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library(nptest)

1 Introduction

1.1 Motivation and Goals

Nonparametric bootstrap sampling offers a robust alternative to classic (parametric) methods for statistical
inference. Unlike classic statistical inference methods, which depend on parametric assumptions and/or
large sample approximations for valid inference, the nonparametric bootstrap uses computationally intensive
methods to provide valid inferential results under a wide collection of data generating conditions.

The default install of R comes with the boot package, which is a collection of bootstrap functions that were
originally designed for S (the predecessor of R). The bootstrap package, which is written by the creator of
the bootstrap (Bradley Efron), is another popular package for nonparametric bootstrapping. Both the boot
and bootstrap packages have several good features as well as some undesirable characteristics. We will use
the np.boot function in the nptest R package, which combines the strengths of the bootstrap functionalities
in the boot and bootstrap packages.

1.2 Sampling with Replacement in R

The nonparametric bootstrap involves randomly sampling data with replacement to form a “new” sample of
data, which is referred to as a bootstrap sample.

Given a (data) vector x = (x1,...,x,)" of length (or size) n, sampling with replacement involves forming a
new vector
* *

x* = (:c”{,...,:cn)t

where each z; is independently sampled from x with equal probability given to each observation, i.e.,
P(zf =x;) =1/n for all ¢, .

In R, sampling with replacement can be conducted using the sample() function with the replace = TRUE
argument.

#generate data
x <- letters[1:5]
X

## [1] llall llbll IICII Ildll Ilell



#set random seed (for reproducibility)
set.seed (1)

#without replacement (default)
sample (x)

## [1] llaII lldll |ICII Ilell Ilbll

# with replacement
sample (x, TRUE)

## [1] llell IICII llb" IICII IICH

Note that sampling without replacement is equivalent to permuting the original observations, so each original
observation appears once in the resampled vector. In contrast, sampling with replacement produces a new
vector that could contain anywhere from 0 to n occurrences of each original observation.

1.3 Parametric Statistics Primer
Parameters and Statistics

Inferential statistical methods involve specifying some population of interest, and using a sample of data
to infer things about the population. Let X denote the random variable of interest, which is assumed to
have some distribution function F(x) = P(X < z). Suppose that the distribution function depends on the
parameter 8 = T'(F'), where T'() is some function of F. From the frequentist perspective, the parameter 6 is
assumed to be some unknown constant that describes the probabilistic nature of the population.

Suppose we have a random sample of data x = (z1,...,2,)" from the population F, where each x; is an
independent and identically distributed (iid) realization of the random variable X. Any function of the
sample of data is a statistic, which is itself a random variable. For example, suppose that we calculate some
estimate of the parameter such as § = s(x), where s() is some function of x. The estimate § is a random
variable, since it is a function of the random sample X.

Sampling Distributions

The statistic § = $(X) is a random variable that has some probability distribution, which will be denoted
by G(0) = P(0 < 6). The distribution G is referred to as the sampling distribution of the statistic 6, given
that it describes the probabilistic nature of the statistic 6 given a random sample of n observations from the
population distribution F.

The form of the sampling distribution G will depend on three things:

1. the original data generating distribution F,
2. the function s() used to calculate the statistic,
3. the sample size n.

For certain combinations of F, s, and n, the sampling distribution will be known exactly. However, in
many situations, the sampling distribution of 8 is only known asymptotically, i.e., as n — oo. And, for
non-standard statistics, the sampling distribution may not even be known asymptotically.



Example 1: Mean

Suppose that the parameter is the population mean 8 = E[X], and the statistic is the sample mean 6 =
s(X) = 717 Z?:l Xi.

If the data generating distribution is Gaussian, i.e., X ~ N (6, 0?), then the sampling distribution is Gaussian,
ie., O~ N0, 02/n).

#loop through different mn wvalues
par( c(2, 2), c(4, 4, 2, 2))
for(n in c(5, 10, 25, 50)){

#generate 10000 means calculated from N(0,1) data
set.seed(1)

x <- replicate(10000, mean(rnorm(n)))

# plot histogram
hist(x, FALSE, pasteO('n = ", n), 20)

#add sampling distribution

xseq <- seq(-1, 1, 1000)
lines(xseq, dnorm(xseq, 1 / sqrt(n)))
}
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If the data generating distribution is some non-Gaussian distribution, then the sampling distribution of 6 is
asymptotically Gaussian, i.e., G(8) — N(0,02/n) as n — oc.



#loop through dtifferent n wvalues
par( c(2, 2), c(4, 4, 2, 2))
for(n in c(5, 10, 25, 50)){

#generate 10000 means calculated from untform data
set.seed (1)
x <- replicate(10000, mean(runif (n, -sqrt(3), sqrt(3))))

#plot histogram
hist(x, FALSE, paste0('n = ", n), 20)

#add sampling distribution

xseq <- seq(-1, 1, 1000)
lines(xseq, dnorm(xseq, 1 / sqrt(n)))
}
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® o~
o —
2 2
@ < B ©
g o & o
(a) (a)
Q e
© [ I I I I I | © [ I I I |
-1.5 -0.5 0.5 15 -1.0 00 05 10
X X
n=25 n =50
o
o
2 2
2 g 2
[} A [} =
(@] @] —
e Q
© [ I | © [ I I I I I |
-0.5 0.0 0.5 -0.6 -0.2 0.2 0.6
X X

Example 2: Median

Suppose that the parameter is the population median P(X < 0) = 1/2, and the statistic is the sample mean
0 = median(x).

As n — oo, the sampling distribution of 0 approaches a normal distribution with mean 6 and variance
W, where f(z) = %F (z) denotes the data-generating probability density function.

#loop through different n wvalues

par( c(2, 2), c(4, 4, 2, 2))

for(n in c(5, 10, 25, 50)){



#generate 10000 medians calculated from uniform data
set.seed(1)
x <- replicate(10000, median(runif(n, -sqrt(3), sqrt(3))))

#plot histogram
hist(x, FALSE, pasteO('n = ", n), 20)

#add sampling distridbution

xseq <- seq(-2, 2, 1000)
asymp.se <- 1 / sqrt(4 * n * dunif (0, -sqrt(3), sqrt(3))°2)
lines(xseq, dnorm(xseq, asymp.se))
}
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1.4 Need for Nonparametric Bootstrap

The previous example with the median reveals the need for the nonparametric bootstrap. Specif-
ically, for many statistics, there is no theoretical result for the exact sampling distribution, so statistical
inference may only be possible using large sample approximations. And, in many cases (such as with the
sample median), even the asymptotic distribution requires knowledge about the data generating distribution
that is not readily obtainable in real data situations. Note that the asymptotic variance of the median
requires knowledge of f(6), which would rarely be known in any real data situation. Thus, for statistical
inference about any generic parameter (i.e., any parameter that is not the mean), some method is needed
that can produce a reasonable approximation of the sampling distribution — which is needed to conduct
statistical inference.



2 Nonparametric Bootstrap Basics

2.1 Bootstrapping Procedure

Suppose that we have an observed sample of data x = (z1,...,2,)" with X " F for some distribution
F. Furthermore, suppose that 6 = T'(F) is the parameter of interest, and 6 = s(X) is the statistic used to
estimate 6 from the sample of data.

The nonparametric bootstrap procedure is a rather simple idea:

1. Independently sample x} with replacement from {zi,...,z,} fori=1,... n.
2. Calculate the statistic §* = s(x*) where x* = (27,...,2%)! is the resampled data.

3. Repeat steps 1-2 a total of R times to form the bootstrap distribution of 0.

The bootstrap distribution consists of R estimates of 6 plus the original estimate 9, i.e., the bootstrap
distribution is {é, éi‘, .. .,HA}‘%}. This bootstrap distribution can be used as a surrogate for the sampling

distribution of 6 for the purpose of statistical inference. As will be demonstrated in the following sections,
the bootstrap distribution can be used for estimating properties of 6 (e.g., standard error and bias), as well
as for forming confidence intervals for 6.

Note: The number of replications should be rather large, e.g., R > 9999, to ensure that any calculations
from the bootstrap distribution are not subject to substantial Monte Carlo error. The np.boot function (in
the nptest package) uses a default of R = 9999 resamples to form the bootstrap distribution, but it may
be desirable to increase this value. See the mcse() function (in the nptest package) for information about
how the number of resamples R relates to the Monte Carlo standard error of the result.

2.2 Empirical Distribution
Definition
Suppose that we have an observed sample of data x = (z1,...,z,)" with X; 2 [ for some distribution F.

The empirical cumulative distribution function (ecdf) uses the sample of data to estimate the unknown cdf
F. The ecdf is defined as

—_

A

Fu(z)=Py(X <2) == I(x; <)

where I() is an indicator function. Note that the ecdf assigns probability 1/n to each observation x; for
1€ {1,...,n}, which implies that

n

1
P(A) = - Z;I(l‘i € A)
for any set A in the sample space of X.

Since the ecdf is a proportion estimate from an iid sample of observations, we have that
E [ﬁn(x)} = F(z)
which reveals that the ecdf is unbiased, and

Var (Fu(x)) = %F(m)(l _ (@)



which reveals that the variance of the ecdf decreases as n increases. Furthermore, the Glivenko-Cantelli
theorem reveals that as n — oo, we have that

sup [F,(z) — F(z)| 250
z€R

. as
where the notation — denotes almost sure convergence.

Example 1: Normal Distribution

set.seed(1)

par( C(2,2), C(4: 4’ 2’ 2))
n <- c(50, 100, 500, 1000)
xseq <- seq(-4, 4, 100)

for(j in 1:4){
x <- rnorm(n([jl)

plot (ecdf (x), paste("n = ",n[j1))
lines(xseq, pnorm(xseq), "blue")
}
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o | | o |
o o
£ . S .
S < S <
L o L o
o | o |
© I I I I I © I I I I I
-2 -1 0 1 2 -2 -1 0 1 2
X X
n= 500 n= 1000
o | | o | |
o o
£ . S .
S < S <
L o L o
o | o |
© I I I I © 7 I I I
-2 0 2 4 -4 -2 0 2 4
X X

Example 2: Uniform Distribution

set.seed(1)
par ( c(2,2), c(4, 4, 2, 2))
n <- c(50, 100, 500, 1000)



xseq <- seq(-2, 2, 100)
for(j in 1:4){

x <- runif(n[j], -sqrt(3), sqrt(3))
plot (ecdf (x), paste('n = ",n[j1))
lines(xseq, punif(xseq, -sqrt(3), sqrt(3)), "blue")
}
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Example 3: Bivariate Data

Consider the following data on average LSAT scores and GPAs for n = 15 law schools. Note that these data
represent a random sample of n = 15 law schools from a total collection of N = 82 American law schools
that participated in the study.

School LSAT (y) GPA (2) | School LSAT (y) GPA (2)
1 576 3.39 9 651 3.36
2 635 3.30 10 605 3.13
3 558 2.81 11 653 3.12
4 578 3.03 12 575 2.74
5 666 3.44 13 545 2.76
6 580 3.07 14 572 2.88
7 555 3.00 15 594 2.96
8 661 3.43

Table 1: Average LSAT scores and GPAs for n = 15 law schools (Efron & Tibshirani, 1993).

Suppose we want to estimate the proportion of schools that “safety schools”, i.e., those schools that have an
average LSAT score below 600 and an average GPA below 3. Defining A = {(y,2) : 0 < y < 600,0 < z <



3.00}, we can use the ecdf idea to estimate this proportion:

15
A 1
Pi5(A) = — I((y;,2;) € A)=5/15=1
2.3 Plug-In Principle
Definition
Suppose that we have an observed sample of data x = (z1,...,z,)! with X; 4 F for some distribution F.

Furthermore, suppose that § = T'(F) is the parameter of interest. As a reminder, the notation § = T(F)
denotes that the parameter is a function 7'() of the distribution function. The plug-in estimate of the
parameter 6 is defined as . .

0, = T(Fy)

which apphes the parameter defining function T'() to the ecdf in place of the cdf. Note that the plug-in
estimate 6,, does not necessarily have to be equivalent to the estimate of the parameter 6= s(x) that would
typically be used in practice.

Example 1: Mean

As a first example, suppose that the parameter is the population mean, i.e., § = Ep[X] = [z f(z)dz, where
Er[] denotes the expectation with respect to F'. The plug-in estimate of 6 has the form

én = Eﬁ'n[X] = Zn:xifi = %anxl =
i=1 i=1

which calculates the expectation with respect to F, in place of F. Note that ﬁ = 1/n is the probability
that the ecdf assigns to the i-th observation. In this case, the plug-in estimate is the same as the estimate
0 = s(x) = & that would typically be used in practice.

