

Chapter 10 – Hypothesis Testing

0.1 – Introduction

In Chapter 9, we studied the method of inference called *point estimation*.

In this chapter, we will study another method of inference called *hypothesis testing*.

Definition 1 *A hypothesis is a statement or a claim about a population parameter.*

Definition 2 *The two complementary hypotheses in a hypothesis testing problem are called the null hypothesis and the alternative hypothesis, denoted as H_0 and H_1 , respectively.*

Setting: Let θ be a parameter of interest with $\theta \in \Theta$:

$$H_0 : \theta \in \Theta_0 \quad \text{versus} \quad H_1 : \theta \in \Theta_1 = \Theta_0^c$$

where $\Theta_0 \subset \Theta$ and $\Theta_0^c = \Theta_1$.

Definition 3 *A hypothesis testing procedure or hypothesis test is a rule that specifies:*

1. *For which sample values, the decision is made to accept H_0 as true.*
2. *For which sample values, H_0 is rejected and H_1 is accepted as true.*

Definition 4 Rejection Region or Critical Region: *The set of (sample) points, $R = R(\mathbf{x})$ in the sample space for which H_0 will be rejected. Clearly, R is a subset of the sample space.*

Definition 5 Acceptance Region: *Complement of the rejection region, R^c .*

Definition 6 Decision Rule: *The rule specifying when to reject H_0 . Typically, it is “reject H_0 if $\mathbf{x} \in R(\mathbf{x})$ ” (i.e., when the observed sample \mathbf{x} falls in $R(\mathbf{x})$.*

Philosophical Issues:

“Reject H_0 ” and “accepting H_1 ”

“Accepting H_0 ” and “not rejecting H_0 ”

Our Main Concern is the assertion/claim in H_0 or H_1 , and we will say “reject H_0 ” and “accept H_0 ” (with the above caveats in effect).

Definition 7 Test Statistic $W(\mathbf{X})$: *A function of the sample \mathbf{X} ; used together with the rejection region to make decisions about the hypotheses being tested.*

Question: How?

Types of Hypotheses:

1. Simple Hypothesis: $H : \theta = \theta_0, \quad H : \theta = \theta_1$ (can be null or alternative hypotheses)
2. Composite Hypothesis: more than one possible parameter (or distribution), (can be null or alternative hypotheses)
 - a. One-sided Hypothesis:
null hypotheses $H_0 : \theta \leq \theta_0, \quad H_0 : \theta \geq \theta_0$,
alternative hypotheses $H_1 : \theta < \theta_0, \quad H_1 : \theta > \theta_0$
 - b. Two-sided Hypothesis: $H : \theta \neq \theta_0$ (can only be alternative hypothesis)

0.2 Likelihood Ratio Tests

Recall that, if X_1, X_2, \dots, X_n is a random sample from a pdf or pmf $f(x|\theta)$, the likelihood function is

$$L(\theta|x_1, \dots, x_n) = L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta).$$

Definition 8 *The likelihood ratio test statistic for testing $H_0 : \theta \in \Theta_0$ versus $H_1 : \theta \in \Theta_1 = \Theta_0^c$ (based on sample \mathbf{x}) is*

$$\lambda(\mathbf{x}) = 2 \log \left(\frac{\sup_{\theta \in \Theta} L(\theta|\mathbf{x})}{\sup_{\theta \in \Theta_0} L(\theta|\mathbf{x})} \right).$$

A likelihood ratio test (LRT) is any test that has a rejection region of the form $\{\mathbf{x} : \lambda(\mathbf{x}) > c\}$, where c is any number satisfying $0 \leq c \leq 1$. So, the decision rule is “reject H_0 if $\lambda(\mathbf{x}) > c$ ”.

Qu: Why is such a region reasonable to reject H_0 from the likelihood perspective?

Notes:

1. **Connection between LRT and MLE:** Let $\hat{\theta}$ be the MLE of θ under the unrestricted (i.e., entire) parameter space Θ and $\hat{\theta}_0$ be the MLE of θ under the restricted parameter space Θ_0 . Then

$$\lambda(\mathbf{x}) = 2 \log \left(\frac{L(\hat{\theta}|\mathbf{x})}{L(\hat{\theta}_0|\mathbf{x})} \right).$$

Here, $\hat{\theta}$ is also called the *global maximizer* and $\hat{\theta}_0$ is also called the *restricted maximizer* or *null maximizer* of $L(\theta|\mathbf{x})$.

2. Proper choice of c depends on the dimensions of the null and alternative hypotheses.

Suppose Θ is of dimension r and Θ_0 is of dimension q with $q < r$. Then, by Theorem 10.22 in AoS, we have $\lambda(\mathbf{x}) \xrightarrow{d} \chi^2_{r-q}$. Thus, to have a size α LRT, the critical value (or the cut-off value) in Definition 8 should be $c = \chi^2_{r-q,\alpha}$ where $\chi^2_{r-q,\alpha}$ is the $1 - \alpha$ quantile of χ^2_{r-q} distribution.

Example 1 (Poisson LRT) Let X_1, X_2, \dots, X_n be iid from $\text{Poisson}(\lambda)$ distribution. We want to test $H_0 : \lambda = \lambda_0$ versus $H_1 : \lambda \neq \lambda_0$ where λ_0 is a number specified by the experimenter. Construct the LRT for this setting.

Solution: