
Time Waste Versus Empowerment

”I took a course in speed reading, and read War and Peace

in 20 minutes. It’s about Russia.”

- Comedian Woody Allen

”I learned very early the difference between knowing the

name of something and knowing something.”

- Richard Feynman, Nobel laureate in physics

”The main goal [of this course] is self-actualization through

the empowerment of claiming your education.”

- Professor Marc Mangel

”Give me six hours to chop down a tree and I will spend

the first four sharpening the axe.”

- Abraham Lincoln
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The Importance of Statistics

� Statistics impacts various aspects of daily life: business,

medicine, law, government, etc.

� Examples:

� Wall Street’s models contributed to the 2008 financial crash.

� Legal trials depend on understanding statistical evidence.

� Probability in gambling and insurance.

� Evaluating medical treatments.

� Identifying potential terrorists.

� Understanding statistics is crucial for responsible

decision-making.
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Beyond Formulas

� Statistics is more than formulas.

� It can be mathematically deep and empowering.

� Everyone with calculus knowledge can understand statistics.

� Empowerment through understanding.
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Mastering Probability

� Statistics is based on probabilistic models.

� Mastery of probability principles is essential for effective data

analysis.

� Like ”sharpening the axe” for effective problem-solving.
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Embracing Understanding

� Focus on understanding equations and concepts.

� Connect mathematical ideas to real-life implications.

� Empowerment through comprehension.
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Probability Theory

“You can, for example, never

foretell what any one man

will do, but you can say with

precision what an average

number will be up to.

Individuals vary, but

percentages remain constant.

So says the statistician.”

Sherlock Holmes

The Sign of Four
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Statistics and Data Science

Statistics is the science of collecting, classifying, summarizing,

organizing, analyzing, and interpreting numerical or qualitative

information based on data.

Data science is an interdisciplinary field that uses scientific

methods, processes, algorithms, and systems to extract knowledge

and insights from structured and unstructured data, and apply

knowledge and actionable insights from data across a broad range

of application domains.
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Data Mining

Data mining is a process of extracting and discovering patterns in

large data sets involving methods at the intersection of machine

learning, statistics, and database systems.

“To consult the statistician after an experiment is finished is often

merely to ask him to perform a post-mortem examination. He can

perhaps say what the experiment died of.” (R. A. Fisher)
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Statistics and Probability

Statistics builds upon the foundation of probability.

Probability theory deals with mathematical formalizations of

everyday concepts of chance, randomness, and related ideas.

This chapter introduces basic ideas of probability theory that are

essential for statistics.
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Basics of Probability

Definition
The sample space S for an experiment is the set of all possible

outcomes, and outcomes are called events.

Note: A set can have finitely or infinitely many elements, and

ordering and multiplicity are ignored.
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Sample Space Examples

Example
Sample Space:

(i) Toss a coin once. S =?

(ii) Toss a coin twice. (a) Record outcomes regardless of order:

S =?

(b) Record outcomes in order: S =?

(iii) (a) Number of rolls of a die until “1” appears. S =?

� (b) Experiment: Reaction time to a stimulus. S =?

11



Definition of Event

Definition
An event is a collection of possible outcomes of an experiment,

i.e., any subset of S (including S itself).

An event A occurs if the experiment’s outcome is in set A.
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Interpretations of Probability

Interpretations of Probability:

� “Frequency of occurrence” of an event (Frequentist

approach).

� Convergence of outcome frequencies to probability.

� Subjective interpretation: Probability as belief in event chance

(Bayesian approach).

� Function approach: Probabilities defined by a function

satisfying rules.
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Axioms of Probability

Definition
A probability function P on sample space S satisfies:

A1. P(A) ≥ 0 for all A ⊆ S .

A2. P(S) = 1.

A3. Countable Additivity: P (
⋃∞

i=1 Ai ) =
∑∞

i=1 P(Ai ) for pairwise

disjoint Ai .
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Computing Probability

Result
If P is a probability function and A is any set in S, then:

(a) P(∅) = 0,

(b) P(A) ≤ 1,

(c) P(Ac) = 1− P(A).
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Computing Probability (Contd.)

