Introduction to Statistical Inference



Overview of Statistical Inference

Statistical inference is the process of extrapolating from sample
data to make estimates about a larger population. This is
commonly seen in election polling where a sample is used to
estimate the support for a candidate with a specified margin of
error.

Margin of Error

e Margin of error acknowledges that a sample estimate (e.0.562
or 56.2% in our example) is not the exact population value.

e |t attempts to quantify the accuracy of the estimate.



The Role of Normal Distributions

e Classical statistics often assumes normally distributed
populations.

e Normal distributions are not always precise in real-world data,
like corporate revenues.

e Despite limitations, these assumptions are effective due to the
Central Limit Theorem.

Central Limit Theorem and lts Importance

e The Central Limit Theorem (CLT) is pivotal for working with
non-normal populations.

e |t states that the distribution of sample means approximates a
normal distribution.



Approximate Distribution of Standardized X

The key formula presented in Section 9.8 is:
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where:

e Z has an approximately N(0, 1) distribution.
e 0 is the population variance.
e n is the sample size.

e This applies even for skewed data samples.



Application of Central Limit Theorem

With the Central Limit Theorem, we can see that a histogram of
many sample means (e.g., mean revenues P) will approximate a
bell-shaped curve, even if the original data is skewed.

e Statistical Inference allows for extrapolation from samples to
populations.
e The Central Limit Theorem justifies the use of normal

distribution assumptions in practical scenarios.



Confidence Intervals for Means



Introduction to Confidence Intervals

e Recall that the sample mean as a random variable.
o Will develop the concept of margin of error as seen in election
polls.

e Key questions: What is margin of error and how can we
calculate it?



Basic Formulation

e Consider a random sample W4, ..., W, from a population with

mean  and variance o (both unknown).
e The central 95% of the N(0,1) distribution is our focus.

e Using standard normal distribution to find cutoff points at
-1.96 and 1.96.



Calculating the Confidence Interval

The confidence interval is given by:

P(—1.96 < Z < 1.96) = 0.95
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Adjusting for Unknown o

e Substitute sample standard deviation s for ¢ in the formula.

e The adjusted confidence interval is:
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95% Confidence Interval and Margin of Error

Thus, the (approximate) 95% confidence interval for y is:
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The term 1.96% represents the margin of error.

A 95% confidence interval provides a range within which we
are fairly confident the true mean lies.

The margin of error reflects the accuracy of our estimate.



Confidence Intervals from Approximately Normal Estimators

e Recall the estimation of parameters in a parametric family.

~

e Will focus on estimators () that are approximately normally

distributed.
Approximate 95% Confidence Interval for 0

e For an approximately normally distributed estimator 0, an
approximate 95% confidence interval for 6 is given by:

0 +1.96 x s.e.(d)
where s.e.() is the standard error of 4.
Standard Errors and Confidence Intervals

e Forming confidence intervals in terms of standard errors is a

common practice.
e This approach is applicable to many estimators that exhibit

approximate normality.



Application to Maximum Likelihood Estimators

e Maximum Likelihood Estimators (MLEs) often are
approximately normal (under mild conditions).

e This characteristic facilitates easy derivation of confidence
intervals for MLEs.

e Confidence intervals from approximately normal estimators
provide a method to estimate the range within which a
parameter lies.

e The concept is widely applicable in statistical estimation and
inferential statistics.
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Example: Pima Diabetes Study

A famous data set involves Pima Indian women, with Y being 1 or
0, depending on whether the patient does ultimately develop
diabetes, and the predictors being the number of times pregnant,
plasma glucose concentration, diastolic blood pressure, triceps skin
fold thickness, serum insulin level, body mass index, diabetes
pedigree function and age.

e will compare the (mean) Body Mass Index (BMI) values
between diabetic and nondiabetic women.

e Population mean and variance denoted as ul,af for diabetics,
and MO;U% for nondiabetics.
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Forming a Confidence Interval

