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library(tidyverse)

Permutation Testing

Permutation tests are a type of randomization test. The theoretical difference between permutation tests
and inferential tests is that with permutation tests we build the sampling distribution from the observed
data, rather than inferring or assuming that a sampling distribution exist.

In practice, what a permutation test does is to take your observed data and then shuffle (or permute) part
of it. After each shuffle, some aspect of the data is recalculated. That could be for instance the correlation
coefficient, or it could be a difference in means between two groups. The data then get randomly reshuffled
again, and the test-statistic is recalculated again. This goes on for thousands of times - for as many shuffles
are deemed acceptable. This is usually a minimum of 1,000 but typically at least 10,000 shuffles are done.
After all the permutations (shuffles) are performed, a distribution of the statistic of interest is generated from
the permutations. This is compared to the original observed statistics (e.g. correlation coefficient, difference
in group means) to see if the observed value is unusually large compared to the permuted data.

If this seems a little confusing, hopefully seeing it in action will help. ..

Example 1

Let’s take a look at an example from clinical trials. Here, we have various subjects’ ratings their anxiety
levels. They do this after either taking a new anxiolytic drug or a placebo. The subjects in each group are
independent of each other. The placebo group has 19 subjects and the drug group has 21 subjects.

The data:

placebo <- c(15, 16, 19, 19, 17, 20, 18, 14, 18, 20, 20, 20, 13, 11, 16, 19, 19, 16, 10)
drug <- c(15, 15, 16, 13, 11, 19, 17, 17, 11, 14, 10, 18, 19, 14, 13, 16, 16, 17, 14, 10, 14)

n=length(placebo) #19
m=length(drug) #21
c(n,m)

## [1] 19 21

We put the data into a dataframe:



dd <- data.frame( c(placebo, drug),
c(rep("placebo",n), rep("drug", m)) )
head(dd)

##  values  group

## 1 15 placebo
##t 2 16 placebo
## 3 19 placebo
## 4 19 placebo
## 5 17 placebo
## 6 20 placebo

We can plot these data as boxplots to get a sense of the within group variation as well as the observed
differences between the groups:

ggplot(dd, aes( group, values, group)) +
geom_boxplot( .3, NA) +
geom_jitter( ol 2) +
theme_classic() +
scale_fill_manual ( c("firebrick", "dodgerblue"))
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Now, from our two independent samples, we can directly observe what the difference in sample means is.
This is just calculated by subtracting one sample mean from the other:

mean.diff <- mean(placebo) - mean(drug) # 2.13
mean.diff



## [1] 2.12782

So, from our samples, we observed a difference in grades of 2.13 between the groups. Typically, we would
run an independent t-test to test whether these two samples came from the same or different populations:

t.test(placebo, drug) #can add var.equal=T option here

#i#

## Welch Two Sample t-test

#i#

## data: placebo and drug

## t = 2.3057, df = 36.187, p-value = 0.02697
## alternative hypothesis: true difference in means is not equal to O
## 95 percent confidence interval:

## 0.256502 3.999137

## sample estimates:

## mean of x mean of y

## 16.84211 14.71429

This Student’s t-test suggests that this is a significant difference, meaning that the groups do differ in their
population means.

However, this test relies on several assumptions (see Lecture 13). Instead, we could apply a permutation test
that is free of assumptions (except within and between sample independence).

Essentially what we are going to do is ask how surprising it was to get a difference of 2.13 given our real
data. Put another way, if we shuffled the data into different groups of 19 and 21 (the respective sample sizes
of placebo and drug), would we get a difference in sample means of greater or lower than 2.13. If we did this
thousands of times, how many times would we get differences in sample means above 2.137

Let’s apply this theory to just one permutation.

First, we combine all the data:

set.seed(2) # just to keep the random number generator the same for all of us
all.levels <- c(placebo, drug)
all.levels

## [1] 15 16 19 19 17 20 18 14 18 20 20 20 13 11 16 19 19 16 10 15 15 16 13 11 19
## [26] 17 17 11 14 10 18 19 14 13 16 16 17 14 10 14

Next, we shuffle them into new groups of 19 and 21:

x <- split(sample(all.levels), rep(1:2, c(n,m)))
x

## $1°

## [1] 15 16 20 14 19 14 19 14 13 20 14 18 16 20 15 19 16 19 11

##

## $2°

## [1] 10 16 18 17 10 13 19 17 17 16 15 13 19 11 14 17 20 16 10 18 11

We have two brand new samples that contain all of the scores from our original data, but they’ve just been
shuffled around. We could look at what the difference in sample means is between these two new samples:



x[[1]] # this is our shuffled sample of size 19

## [1] 15 16 20 14 19 14 19 14 13 20 14 18 16 20 15 19 16 19 11

x[[2]] # this is our shuffled sample of size 21

## [1] 10 16 18 17 10 13 19 17 17 16 15 13 19 11 14 17 20 16 10 18 11

mean(x[[1]]) # mean of the new sample of size 19

## [1] 16.42105

mean(x[[2]]) # mean of the new sample of size 21

## [1] 15.09524

# what's the difference in their means?
mean(x[[1]1]1) - mean(x[[2]])

## [1] 1.325815

The difference in sample means is 1.32, which is much smaller than our original difference in sample means.