Result
If P is a probability function and A and B are any two sets in S,

then:

(a) P(A ∩ Bc) = P(A)− P(A ∩ B),

(b) P(A ∪ B) = P(A) + P(B)− P(A ∩ B),

(c) If A ⊂ B then P(A) ≤ P(B).
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Counting Techniques

Theorem
Fundamental Theorem of Counting: If a procedure has tasks

that can be done in ni ways, then the entire procedure can be done

in n1 × n2 × · · · nk ways.

Counting techniques are valuable for finite sample spaces with

equally likely outcomes.
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Conclusion

� Probability theory forms the basis for understanding chance

and randomness.

� Probability’s interpretations, rules, and counting techniques

are crucial for calculating probabilities and making informed

decisions.
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Counting Techniques

Example

NY State Lottery The NY State Lottery operates as follows:

1. A person may pick any six numbers from the numbers

1, 2, . . . , 44 for his/her ticket.

2. The winning number is decided by randomly selecting six

numbers from the forty-four numbers. Find the number of ways to

pick the first two numbers, when

1. Repetition not allowed: Find # of ways to pick the first two

numbers from 1 to 44.

2. Repetition allowed: Find # of ways to pick the first two

numbers from 1 to 44.
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Counting Principles

� Picking with replacement vs. picking without replacement

� Ordered picks vs. unordered picks

Without Replacement With Replacement

Ordered

Unordered
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Permutations

Definition
A permutation rearranges elements without losing, adding, or

changing them, where order matters.

� Permutations of n objects: n! = n × (n − 1)× . . .× 2× 1

� Permutations of r out of n objects: P(n, r) = n!
(n−r)!
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Combinations

Definition
A combination selects r out of n objects without rearrangement.

� Combinations of n objects:
(n
r

)
= n!

(n−r)!·r !

Derivation: Let C (n, r) be the number of ways to select r out of

n items (in any order).

So,
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Counting Examples

Example
Six 6th graders and four 5th graders took an exam. (i) How many

different rankings of the ten students are possible?

(ii) If 5th graders are to be ranked among themselves and 6th

graders among themselves, how many different rankings are

possible?

(iii) From the 6th graders, in how many ways can you select and

rank 3 students?
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Counting Examples

Example
What is the probability that a four-digit PIN does not have

repeated digits?

Example
Committee selection: 6 men, 9 women. Probability of committee

with 3 men and 2 women?
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Ex: NY State Lottery (continued)

In how many ways can you pick 6 numbers from 1 to 44 in the

lottery game?

1. ordered, without replacement:

P(44, 6) =
44!

(44− 6)!
= 44×43×42×41×40×39 = 5, 082, 517, 440

2. ordered, with replacement:

446 = 7, 256, 313, 856

3. unordered, without replacement:(
44

6

)
=

44!

(44− 6)!6!
=

44× 43× 42× 41× 40× 39

6× 5× 4× 3× 2× 1
= 7, 059, 052

4. unordered, with replacement: This is the most difficult case

to count.
(44 + 6− 1)!

(44− 1)!6!
= 13, 983, 816
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Ex: NY State Lottery (continued)

In summary, we have the following table:

Table 1: Number of possible arrangements of size r from n objects

Without Replacement (r ≤ n) With Replacement

Ordered
n!

(n − r)!
nr

Unordered

(
n

r

) (
n + r − 1

r

)
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Birthday Problem

Suppose there are n (n ≤ 365) students in a class. Assuming there

are 365 days in a year, what is the probability that at least two

students have the same birthday?

Solution: Define the event

A = {At least two students have the same birthday},

then Ac = {All students have different birthdays}.

# of elements in the sample space is #(S) = 365n,

# of elements in the event is #(Ac) = P(365, n) =
365!

(365− n)!
.

Then P(Ac) =

(
365!

(365−n)!

)
365n

. So, the answer is

P(A) = 1− P(Ac) = 1−

(
365!

(365−n)!

)
365n

. 27



Birthday Problem

n 10 20 30 40 50

P(A) 0.12 0.41 0.71 0.89 0.97

Table 2: The probability values P(A) for various n (in the Birthday

Problem).

Example
(Challenge Birthday Problem) In the same setting of the

Birthday Problem, what is the probability that

(i) at least k students have the same birthday (for 2 < k ≤ n)?