Estimating the Difference

e Interest in estimating the difference 6 = 1 — ppo.

e Sample estimate found to be 4.84 (BMI value difference),
with a standard error of 0.56.

e Question: Is (mean) BMI substantially higher among diabetics
in the population?

e Formulating a confidence interval: Our 6 was
U— V =35.14 — 30.30 = 4.84, with a standard error of 0.56,
then
4.84 +1.96 x 0.56 = (3.74,5.94)

e This interval provides an estimate range instead of a single
point estimate.
e Margin of error calculated as 1.96 x 0.56 = 1.10. 12



Interpreting the Results

e The confidence interval suggests diabetics have a higher
average BMI.

e The interval width is substantial but supports the conclusion
of a significant difference.

e This approach acknowledges the use and possible limitations
of sample-based estimates.

e The Pima Diabetes Study provides a practical example of how
confidence intervals can be used to understand population
parameters.

e The study indicates a substantial difference in BMI between
diabetic and nondiabetic women.
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Meaning of Confidence Intervals

e Objective: Estimating the mean weight (1) of all adults in

Auburn.
e Method: Sample 1000 people randomly and record their
weights W;.

e The true population mean g is unknown; thus, we estimate it
using the sample mean W.

e Forming a confidence interval provides a measure of the
accuracy of W.

Interpreting Confidence Intervals

e Example 95% confidence interval: (142.6,158.8).
e Interpretation: We are a 95% confident that the mean weight
(0 is within this interval.
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Understanding Through Repetition

e Imagine conducting the same survey repeatedly and recording
each interval.
e Each sample would give a different interval with a different

center and radius (i.e. margin of error).

e About 95% of these intervals will contain the true mean
weight 1 (alas, we don’t know which ones).
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Group Experiment Scenario

e Example: 100 people (you and 99 friends) each conduct the
survey independently.

e Each person will get a different sample and thus a different
confidence interval.

e Approximately 95 of these 100 intervals will contain the true
population mean weight.
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Practical Application

¢ In reality, only one sample of 1000 people is usually taken.

e The repeated sampling and notebook idea helps in
understanding the meaning of a 95% confidence level.

e |t emphasizes that our single interval has a 95% chance of
containing the true p.

e Confidence intervals provide an estimated range for population
parameters.

e Understanding their meaning is crucial for correctly
interpreting statistical results.
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Confidence Intervals for Proportions

e We now explore how to find confidence intervals for
proportions.

o Example scenario: estimating the proportion of people
voting for a candidate in an election.

e Confidence intervals for proportions provide a method to
estimate the range within which a population proportion lies.

e The approach simplifies computations, especially in cases
where outcomes are binary.

Derivation: Sample Proportion

e Estimate the population proportion p using a sample
proportion p (p-hat).
e Assign value Y;: 1 if a person votes for candidate A, 0

otherwise.

S Y 18

e Sample proportion p is the mean of Yj: p = ==



Confidence Interval for Proportion

e Since we are working with means, we can use the formula for
confidence interval of means.

e An approximate 95% confidence interval for p is
p+1.96 x s/ /n.

e Here, 52 is the sample variance among the ;.

Simplifying the Confidence Interval

e Notice that each Y; is either 1 or 0 (i.e., Bernoulli trial).
e Recall Var(Y;) = p(1 — p), so the sample variance is p(1 — p).

e The simplified confidence interval for p is then:
(5-196\/3(1 —p)/n B+ 1.96v/5(1 — 5)/n)
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Confidence Intervals for Machine Classification of Forest Cov-

ers

e Remote sensing is machine classification of type from
variables observed aerially, typically by satellite. The
application we'll consider here involves forest cover type for a
given location; there are seven different types.

e Direct observation of the cover type is either too expensive or
may suffer from land access permission issues. Hence, we
guess cover type from variables that can be more easily
obtained.

