§5 Integrals

b) Riemann Sum and Definite Integrals

Goal: Given a (continuous) function f on an interval [a,b], compute the area under the graph:

YA

S={xy|lasx<b0=<y=<f(x}

Idea: Split the interval [a,b] in n parts of length Az = and approximate the area by n rectan-

gles.

Approximation of the area by a sequence of rectangles (the so-called Riemann sum) is:

Sp =fla+ Azx) - Az + f(a+ 2Az) - Az + ...
oot fla+ (n—1)Az) - Az + f(a + nAz) - Az

:Zf(a—l-k:Ax)-Aa:.
k=1

If the limit ILm Sy, exists, it is called the definite integral of the function f over [a,b].



upper limit

1
b
lim S, = x dx
nsoo @ f( ) ~~
T integrand variable of integration

lower limit

Theorem. If f is a continuous function over the interval [a,b], or if f has only a finite number of jump

b
discontinuities, then the definite integral / f(x) dx exists.
a

c) Properties of Definite Integrals

/baf(x)dx:—/abf(a:)dm

/aaf(a;)da;—o

Assume a < b and define

Rules:

. /abc-f(x)dx—c-/abf(x)dw

-/ '(F(@) + g(a)) de = /  fla)de + / or

e If m < f(x) < M (i.e. mis a lower bound and M is an upper bound of f) for = € [a, ], then

b
m(b—a)g/ f(z)de < M(b—a)

(called min-max-inequality)

Example: Find the bounds of fol f(z)dx for f(x) = on [0, 1].

1
V142t

Here, f(z) is decreasing (e.g. f'(x) < 0 for z € (0,1). That means f(0) > f(x) > f(1) on x € [0,1].



Hence ...

and

which yields

o If f(z) > g(z) on [a,b], then
b b
/ f(z)dz > / g(x)dx

1
Example: Compute / x dx using the definition of the integral in terms of the Riemann sum:
0

Sp = fla+ Az)Azx + f(a+ 2Az)Ax + ...
I I
0 0
.+ fla+ (n—1)Az)Ax + f(a + nAz)Ax
I I
0 0
=0+ Az - Arx+2Az - Ax + 3Ax - Ax + ...

oo+ (n—1D)Az - Az +nlAz - Az

:(Aa:)2d+§+3+...+(n‘—1)+lb)




Check: This is easily verified to be also the area of the triangle with vertices (0,0), (1,0) and (1, 1).

d) Antiderivatives and the Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus). Consider a continuous function f on [a,b].
Then

Flz) = / ") dt

defines a continuous function F for x € [a,b], which is also differentiable for x € (a,b), and

_dF(z) _ dfrf(t)dt _

F/
() dx dzx

f(@).

0 7
Reason:
Recall
Fl(z) = }gﬂo F(z+ h})b — F(x)
xz+h T
F(:c—l—h)—F(x):/ f(t)dt—/ ft)dt
(lx—’_h a
[ swar g
y
h
f(x) {
0 ¢ x/ \x—i- h b ?
Thus:

F(z+h)— F(z)
h

~ f(x), for small h



and (letting h — 0)

Definition. A differentiable function F(x) is said to be an antiderivative of f(x) if F'(z) = f(z).

Example: f(z) = 32°

Antiderivative: F(z) = z*

(since F'(z) = —— = 32 = f(z).)

F(z) = 23 + ¢ (where ¢ € R is a constant) is an antiderivative as well, since

3+
F'(x) = d(d;) =32 = f(x).

In general: If F(x) is an antiderivative of f(z) (i.e. F'(x) = f(z)), then F(z) + ¢ is an antiderivative as
well.

Remark. It is easy to show that F(x) + ¢ is an antiderivative of f(x) (assuming F'(x) = f(x)). It
1s slightly more subtle to prove that there are no further antiderivatives, i.e., all antiderivatives can be
written as F(x) + c.

Example: f(z) = cosx
Antiderivative: F(z) =sinx) + ¢
d(sinz) + C)

(since F'(x) = o

=cosx = f(x).)
d(sinz) + c)

(since F'(x) = 7

=cosz = f(x))

Theorem (Second Fundamental Theorem of Calculus). If f is continuous over |a,b] and F is any
antiderivative of f, then

b
/ f(x) dz = F(b) — F(a)
x=b

= F(x) -

Example: / (x +sinx)) dx
0



f(z) = x +sinx), a=0, b=m

F(z)= %1:2 + (—cosx) + ¢

1
= §x2—cosx+¢

(since F'(z) = %21‘ — (—sinx)) = f(x).)

Thus:

/Ow(x—l—sinx))dx

1
== <$2 — COS ZL‘)
2 =0

1 1
= —7% — cos(nw) — (702 — cos(0) >
2 —— 2 ——

-1 1

T=T

1
:§7T2+2

Notation: Let F denote an antiderivative of the function f. We denote the general antiderivative
by
Fz)+C = /f(x) dz,
b
and we call /f(:c) dz the indefinite integral of f and / f(z) dx the definite integral of f (over [a,b]).

Example:

1
/(x+sinx))da;— §x2 —cosz +c

is the indefinite integral of = + sinx) and

™
1
/ (x+sinx))dx = 5772 +2
0

is the indefinite integral of x + sinx) over [0, 7.

/ " f(@)da,

fla) = {cos:c if0<z<m/2

Example:
Compute the definite integral

where

sinz) ifrn/2<z<m.