(ii) exactly k students have the same birthday (for 2 ≤ k ≤ n)?
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Conditional Probability and Independence

In many instances, we update the sample space based on new

information, leading to conditional probabilities.

Example
(Die Roll) Roll a fair die.

1. Find the probability of getting 1.

2. Find the probability of getting 1 when the number is odd.

Definition
(Conditional Probability) If A and B are events and P(B) > 0,

then P(A|B) = P(A∩B)
P(B) .
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Examples

Example
(Two Coin Flips) A fair coin is flipped twice. Let E be both flips

resulting in heads, and F be the first flip resulting in a head. Then

P(E | F ) = P(E∩F )
P(F ) = 1/4

2/4 = 1
2 .

Example
(Drawing Marbles) An urn contains 8 red and 4 white marbles.

Draw 2 marbles without replacement.

P(Both red) = 8
12 × 7

11 = 14
33 .
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Law of Total Probability

Law of Total Probability: For A and B events,

P(A) = P(A∩B)+P(A∩Bc) = P(A | B)P(B)+P(A | Bc)P(Bc).

Generalization for mutually exclusive events:

P(A) =
n∑

i=1

P(A ∩ Bi ) =
n∑

i=1

P(A | Bi )P(Bi ).

Bayes’ Rule:

P(Bi |A) =
P(A|Bi )P(Bi )∑n
j=1 P(A|Bj)P(Bj)

.
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Independence

Definition
(Independence) Two events, A and B, are statistically independent

if P(A ∩ B) = P(A)P(B).

(i) It is tempting to say that events A, B and C are independent

if P(A ∩ B ∩ C ) = P(A)P(B)P(C ), but this is not correct!

(ii) Events A, B, and C are not mutually independent despite

being pairwise independent.
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Independence

(Example for (i): Rolling two fair dice) Roll two fair dice.

Then, the sample space is: S =

{(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (2, 6), . . . , (6, 1), . . . , (6, 6)}.

Define the following events:

A = {doubles occur} = {same #s on the dice} =

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)},

B = {sum is between 7 and 10 (inclusive)} = {(1, 6), (6, 1), (2, 5),
(5, 2), (3, 4), (4, 3), (2, 6), (6, 2), (3, 5), (5, 3), (4, 4), (3, 6), (6, 3), (4, 5),

(5, 4), (4, 6), (6, 4), (5, 5)},

C = {sum is 2 or 7 or 8} = {(1, 1), (1, 6), (6, 1), (2, 5), (5, 2), (3, 4),
(4, 3), (2, 6), (6, 2), (3, 5), (5, 3), (4, 4)},
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Independence

Ex: (Rolling two fair dice, continued)

Then A ∩ B ∩ C = {(4, 4)}, and
B ∩ C = {(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3), (2, 6), (6, 2),

(3, 5), (5, 3), (4, 4)}.

Hence, P(A) = 1/6, P(B) = 1/2, P(C ) = 1/3 and

P(A ∩ B ∩ C ) =
1

36
= P(A) · P(B) · P(C ) =

1

6
· 1
2
· 1
3

but

P(B ∩ C ) = 11/36 ̸= P(B) · P(C ) =
1

2
· 1
3
.

Thus, A, B, C are not mutually independent. □

It is also possible that events A, B and C are pairwise

independent, but not mutually independent!
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Conclusion

� Conditional probabilities allow us to update probabilities based

on new information.

� Independence between events simplifies calculations and

modeling.

� Care must be taken when assessing mutual independence.
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Basic Probability Models

Introduction:

We continue to introduce fundamental probability concepts. While

many of these ideas may seem intuitive, understanding them in

detail is crucial, especially when dealing with complex scenarios

where intuition alone might not suffice. The principles discussed

here lay the groundwork for more advanced probability applications.
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ALOHA Network Example

In this section, we discuss a computer network example. Probability

analysis is instrumental in advancing faster network technologies.

� Today’s Ethernet has its origins in ALOHA, an experimental

network from the University of Hawaii.

� ALOHA featured multiple network nodes attempting to use a

single radio channel for communication with a central

computer. Because of geographical obstacles, the nodes

couldn’t hear each other.