e Objective: Estimate population mean differences in hillside
shade at noon (HS12) for different cover types. Let p; and po
be the population mean HS12 among sites having cover types
1 and 2, respectively. We aim to estimate p1 — pp from our

data.
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Estimation and Confidence Interval for Mean Difference

e Over 50,000 observations, using the first 1,000 for analysis.

e Aim: Estimate the difference in population mean HS512
between cover types 1 and 2.

e Sample means for HS12 in cover types 1 and 2: 223.8 and
226.3, with s values of 15.3 and 14.3, and the sample sizes
were 226 and 585.

e We will find an approximate 95% confidence interval for
H1 — H2.
e Confidence interval for mean difference: (—4.8,—0.3).

e Interpretation: The difference is not very large, suggesting
HS12 might not be a strong predictor for cover type.
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Population Proportions for Forest Covers Data

e Analyzing the difference in population proportions for cover
types 1 and 2.

e Sample proportion difference:
p1 — p2 = 0.226 — 0.585 = —0.3509.

e Standard error calculation:
+/0.001 - 0.226 - 0.774 + 0.001 - 0.585 - 0.415 = 0.02043769

Confidence Interval for Proportion Difference

e Confidence interval for proportion difference:
—0.359 4+ 1.96 - 0.020 = (—0.399, —0.319).

e Conclusion: This interval suggests a substantial difference in
proportions, likely indicating more sites of type 2.
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Conclusion

e The study illustrates the use of confidence intervals in
environmental data analysis.

e Highlights the importance of confidence intervals in
interpreting the significance of results, both for means and
proportions.
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Student-t Distribution

e John Tukey (a pioneering statistician) emphasized on “an
approximate answer to the right question” being better than
“an exact answer to the wrong question”.

o Will introduce the Student-t distribution and its application in
statistical analysis.

Definition of the Student-t Distribution

e The Student—t distribution is defined for the quantity
T —

S/\/
e 52 is the version of sample variance where we divide by n — 1

instead of n.

24



Assumptions and Characteristics

e Assumes the sampled population has a normal distribution.

e The general definition of the Student-t family is distribution

of ratios U/+\/V /k, where
e U has a N(0,1) distribution
e V has a chi-squared distribution with k degrees of freedom

e U and V are independent
Student-t Distribution in Practice

e The distribution is tabulated or use a statistical software like
R.

e Example: When computing confidence interval for a sample
size of 10, you would use the Student-t distribution.
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Why Not Always Use the Student-t Distribution?

e The parent population must have an exact normal
distribution, which is rarely the case in reality.

e For large n, the difference between the t-distribution and
(standard) normal distribution is negligible.

e The Student-t distribution provides a more precise confidence
interval for small sample sizes.

e However, its assumptions limit its applicability in many
real-world scenarios.
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Significance (or Hypothesis) Tests




Introduction to Significance Tests

e Significance tests form the core of statistical methods used
across various scientific disciplines.

e Their presence is ubiquitous in scientific journals in fields like
medicine, psychology, and economics.
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Criticism of Significance Tests

e In 2016, the American Statistical Association issued a policy
statement highlighting the overuse and misinterpretation of

significance tests.

e The statement emphasizes that concerns about significance

tests are not new but have persisted for decades.

Further Developments

e |n 2019, a Nature article echoed the ASA's statement, further
emphasizing the issue.

e These developments raise questions about the role and
interpretation of significance tests in scientific research.
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Understanding Significance Tests

e To understand the concept, consider a simple example:
deciding whether a coin is fair (i.e., has a heads probability of
0.5).

e This example sets the stage for exploring the mechanics and
implications of significance testing.

e While significance tests are fundamental to statistical analysis,
their application requires careful consideration and
interpretation.

e The recent critiques highlight the need for a deeper
understanding of their implications in scientific research.
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The Proverbial Fair Coin: Assessing Fairness in Coin Toss

e Context: Using a coin flip at the Super Bowl to determine

the first kickoff.

e Objective: Assess the fairness of the coin.