Solution:

—~—~ /2~~~

cos T sinx)

™ w/2 ™
/ f(x)dx / f(x) dz + f(x) dzx
0 0
w/2
0

s
coszdr + / sinz) dz
s

/2
r=m/2
o + (—cos ) )

= sin(7/2) — sin(0) — cos(m) + cos(7/2)
—_— —— —\— —

T=T
= sin )

1 0 -1 0
= 2.
/2 4

Example: dz

P /0 V1—x?
Here, f(z) = 11—332

Fla) =7, Fla) = ——
V1—x?
d arcsin x) 1

Recall that =
(Reca a I — x2)

So F(z) = arcsinz) = sin~ ! (z).

1/2 1 z=1/2
/ dx = arcsin x)
0

V1— 2 =0
= arcsin(1/2) — arcsin(0)
——— T
/6
=7/6 (since sin(7w/6) = 1/2).

Integral Methods (or Methods of Integration)

(i) Substitution Method
Let F(z) denote an antiderivative of f(x), i.e., F'(x) = f(x). Then,



Consider the composition F'(g(z)), then the chain rule tells us that

dF(g(x))

I~ F(g(a)) - g'(2)

= f(9(x))g'(2).
That means the antiderivative of f(g(x)) - ¢'(x) is given by F(g(z)). Hence,
[ 6@ @z = Flgte e

du

Using the abbreviation u = g(z), e g'(x) we have that
[ o) @)
= /f(u)Zde = /f(u)du = F(u)+c¢

Theorem. If u = g(x) is a differentiable function whose range is an interval I, and if f is a continuous
function on I then

[ sta@)g @i = [ s

Example: Evaluate

/ 2x d
———dr
Va2 +5

d
Substitution: v = 22 + 5. Then d—u = 2xdz. So,

x
2z 1
———dr = / ———— 2xdx,
[ rmte- | o
~—— du
1/v/u
1
= [ —d
/ va't
=2u+c (back substitution of u = 2% 4+ 5 gives)
=2Vz?2+5+c.

Remark: Substitution rule for definite integrals, u = g(x) is



Example: Evaluate

1
/ 322\ 23 + 1dx
—1

Substitution: Let u = 22 + 1. Then du = 322 dz.
When z =1, u=g¢(1) =2 and when z = —1, u = g(—1) = 0.

1
/ Va3 + 132%dx =
-1

2
= / Vudu  (since z = —1 implies © = 0 and z = 1 implies u = 2)
0

_ gu3/2 u=2
3 u=0
2 4
=232 _0=_2V2.
3 3\f

Example: Find

Ccos T
/ __OST e
V2 +sinz)
Substitution:

u=2+sinz)

du = cos xdx

1 1
/‘cosa:dx:/du
V2 +sinz) T Vu

N , du

1
Vu
=2Vu+c=2y/2+sinz) +c.

Example: Find



Substitution:

u =7
u=+vz=ul==x
d ! d
u = ——=dzx
2z

| == | =

_/11dx
) V1=
:2/1.1d
2y J1—-2z
2/ L1,
= ——dx
V1—z 2y
—_——— ——
\/11—142 du

X

1
=2 du
/ V1—u?
= 2. arcsin(u) + ¢
= 2 - arcsin(+/z) + c.

(ii) Integration by Parts
Recall the product rule

d(f(x)g(x))

D0 — pg (@) + £ (@)g(a)

That means f(z)g(z) is an antiderivative of f(z)¢'(z) + f'(z)g(z), i.e.,

f@)g(a) + = [(F@)g (@) + 7 (@)g(w)iz
~ [ 1@ @ds+ [ F@g(e)da
Hence:
[ t@g @)ds = f@ygta) + o~ [ gtz

Notice that the constant ¢ cancels in a definite integral! So, we write

b b b
/ f(2)d (z)dz = f(x)g(z) o / f(z)g(z)dz.

10



Alternatively, letting u = f(x), v = g(x), we have du = f'(x)dx, dv = ¢'(x)dz which implies

/udv = uv—/vdu.
/:zc2eI dzx.

Letting u = 22, dv = e® dz, we get du = 2zdz and v = €.

Example: Find

So, integration by parts yields,

/ZEQQIdZEZUU—/UCZU

= z%e® — 2/xexda:

This integral requires another round of integration by parts, since we have / ze®dx in the second inte-

gral.
Again, letting u = z, dv = e® dx, we get du = dx and v = €*.

(Notice that we are using the same u and v in both rounds of the integration by parts, to avoid the clutter
in the notation.)

So, we get

= 22" — 2 (xex — /e’%ia:)

= 22e® — 2xe® + 2 / edx

= 2%e® — 2ze® + 2¢% + c.

/ln xrdx.

1
Letting © = Inx, dv = dx, we get du = —dx and v = x.
T

1
/ln]x]dx: (lnw)m—/m-xd:r
:$lnx—/1dx

=xlhx—x+ec

Example: For z > 0, find

So, integration by parts yields,

11



Example: Find

/em cos zdzx.

Letting u = cosz, dv = e*dz, we get du = —sinz)dx and v = e”.

So, integration by parts yields,

/ez coszdr = e* cosx — /ez(— sinz))dx

=e"cosx + /efc sin z)dx

This integral requires another round of integration by parts, since we have / e’sinz)dx in the second

integral.
Again, letting u = sinz), dv = e dx, we get du = cosxdx and v = e”.

(Notice that we are using the same u and v in both rounds of the integration by parts, to avoid the clutter
in the notation.)

So, we get

/ez coszdr = e cosx + <em sinz) — /e”” Cos xdx)

2 / e” cosxdx = e” cosx + €” sin x)

which implies

/em cos zdz — e*(sinz) + cosx).
2
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