� A single node’s transmission succeeded and received an

acknowledgment, but simultaneous transmissions led to

collisions, rendering messages unintelligible.

� In case of collisions, sending nodes would timeout and

reattempt later. To minimize collisions, nodes adopted

random backoff, temporarily refraining from sending data.
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ALOHA Network Example

� In this context, a variation called ”slotted” ALOHA is

introduced.

� This variation divides time into intervals referred to as

”epochs,” each lasting 1.0 unit. For instance, epoch 1 spans

from time 0.0 to 1.0, epoch 2 from 1.0 to 2.0, and so on.

� Within each epoch, active nodes, meaning nodes with

messages to send, make a decision to send or refrain with

probabilities p and 1-p respectively.

� The designer sets the value of p, mimicking real Ethernet

hardware’s behavior that employs random number generators.
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ALOHA Network Example

� Another parameter q in this model signifies the probability of

an inactive node generating a message in an epoch, simulating

the randomness of users hitting keys on a keyboard. This

models the typical behavior of users intermittently typing on a

computer.

� Let’s assume a simple scenario with two nodes, n = 2, and for

simplicity, message arrival coincides with the middle of an

epoch. Decisions to send or back off occur approximately 90%

into an epoch.

� In a given example, consider an epoch from time 15.0 to 16.0.

At the epoch’s beginning, node A has a message to send while

node B does not.

� At time 15.5, node B makes a decision whether to generate a

message to send or not, with probabilities q and 1-q

respectively. 4



ALOHA Network Example

� Assuming B generates a message, at time 15.9, both node A

and node B independently decide whether to send or refrain,

each with probabilities p and 1-p.

� For this scenario, if A refrains but B sends, B’s transmission

succeeds, and at epoch 16, B becomes inactive, while A

remains active. Conversely, if both A and B attempt to send

at 15.9 and both fail, both nodes will still be active at epoch

16.

� Keep in mind that in this simplified model, when a node is

active, it does not generate additional new messages during

its active time.

5



ALOHA Network Model Summary

� We have n network nodes, sharing a common communications

channel.

� Time is divided in epochs. Xk denotes the number of active

nodes at the end of epoch k .

� If two or more nodes try to send in an epoch, they collide, and

the message doesn’t get through.

� We say a node is active if it has a message to send.

� If a node is active node near the end of an epoch, it tries to

send with probability p; and If a node is inactive at the

beginning of an epoch, then at the middle of the epoch it will

generate a message to send with probability q.
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Calculating P(X1 = 2)

� Let’s examine the network over two epochs: epoch 1 and

epoch 2. We consider a network with only two nodes, referred

to as node 1 and node 2. Initially, both nodes are active. Let

X1 and X2 represent the counts of active nodes at the end of

epochs 1 and 2, respectively, accounting for possible

transmissions. For this example, we’ll assume p = 0.4 and

q = 0.8.

� Let’s determine the probability that X1 = 2 and subsequently

delve into the underlying interpretation of this probability.

� How could X1 = 2 happen? In our examples here, we have n

= 2 and X0 = 2, i.e. both nodes start out active.
� Two cases:

� Both nodes send (p2).

� Both nodes refrain (1− p)2.

� P(X1 = 2) = p2 + (1− p)2 = 0.52. 7



Interpreting Probability: Practical Understanding

� Importance of understanding practical implications of

probabilities.

� Example shift: ALOHA to dice rolling.

� Consider the “experiment” consisting of rolling two dice, say a

blue one and a yellow one. Let X and Y denote the number of

dots we get on the blue and yellow dice, respectively.

� Consider P(X + Y = 6) = 5
36 as an illustration.
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Dice Rolling: P(X + Y = 6) = 5
36

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

Table 1: Sample Space for Dice Example
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Dice Rolling: Theoretical Explanation

� Mathematical theory of probability involves a sample space.

� Weights on outcomes (1/36 each), e.g., (1,5), (2,4), (3,3),

(4,2), (5,1).

� For example, “What we mean by P(X + Y = 6) = 5
36 is that

the outcomes (1,5), (2,4), (3,3), (4,2), (5,1) have total weight

5/36.”

� Limitations: Complexity requires advanced math (measure

theory).
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Practical Probability Computation

� Most probability computations don’t need explicit sample

space.