Defining fairness: p represents the probability of the coin
landing heads, p = 0.5.

Methodology for Assessing Fairness

Toss the coin 100 times.

Form a confidence interval for p to determine fairness.
Margin of error and interval location provide insights into the
coin’s fairness.

Example: Interval (0.49, 0.54) suggests reasonable fairness.
Key point: Even an interval like (0.502, 0.506) indicates

fairness in practice, as it is near 0.5.
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Traditional Statistical Approach

o Traditional method: Test the null hypothesis Hy : p = 0.5
against the alternate hypothesis Hy : p # 0.5.
e This procedure is known as significance testing.

e Significance testing is central to statistical inference.

e While widely used, significance testing has recognized
problems.

e Next, we'll explore both the mechanics and the criticisms of
significance testing.

e Understanding the use and implications of significance tests is
crucial for statistical inference.

e Careful interpretation is needed to assess “fairness’ (of the
coin) in real-world scenarios.
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The Basics of Significance Testing

e Approach: Treat Hp (null hypothesis) as true unless data

strongly suggest otherwise.

e Plan: Toss a coin n times, consider it fair unless the number

of heads is extremely high or low.
Statistical Methodology

e Let p be the true probability of heads, and p the proportion in

our sample.
e The standard deviation of pis \/p(1 — p)/n, leading to the

standard error of \/p(1 — p)/n.
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Computing the Z-score

e Assuming Hp is true (i.e., p = 0.5), compute Z using the

formula: N
p—05

/1 x05(1-05)

e Z follows an approximate N(0,1) distribution under Hp.

Z =

Interpreting the Z-score

e Use Z to test the fairness of the coin.

e If Z< —1.96 or Z > 1.96, we reject Hy at the 5%
significance level («).

e Example: For 100 coin tosses, reject Hy if we get fewer than
40 or more than 60 heads.
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Significance vs. Importance

e "“Significant” does not imply “important”.

e |t indicates that the observed value of Z is a rare event under
Ho.

e Significance testing forms a core part of statistical inference.

e Requires careful interpretation to determine the fairness or
bias in a scenario like a coin toss.
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General Testing Based on Normally Distributed Estimators

o \We discussed the construction of confidence intervals before,
and now we will discuss significance testing for normally
distributed estimators.

e Then extend the methodology to general statistical estimators.

Formulating the Test Statistic

e Consider an estimator 6 for a population value 6.

e To test Hp : § = c, use the test statistic:

7= 5_5
se(0)

where s.e.(6) denotes the standard error of .

85



Significance Testing Procedure

e The process involves rejecting Hp at the significance level
a = 0.05if |Z] > 1.96.

e This methodology is a generalization of the approach used in

specific cases, like coin tosses.

e This approach provides a systematic method to conduct
significance tests for a variety of estimators.

e Essential for statistical inference and hypothesis testing in
various research contexts.
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Understanding the Notion of “p-Values”

e Revisiting the coin example: 62 heads resulted in Z = 2.4.
e Strong rejection of Hy at the 5% level.

e We next introduce the concept of p-values as a measure of

significance.

Defining p-Values

e p-value: The smallest level at which Hy would be rejected.
e Computed from the area under the N(0,1) distribution curve.

e The smaller the p-value, the more significant the result.
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Computing p-Values

e Example: For Z = 2.40, p-value is 0.016.
e Indicates rejection of Hy at the 1.6% level.
e Significance is inversely related to the p-value.

Interpreting p-Values

e Extremely small p-values indicate very high significance.
e In practice, p-values are often denoted by asterisks in

statistical reports.
e Example: In R, one asterisk for p < 0.05, two for p < 0.01,

etc.
Conclusion

e p-values provide a quantitative measure of the strength of

evidence against Hp.

e Essential for understanding the significance of statistical tests 38



Understanding Randomness in Hypothesis Testing

e Note that Hy is not a random event.

e The true value of p does not change; it's a property of the

coin.

e Incorrect to speak of the probability that Hy is true.