Example 2: Variance

As a second example, suppose that the parameter is the population variance, i.e.,
0 = Var(X) = Erl(X — p)2] = Br [X?] - (Ep[X])?
where ;1 = Ep[X] is the expected value of X. The plug-in estimate of the variance has the form
n n 2 n
X ) 1 1 1 .
O = Ep, [X*] = (Bf, ;Z =D wi) = (@i —7)
i=1 i=1 i=1

which replaces the expectation operator Er[] with the empirical expectation operator F 7, []. In this case,
the plug-in estimate of the variance is equivalent to the maximum likelihood estimator of the variance (with
a divisor of n). Note that this differs from the unbiased estimator

>
Il

which is typically preferred over the maximum likelihood estimator 0,.



2.4 Logic of the Bootstrap

For conducting statistical inference with unknown probability distributions, the nonparametric bootstrap
treats the ecdf £}, as if it were the true cdf F. In other words, the nonparametric bootstrap treats the observed
sample x = (x1,...,2,)" as if it were the true population. As a reminder, the sampling distribution of 0=
5(x) is the distribution of the  values that would be observed if the statistic function s() was applied to a large
number of independent samples of data from the population. The nonparametric bootstrap approximates the
sampling distribution by applying the statistic function s() to a large number of independent samples of data
from the observed sample. As a result, the nonparametric bootstrap can ONLY well approximate
the sampling distribution of a statistic if the ecdf is a good estimate of the unknown data

generating cdf. This will be the case if the sample size n is large, but is not guaranteed (or even likely)
for small samples of data.

REAL WORLD BOOTSTRAP WORLD
Unknown
Probability Observed Random Empincal Bootstrap
Distribution Sample Dietibutian Sample
~_—> F—2p X= {xi,xz’, o Xp)

F— X=(Xq X .- Xp)

l

B=s(x)

|

9=s(x')

Statistic of interest Bootstrap Replication

Figure 1: Illustration of the logic of bootstrap (Efron & Tibshirani, 1993).

3 Nonparametric Bootstrap Applications

3.1 Assessing the Quality of Estimators

Variance and Standard Error

The variance of an estimator 6 = s(x) for some parameter 6 = T(F) is defined as
Var(d) = Ep [(é - Ep[é])ﬂ = Bp [eﬂ — (Ep[0)?

where Er[] denotes that the expectation is calculated with respect to the data generating distribution F. The
nonparametric bootstrap can be used to estimate the variance (or standard error) of an estimator 6 = s(x).

Given the bootstrap distribution {9, éi‘, ey éj‘%}, the bootstrap estimate of the variance has the form

1 R
Var() = =5 (é: fé*)

r=0

2

where 6% = 0 is the estimate of # from the observed sample and 6* = R%rl Zf:o 0* is the sample mean of

the bootstrap distribution. Note that the estimated variance @(é) is the sample variance of the bootstrap
distribution. The corresponding estimate of the standard error has the form

. — 1 E N2
SE(0) = \/Var() = RZ(@:-@*)

r=0

10



which is the sample standard deviation of the bootstrap distribution. Note that as the number of bootstrap
samples gets infinitely large, i.e., as R — 0o, the bootstrap estimate of the standard error converges to the
plug-in estimate of the standard error of 6.

Bootstrap Bootstrap Bootstrap Estimate
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Figure 2: A schematic of the bootstrap standard error estimation (Efron & Tibshirani, 1993).

Bias

The bias of an estimator = s(x) for some parameter § = T(F) is defined as

~ A

Bias(0) = Ep[0] — 0

where Er|[| denotes that the expectation is calculated with respect to the data generating distribution F.
The plug-in estimate of the bias uses the ecdf F}, instead of the unknown true cdf F. Specifically, the plug-in
estimate of the bias has the form

A

Bias, (0) = By, [s(X)] - 0n

where E [| is the expectation calculated with respect to E, and 6, = T(F},) is the plug-in estimate of 6.
This implies that the bootstrap estimate of the bias can be calculated as

Bias(d) = 6* — 0
where 0* = %ﬂ Zf:o 0 is the sample mean of the bootstrap distribution. Note that this assumes that

6 = T(ﬁ’n), i.e., that the statistic is the plug-in estimate of 8. If 0 is not the plug-in estimate, then 6 should
be replaced by T(F},) in the definition of Bias(f).

Mean Squared Error

The mean squared error (MSE) of an estimator § = s(x) for some parameter § = T'(F) is defined as

MSE(f) = Ep[(d — 0)?] = Var(d) + Bias(6)?

11



where Er|[| denotes that the expectation is calculated with respect to the data generating distribution F.
The bootstrap estimate of the MSE involves calculating the expectation using the ecdf F, in place of the
unknown true cdf F'. Note that since the MSE can be decomposed into an additive function of the variance
and bias, the bootstrap estimate of the MSE simply involves adding the bootstrap estimate of the variance
and (squared) bias.