� Sample space useful for explaining concepts.

� Intuition > Theoretical grounding for understanding

probabilities.

Loss of Intuition in Sample Space Approach

� Complex probability models lead to tricky sample space

definitions.

� No effective way to convey intuition for conditional probability.

� Same limitation for expected value (central topic).
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Intuitive Understanding of Probability

� Imagine repeating the experiment multiple times.

� Record outcomes in a notebook.

� Fraction of lines where event happens defines probability.

� Applying this idea simplifies probability problems.

� Fundamental basis of computer simulation.

Our Definitions: Intuition Over Rigor

� Intuitive definitions for practical understanding.

� Focusing on definitions, not properties.

� Experiment repeatability concept.
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Events and Random Variables

� Events are possible boolean outcomes.

� Random variables are numerical or categorical outcomes.

� Experiment repetition and notebook context.

� Long-run fraction definition for probabilities.

� most probability computations do not rely on explicitly writing

down a sample space.
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Definitions and Properties

� Disjoint events and their probabilities.

�

P(A or B) = P(A) + P(B) (1)

for disjoint events.

� Independent events and their probabilities.

�

P(A and B) = P(A) · P(B) (2)

for independent events.

� Conditional Probability

� Conditional probability P(B|A) = P(A and B)
P(A) .

� Independence simplifies P(B|A) = P(B).
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General Cases and Independence

� P(A or B) = P(A) + P(B)− P(A and B) for general cases.

�

P(A and B) = P(A)P(B|A) (3)

for non-independent events.

� Intuition in determining independence.

� Generalization of (2) to (3).
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“Mailing Tubes” Strategy

Introducing the concept of using (2) and (3) as a strategy to

calculate probabilities. These equations act like ”mailing tubes”

that help compute probabilities by breaking down complex events

into simpler ones.

� Using (2) and (3) as strategic tools.

� Applying the ”mailing tubes” metaphor to probability

calculations.

� Emphasizing the importance of the strategy for simplifying

complex probability problems.
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Probabilities in Notebook Context

The intuitive notion—which is FAR more important—of what

P(X + Y = 6) = 5
36 means is the following. Imagine doing the

experiment many, many times, recording the results in a large

notebook:

� Roll the dice the first time, and write the outcome on the first

line of the notebook.

� Roll the dice the second time, and write the outcome on the

second line of the notebook.

� Roll the dice the third time, and write the outcome on the

third line of the notebook.

� Roll the dice the fourth time, and write the outcome on the

fourth line of the notebook.

� Imagine you keep doing this, thousands of times, filling

thousands of lines in the notebook.
17



Probabilities in Notebook Context

notebook line outcome blue+yellow = 6?

1 blue 2, yellow 6 No

2 blue 3, yellow 1 No

3 blue 1, yellow 1 No

4 blue 4, yellow 2 Yes

5 blue 1, yellow 1 No

6 blue 3, yellow 4 No

7 blue 5, yellow 1 Yes

8 blue 3, yellow 6 No

9 blue 2, yellow 5 No

Table 2: Notebook for the Dice Problem
18



Probabilities in Notebook Context

� The first 9 lines of the notebook might look like Table 2. Here

2/9 of these lines say Yes.

� But after many, many repetitions, approximately 5/36 of the

lines will say Yes.

� For example, after doing the experiment 720 times,

approximately 5
36 × 720 = 100 lines will say Yes.

� This is what probability really is: In what fraction of the lines

does the event of interest happen? It sounds simple, but if

you always think about this “lines in the notebook” idea,

probability problems are a lot easier to solve.

� And it is the fundamental basis of computer simulation.
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Probabilities in Notebook Context

� P(A) means the long-run fraction of lines in the notebook in

which the A column says Yes.

� P(A or B) means the long-run fraction of lines in the

notebook in which the A-or-B column says Yes.

� P(A and B) means the long-run fraction of lines in the

notebook in which the A-and-B column says Yes.

� P(A | B) means the long-run fraction of lines in the notebook

in which the A | B column says Yes—among the lines
which do NOT say NA.

Confusing Probabilities: P(A and B) vs. P(A | B)

� P(A and B) and P(A | B) are distinct.