Misconceptions in Probability Statements

e Thus, it's incorrect to write 0.05 = P(|Z| > 1.96|Hp) as Hp is
not a random event.

e Proper notation is 0.05 = Py, (|Z| > 1.96).
e This means the probability that |Z| exceeds 1.96 under the

assumption that Hy is true.
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What’s Wrong with Significance
Testing and Alternatives




Introduction

e Significance testing: Mathematically correct, but often
noninformative or misleading.

e Origin of the 5% significance level by Sir Ronald Fisher in the
1920s.

e Continued use despite opposition and recognition of its
limitations.

e Many statisticians are aware of its faults but are constrained
by standards and practices.
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Recommendations and Alternatives

Reporting test results while acknowledging their limitations.

Complementing significance tests with confidence intervals
and other methods.

Emphasizing a holistic understanding of data beyond just
p-values and significance levels.

Importance of critical and informed use of statistical methods.

Significance testing has its place but should be used
judiciously and in context.
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The Basic Fallacy of Significance Testing

e Testing Hp is inherently flawed because it's known a priori
that Hy is false.

e Example: For any real coin, Hp : p = 0.500000000... is
practically impossible.

e This renders significance testing nonsensical from the start.

The Misleading Nature of “Significant”

e A coin with p = 0.502 is practically fair, but a large enough
sample size could falsely identify it as “significantly” biased.

e The misuse of the term “significant” leads to

misunderstanding the practical importance of the findings.
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Problems with Significance Testing

e Large sample sizes: Tiny differences may be labeled as
“significant.”

e Small sample sizes: Could miss important differences, failing
to identify actual significant effects.

e Hj is incorrectly specified: The interest is in whether p is
near 0.5, not exactly 0.5.

¢ Misinterpretation of “significant”: It should not be
confused with “important.”

e Significance testing, while core to statistics, is noninformative
or misleading.
e This perspective is recognized by statisticians and scientists,

but the practice is deeply entrenched.
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Critical Thinking in Statistics and
Alternatives to Significance Testing




The Importance of Understanding Statistics

e Statistics is not just for learning but for practical use in
various aspects of life.

e Apply critical thinking, especially about the problems of
significance testing.

e Necessary for each individual to form their own opinion on the
use of significance testing.

Alternatives to Significance Testing

e Making informed decisions is more important rather than
relying solely on significance tests.

e Suggestion to set practical limits of fairness in hypothesis
testing.

e Example: Testing Hy : 0.49 < p < 0.51 for a coin’s fairness.
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Confidence Intervals: A Superior Approach

e Confidence intervals provide both accuracy (width) and
fairness (location).

e Decision-making should not be based solely on whether a

specific value is within the interval.

o Example: Accepting a coin as fair based on an interval close
to 0.5, even if 0.5 is not included.

e The need for a thoughtful approach to statistical analysis.

e Understand the limitations of significance testing and explore

more informative alternatives.
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Decision-Making Based on Preponderance of Evidence

e Decision-making should be based on preponderance of
evidence in statistical analysis.

e Significance Testing is analogous to the stringent proof

standards in criminal trials.

Statistical Data as Evidence

e Statistical data should be viewed as evidence rather than

conclusive proof.

e The width of a confidence interval indicates the likely

accuracy of this evidence.
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Integrating Evidence in Decision-Making

e Decision-making should integrate statistical evidence with
other relevant information.
e The goal is to make a decision based on the overall

preponderance of evidence.

e One should not rely solely on formulaic methods like
significance testing.

e A more thoughtful and holistic approach to data analysis and
decision-making is needed.

Conclusion

e Making informed decisions in statistics involves weighing all
available evidence.
e Move beyond rigid statistical procedures to embrace a broader

view of evidence and its interpretation.
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