3.3 Univariate Data Examples
Overview

Univariate samples of data have the form x = (21, ... ,xn)t where each X; i F for some distribution F.
For univariate data, using the np.boot function is rather simple, given that it just requires inputting the
data vector x and the statistic function statistic (and possibly additional arguments passed through the ...
argument). In the following examples, I will demonstrate how to use the np.boot function with univariate
data using predefined functions in R for the statistic function. However, it should be noted that the statistic
argument can be a user-defined function, which makes it possible to calculate any statistic that is of interest.

Example 1: Univariate Statistic (Median)

For this example, we will generate n = 100 observations from a standard normal distribution, and use the
median as the parameter/statistic of interest. Note that the true (population) median is zero. Since the
median is a univariate statistic, the bootstrap distribution will be a vector of length R + 1 containing the
bootstrap replicates of the median.

#generate 100 standard mormal observations
set.seed (1)

n <- 100

x <- rnorm(n)

#nonparametric bootstrap
npbs <- np.boot ( X, median)
npbs

##

## Nonparametric Bootstrap of Univariate Statistic
## using R = 9999 bootstrap replicates

##

##  t0: 0.1139

## SE: 0.1394

## Bias: 0.0185

##
## BCa Confidence Intervals:
## lower upper

## 90% -0.0566 0.3411
## 95% -0.0811 0.3673
## 99% -0.1351 0.3940

median(x) # to

## [1] 0.1139092
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sd (npbs$boot.dist) # SE

## [1] 0.1393567

mean (npbs$boot.dist) - npbs$tO # Bias

## [1] 0.01845341

hist (npbs$boot.dist, "Statistic", "Bootstrap Distribution")
box ()

abline( npbs$to, 2, "red")

legend("topleft", "t0", 2, "red", "n")

Bootstrap Distribution
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2: Multivariate Statistic (Quartiles)

For this example, we will generate n = 100 observations from a standard normal distribution, and use
the quartiles as the parameters/statistics of interest. Note that the true (population) quartiles are @1 =
gnorm(0.25) = -0.6744898, Q2 = gnorm(0.5) = 0, and Q3 = gnorm(0.75) = 0.6744898. Since the
quartiles are a multivariate statistic, the bootstrap distribution will be a matrix of dimension (R + 1) x 3,
where each column contains the bootstrap replicates of the corresponding quartile.

#generate 100 standard mormal observations
set.seed (1)

n <- 100

x <- rnorm(n)

13



#nonparametric bootstrap (using ... to enter 'probs' argument)
npbs <- np.boot ( X, quantile,

c(0.25, 0.5, 0.75))
npbs

##

## Nonparametric Bootstrap of Multivariate Statistic
## using R = 9999 bootstrap replicates

#i#

## 25% 50% 75%

##  t0: -0.4942 0.1139 0.6915

## SE: 0.1172 0.1394 0.0933

## Bias: 0.0058 0.0185 -0.0170

##
## 957 BCa Confidence Intervals:
## 25% 50% 75%

## lower -0.6941 -0.0811 0.5047
## upper -0.2534 0.3673 0.8811

quantile(x, c(0.25, 0.5, 0.75)) # t0

## 25% 50% 75%
## -0.4942425 0.1139092 0.6915454

apply (npbs$boot.dist, 2, sd) # SE

#it 25% 50% 75%
## 0.11724637 0.13935672 0.09333269

colMeans (npbs$boot.dist) - npbs$tO # Bias

it 25% 50% 75%
## 0.005771337 0.018453409 -0.017043706

npbs$cov

## 25% 50% 75%
## 25% 0.013746712 0.009523836 0.003761904
## 507 0.009523836 0.019420295 0.007248275
## 75% 0.003761904 0.007248275 0.008710991

cov(npbs$boot.dist)

## 25% 50% 75%
## 25Y 0.013746712 0.009523836 0.003761904
## 507 0.009523836 0.019420295 0.007248275
## 75% 0.003761904 0.007248275 0.008710991

14



par ( c(1,3))
for(j in 1:3){

hist (npbs$boot.dist[,j], "Statistic",
pasteO("Bootstrap Distribution", ": Q", j))
box ()
abline( npbs$t0[j], 2, "red")
legend("topright", pasteO("tO[",j,"]1"), 2, "red", "n")
}
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