� Importance of the notebook view.

� Dice example: P(X = 1 and S = 6) = 1
36 vs.

P(X = 1|S = 6) = 1
5 . 20



Example: ALOHA Network

P(X1 = 2) = p2 + (1− p)2 = 0.52 (4)

How did we get this?

� Ci denotes event node i tries to send (i = 1, 2).

� Using definitions and probability properties:

P(X1 = 2) = P(C1 and C2︸ ︷︷ ︸ or not C1 and not C2︸ ︷︷ ︸) (5)

(from (1)) = P(C1 and C2) + P( not C1 and not C2) (6)

(from (2)) = P(C1)P(C2) + P( not C1)P( not C2) (7)

= p2 + (1− p)2 (8)
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Steps Explanation

� (5): List ways {X1 = 2} can occur.

� (6): Define G = C1 and C2, H = not C1 and not C2. G and

H are disjoint.

� (7): C1 and C2 are stochastically independent. Same for

not C1 and not C2.
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Calculating P(X2 = 2)

P(X2 = 2) = P(X1 = 0 and X2 = 2 or X1 = 1 and X2 = 2

or X1 = 2 and X2 = 2)

= P(X1 = 0 and X2 = 2) + P(X1 = 1 and X2 = 2)

+P(X1 = 2 and X2 = 2)

� Since X1 cannot be 0, P(X1 = 0 and X2 = 2) is 0.

� The second term, P(X1 = 1 and X2 = 2), we’ll use (3).

P(X1 = 1 and X2 = 2) = P(X1 = 1)P(X2 = 2|X1 = 1) (9)

� P(X1 = 1): For the event in question to occur, either Node A

would send and Node B wouldn’t, or A would refrain from

sending and Node B would send. Thus

P(X1 = 1) = 2p(1− p) = 0.48 (10) 23



Calculating P(X2 = 2|X1 = 1)

Now, we need to find P(X2 = 2|X1 = 1). This again involves

breaking big events down into small ones. If X1 = 1, then X2 = 2

can occur only if both of the following occur:

� Event A: Whichever node was the one to successfully transmit

during epoch 1—and we are given that there indeed was one,

since X1 = 1—now generates a new message.

� Event B: During epoch 2, no successful transmission occurs,

i.e. either they both try to send or neither tries to send.

Recalling the definitions of p and q, we have that

P(X2 = 2|X1 = 1) = q
[
p2 + (1− p)2

]
= 0.41 (11)

Thus, P(X1 = 1 and X2 = 2) = 0.48× 0.41 = 0.20.
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Further Calculations and Interpretations

� Calculate P(X1 = 1|X2 = 2) using conditional probability

formula.

� Understanding the notebook view.

� Calculation of P(X1 = 2 or X2 = 2) using probability

properties.

� Note on non-independence of events involving X1 and X2.
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Example: Dice and Conditional Probability

� P(B|A) and P(A|B) are different quantities.

� P(B|A) focuses on lines where event A occurs.

� P(A|B) focuses on lines where event B occurs.

� Consider two dice rolls, resulting in random variables X and

Y .

� Let S = X + Y , T = number of even-dotted dice (i.e.,

number of dice having an even number of dots, 0, 1 or 2. ).

� If S = 12, then T = 2 (P(T = 2 | S = 12) = 1).

� If T = 2, it doesn’t imply S = 12 (P(S = 12 | T = 2) < 1).
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ALOHA Experiment in the Notebook

Think of doing the ALOHA experiment many times:

� Run the network for two epochs, starting with both nodes

active.

� Record outcomes in the notebook.

� Repeat for multiple iterations.
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Notebook Outcomes

Line X1 = 2 X2 = 2 X1 = 2 and X2 = 2 X2 = 2|X1 = 2

1 Yes No No No

2 No No No NA

3 Yes Yes Yes Yes

4 Yes No No No

5 Yes Yes Yes Yes

6 No No No NA

7 No Yes No NA

Table 3: Top of Notebook for Two-Epoch ALOHA Experiment
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Observations from the Notebook

� Among the first seven lines, 4/7 have X1 = 2, approaching

0.52 with many lines.

� Among the first seven lines, 3/7 have X2 = 2, approaching

0.47 with many lines.

