Substitution: Let $u = x^3 + 1$. Then $du = 3x^2 dx$.

When $x = 1$, $u = g(1) = 2$ and when $x = -1$, $u = g(-1) = 0$.

$$\begin{aligned} \int_{-1}^1 \sqrt{x^3 + 1} 3x^2 dx &= \\ &= \int_0^2 \sqrt{u} du \quad (\text{since } x = -1 \text{ implies } u = 0 \text{ and } x = 1 \text{ implies } u = 2) \\ &= \frac{2}{3} u^{3/2} \Big|_{u=0}^{u=2} \\ &= \frac{2}{3} 2^{3/2} - 0 = \frac{4}{3} \sqrt{2}. \end{aligned}$$

Example: Find

$$\int \frac{\cos x}{\sqrt{2 + \sin x}} dx$$

Substitution:

$$\begin{aligned} u &= 2 + \sin x \\ du &= \cos x dx \end{aligned}$$

$$\begin{aligned} \int \underbrace{\frac{1}{\sqrt{2 + \sin x}}}_{\frac{1}{\sqrt{u}}} \cdot \underbrace{\cos x dx}_{du} &= \int \frac{1}{\sqrt{u}} du \\ &= 2\sqrt{u} + c = 2\sqrt{2 + \sin x} + c. \end{aligned}$$

Example: Find

$$\int \frac{1}{\sqrt{x - x^2}} dx$$

Substitution:

$$\begin{aligned} u &=? \\ u &= \sqrt{x} \Rightarrow u^2 = x \\ du &= \frac{1}{2\sqrt{x}}dx \end{aligned}$$

$$\begin{aligned} \int \frac{1}{\sqrt{x-x^2}}dx &= \int \frac{1}{\sqrt{x(1-x)}}dx \\ &= \int \frac{1}{\sqrt{x}} \frac{1}{\sqrt{1-x}}dx \\ &= 2 \int \frac{1}{2\sqrt{x}} \cdot \frac{1}{\sqrt{1-x}}dx \\ &= 2 \int \underbrace{\frac{1}{\sqrt{1-x}}}_{\frac{1}{\sqrt{1-u^2}}} \underbrace{\frac{1}{2\sqrt{x}}}_{du} dx \\ &= 2 \int \frac{1}{\sqrt{1-u^2}} du \\ &= 2 \cdot \arcsin(u) + c \\ &= 2 \cdot \arcsin(\sqrt{x}) + c. \end{aligned}$$

(ii) Integration by Parts

Recall the product rule

$$\frac{d(f(x)g(x))}{dx} = f(x)g'(x) + f'(x)g(x)$$

That means $f(x)g(x)$ is an antiderivative of $f(x)g'(x) + f'(x)g(x)$, i.e.,

$$\begin{aligned} f(x)g(x) + c &= \int (f(x)g'(x) + f'(x)g(x))dx \\ &= \int f(x)g'(x)dx + \int f'(x)g(x)dx \end{aligned}$$

Hence:

$$\int f(x)g'(x)dx = f(x)g(x) + c - \int f'(x)g(x)dx$$

Notice that the constant c cancels in a definite integral! So, we write

$$\int_a^b f(x)g'(x)dx = f(x)g(x) \Big|_a^b - \int_a^b f'(x)g(x)dx.$$

Alternatively, letting $u = f(x)$, $v = g(x)$, we have $du = f'(x)dx$, $dv = g'(x)dx$ which implies

$$\int u dv = uv - \int v du.$$

Example: Find

$$\int x^2 e^x dx.$$

Letting $u = x^2$, $dv = e^x dx$, we get $du = 2x dx$ and $v = e^x$.

So, integration by parts yields,

$$\begin{aligned} \int x^2 e^x dx &= uv - \int v du \\ &= x^2 e^x - 2 \int x e^x dx \end{aligned}$$

This integral requires another round of integration by parts, since we have $\int x e^x dx$ in the second integral.

Again, letting $u = x$, $dv = e^x dx$, we get $du = dx$ and $v = e^x$.

(Notice that we are using the same u and v in both rounds of the integration by parts, to avoid the clutter in the notation.)

So, we get

$$\begin{aligned} &= x^2 e^x - 2 \left(x e^x - \int e^x dx \right) \\ &= x^2 e^x - 2 x e^x + 2 \int e^x dx \\ &= x^2 e^x - 2 x e^x + 2 e^x + c. \end{aligned}$$

Example: For $x > 0$, find

$$\int \ln x dx.$$

Letting $u = \ln x$, $dv = dx$, we get $du = \frac{1}{x} dx$ and $v = x$.

So, integration by parts yields,

$$\begin{aligned} \int \ln |x| dx &= (\ln x)x - \int x \cdot \frac{1}{x} dx \\ &= x \ln x - \int 1 dx \\ &= x \ln x - x + c. \end{aligned}$$

Example: Find

$$\int e^x \cos x dx.$$

Letting $u = \cos x$, $dv = e^x dx$, we get $du = -\sin x dx$ and $v = e^x$.

So, integration by parts yields,

$$\begin{aligned}\int e^x \cos x dx &= e^x \cos x - \int e^x (-\sin x) dx \\ &= e^x \cos x + \int e^x \sin x dx\end{aligned}$$

This integral requires another round of integration by parts, since we have $\int e^x \sin x dx$ in the second integral.

Again, letting $u = \sin x$, $dv = e^x dx$, we get $du = \cos x dx$ and $v = e^x$.

(Notice that we are using the same u and v in both rounds of the integration by parts, to avoid the clutter in the notation.)

So, we get

$$\begin{aligned}\int e^x \cos x dx &= e^x \cos x + \left(e^x \sin x - \int e^x \cos x dx \right) \\ 2 \int e^x \cos x dx &= e^x \cos x + e^x \sin x\end{aligned}$$

which implies

$$\int e^x \cos x dx = \frac{e^x (\sin x + \cos x)}{2}.$$