Let’s do this same process 10,000 times! Don’t worry too much about the details of the code. What we are
doing is the above process, just putting it in a loop and asking it to do it 10,000 times. We save all the
results in an object called results.

results<-vector('list',10000)

for(i in 1:10000){
x <- split(sample(all.levels), rep(1:2, c(n,m)))
results[[i]]<-mean(x[[1]]) - mean(x[[2]])

+

head(unlist(results)) # these are all our mean differences from 10,000 shuffles of the data. We're just

## [1] -1.9824561 1.4260652 0.8245614 0.6240602 0.4235589 -0.9799499

We can actually make a histogram showing the distribution of these differences in sample means.
df <- data.frame(diffs = unlist(results))

ggplot(df, aes(x=diffs)) +
geom_histogram(color="black", fill="green", alpha=.4) +
geom_vline(color="navy",lwd=1,1ty=2,xintercept = 2.13) +
theme_classic()+
ggtitle("Mean Differences from \n 10000 Permutations of Raw Data")
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This histogram shows that for some of our 10,000 shuffles, we actually got some differences higher than 2.13
(the dotted blue line), but the vast majority of shuffles led to samples that had mean differences lower than
2.13. In fact, only several shuffles led to samples where the sample of size 21 (drug in the original data) had
a sample mean that was higher than the sample of size 19 (placebo in the original data).

We can directly calculate how many times out of 10,000 shuffles we got a difference in sample means that
was greater than 2.13

sum(unlist(results) >= 2.13) # 114 times out of 10000

## [1]1 114

To convert this to a p-value, we simply divide this value by the number of shuffles we ran - which was 10,000.
pls = sum(unlist(results) >= 2.13) /10000 # which ts 0.0202 proportion of the time

pls

## [1] 0.0114

So, our p-value is p = 0.0114 which is the one-sided p-value. If we wished to have a 2-tailed p-value we would
simply multiply this value by 2:

# 2-tailed value
2 *x pls

## [1] 0.0228



Example 2 (Two Independent Samples from the Same Population)

Let’s take a look at another example from clinical trials. Here, we have various subjects’ ratings their anxiety
levels. They do this after either taking a new anxiolytic drug or an existing drug (there is some prior evidence
that new medicine has similar effect as the old, but cheaper to produce). The subjects in each group are
independent of each other. The drug group has 19 subjects and the drug group has 21 subjects.

The data:

new.drug <- c(18, 16, 11, 19, 14, 19, 17, 17, 19, 17, 10, 14, 16, 11, 18, 17, 14, 18, 20)
old.drug <- c(13, 10, 19, 16, 19, 20, 13, 14, 20, 16, 10, 15, 13, 16, 19, 14, 15, 15, 20, 16, 11)

n=length(new.drug) #19

m=length(old.drug)

# put into a dataframe:

dd <- data.frame( c(new.drug, old.drug),
c(rep("new.drug",n), rep("old.drug", m))

)

head(dd)

##  values group
## 1 18 new.drug
## 2 16 new.drug
## 3 11 new.drug
## 4 19 new.drug
## 5 14 new.drug
## 6 19 new.drug

The boxplots for the two groups:

ggplot(dd, aes( group, values, group)) +
geom_boxplot ( .3, NA) +
geom_jitter( .1, 2) +
theme_classic() +
scale_fill_manual( c("firebrick", "dodgerblue"))
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Now, we compute the mean differences between the two samples:

mean.diff <- mean(new.drug) - mean(old.drug) # 0.624
mean.diff

## [1] 0.6240602

From our samples, we observed a difference in grades of 0.624 between the groups. Below, we run an
independent t-test to test whether these two samples came from same or different populations:

t.test(new.drug, old.drug) #can add var.equal=T option here

#i#t

## Welch Two Sample t-test

##

## data: mnew.drug and old.drug

## t = 0.64279, df = 37.974, p-value = 0.5242
## alternative hypothesis: true difference in means is not equal to O
## 95 percent confidence interval:

## -1.341404 2.589524

## sample estimates:

## mean of x mean of y

## 16.05263 15.42857

This Student’s t-test suggests that there is no (significant) difference, meaning that the groups don’t differ
in their population means.

Now, let’s apply the permutation test as above.



results<-vector('list',10000)

for(i in 1:10000){
x <- split(sample(all.levels), rep(1:2, c(n,m)))
results[[i]]<-mean(x[[1]]) - mean(x[[2]])

}

head(unlist(results)) # these are all our mean differences from 10,000 shuffles of the data. We're just

## [1] -0.07769424 0.02255639 -0.17794486 0.12280702 1.72681704 -1.98245614

The histogram of the mean differences:
df <- data.frame( unlist(results))

ggplot(df, aes(x=diffs)) +
geom_histogram( "black", "green", .4) +
geom_vline ( "navy", 1, 2, 0.624) +
theme_classic()+
ggtitle("Mean Differences from \n 10000 Permutations of Raw Data")
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This histogram shows that 0.624 is not that different than most of the shuffled sample differences (the
observed difference in the original samples is close to center).

We can compute a one-sided p-value as

pls=sum(unlist(results) > 0.624) /10000 # which is 0.0202 proportion of the time
pls



## [1] 0.2841

# 2-tailed value
2 * pls

## [1] 0.5682

So, one-sided p-value is p = 0.2817 and two-sided p-value is p = 0.5634>
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