� Among the first seven lines, 2/7 have X1 = 2 and X2 = 2,

approaching 0.27 with many lines.

� Among the first seven lines, 2/4 with non-NA X2 = 2|X1 = 2

say Yes, approaching 0.52 with many lines.

29



A Note on Modeling

� Understand the ALOHA model and its parameters.

� Model properties captured:

� Differences in network usage between A and B.

� Adjusting model parameters to accommodate different

behaviors.

� Modeling involves creative problem-solving.

� Build models by identifying important variables, using

formulas, and reasoning through events.
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Solution Strategies

� Naming important variables and events.

� Breaking down complex events into simpler ones.

� Adhering to conventions, using proper notation.

� Meticulous step-by-step approach for learning.

� Developing creative problem-solving skills.
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Other Examples (see Chapter 1 of Matloff’s book)

� Bus Ridership

� A Simple Board Game

� Document Classification

� Preferential Attachment Model

� Random Groups of Students

� Lottery Tickets

� Gaps between Numbers

� Probability of Getting Four Aces in a Bridge Hand
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Conclusion I

Probability concepts provide powerful tools for understanding and

analyzing real-world scenarios. The ”notebook” perspective and

strategic equations like (2) and (3) help simplify complex

probability problems, making them more manageable.

� Probability concepts are foundational for diverse applications.

� The ”notebook” view enhances intuition and simplifies

problem-solving.

� Equations (2) and (3) offer a strategic approach to calculating

probabilities.

� Probability analysis plays a critical role in various fields, from

networking to finance and beyond.
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Conclusion II

� Probability concepts applied to various examples.

� Creative problem-solving key in modeling.

� Understanding conditional probability, events, and modeling.

� Use proper notation, step-by-step approach for accurate

solutions.
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Bayes’ Rule

(This section should not be confused with Section 8.7. The latter

is highly controversial, while the material in this section is not

controversial at all.)

P(A|B) = P(A)P(B|A)
P(A)P(B|A) + P(not A)P(B|not A)

(12)

This is known as Bayes’ Theorem or Bayes’ Rule.
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Combinatorics-Based Probability Computation

”And though the holes were rather small, they had to count them

all”

- From the Beatles song, ”A Day in the Life”

In some probability problems, all outcomes are equally likely. The

probability computation is a matter of counting outcomes of

interest and dividing by total possible outcomes. We’ll discuss two

examples here.
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Five Card Probabilities

Suppose we deal a 5-card hand from a regular 52-card deck.

Which is larger: P(1 king) or P(2 hearts)?

Key Point: All possible hands are equally likely, so counting is the

approach.

Probability of 1 king:
4·(484 )
(525 )

= 0.299

Probability of 2 hearts:
(132 )·(

39
3 )

(525 )
= 0.274

The 1-king hand is slightly more likely.
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Random Groups of Students

A class has 68 students: 48 CS majors, 20 others. Randomly

assign 4 students to a group. Find the probability of exactly 2 CS

majors in a group.

Probability:
(482 )·(

20
2 )

(684 )
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Lottery Tickets

Twenty tickets are sold in a lottery, numbered 1 to 20. Five tickets

are drawn for prizes. Find the probability of two even-numbered

tickets winning.

Probability:
(102 )·(

10
3 )

(205 )
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“Association Rules” in Data Mining

Data mining: extracting patterns from large databases. Market

basket problem: finding patterns in sales transactions.

Association rules: A,B ⇒ C ,D,E . How many possible rules with

three or fewer antecedents out of 20 products?

Probability:
∑3

k=1 (
20
k )·(

20−k
1 )∑19

k=1 (
20
k )·(

20−k
1 )

= 0.0022
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Multinomial Coefficients

Question: Seating arrangements for 6 Democrats, 5 Republicans,

and 2 Independents. How many? Using multinomial coefficients:

13!
6!5!2!

Multinomial Coefficients: c!
c1!...cr !

, c1 + ...+ cr = c

41



Probability of Four Aces

A deck of 52 cards dealt to four players, 13 cards each. Probability

that one player (Millie) gets all four aces:

Probability: 48!
13!13!13!9!/

52!
13!13!13!13! = 0.00264
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