Multiple Random Variables



Univariate vs. Multivariate Models

e Discussed so far: univariate models.

e This lecture's focus: multivariate models.

Why Multivariate Models?

e Rare to observe just one random variable.

e E.g., with people: body weight, temperature, height, blood
pressure, etc.

e Need models for multiple random variables.

e Focus: Bivariate models with two random variables.



Random Vectors

Definition: An n-dimensional random vector is a function from
a sample space S into R".

Example
Roll two dice. There are 36 outcomes.

e X = |[difference of 2 dice| (i.e., absolute value of the
difference between the outcomes of the two dice)

e Y = sum of 2 dice

(X, Y) is a 2-dimensional random vector, specifically a discrete
bivariate random vector.



Joint Probability Mass Function

Definition: For discrete bivariate random vector (X, Y), the
function f(x,y) defined as:

flx,y) =P(X=x,Y =y)
is called the joint pmf of (X, Y).
Requirements:

1. 0<f(x,y) <1

2. Z fix,y)=1

(x.y)ER?

That is, any nonnegative function from R? into R that:

e is nonzero for at most a countable number of (x,y) pairs,
e sums to 1,

is the joint pmf for some bivariate discrete random vector (X, Y).



Example 1: Define:
f(0,0)=17(0,1) =1/6
f(x,y) =1 f(1,0) = f(1,1) =1/3

otherwise =0

Example 2 (Joint pmf for Two Dice)
Find fx y(x,y) for (X, Y') defined with two dice before.

X\Y| 2|3 |4|5|6 /|7 |8|9]|1011]12
0 [2]0|x[0|x=|0[L]0[x]0]=%
1 0| %|0 |45 |0|x|0|x|0]%]|0
2 00|+ |0 |%|0|x|0|x%]0]0
3 0[0|0 |+ |[0|x|0|x|0]O0]0O
4 0|0 |O0|O0O|&F|O0|&F]0|0|0]|oO
5 0/ 0|0[0|O0O|x|O0]O0|O0|O0]|O




Using the Joint pmf

The joint pmf can be used to compute the probability of any event
defined in terms of (X, Y). Given:

P((X,Y)eA) = > flxy)

(x,y)EA
Example: Consider:
A={(x,y):x<4andy =7}

Only relevant pairs: (x,y) = (1,7) and (x,y) = (3,7).

1
P(X<4,Y=T7)=f(1,7)+f(3,7) = EJF% é



Marginal pmf

Even if considering a model for (X, Y), we might be interested in

probabilities only for X.
fx(x) = P(X = x)

This is called the marginal pmf of X.

Theorem (Calculating the Marginal pmf)
For random vector (X, Y) with joint pmf fx y(x, y):

()= fxy(xy)

and

fr(y) = fv(xy)



Marginal pmf for the rv's in the two-dice example:

X\Y | 2|3 |4 |5 |67 |8 |9 |10]11|12] fx(x)
0 b 0 Jb 0 Jb 0 Jb 0 b 0 b 6

36 36 36 36 36 36 36
1 0 | = |0 |x|0|x|O0|X|0|&]0 2
2 00|+ |0|x|0|x|0|x|O0]0O 2
3 000 |&%|0|&|0|&|0]0]0O =
4 o(0|O0|O0|&|0|&[0|0]|O0]O =
5 o(0|O0|O0|O0O|&x|O0]|O0|O0]|O]O 2




Marginal pmf - Usage

The marginal pmf of X or Y:

e Matches the pmf of X or Y defined previously.
e Computes probabilities involving only X or only Y.

e Joint pmf is required for probabilities involving both X and Y.

Dice Probabilities: Marginal Distribution

Example
Calculate the quantities involved only X or Y. E.g.

P(X < 3) = x(0) + fx(1) + fx(2) = 1/6 +5/18 +2/9 = 2/3.



Importance of Joint Distribution

Notes:

e Marginal distributions of X and Y do not completely describe

the joint distribution.
e There could be many joint distributions with the same

marginal distributions.

Example
(Same Marginals, but Different Joint pmf)

(1) £(0,0) = 1/12, £(1,0) = 5/12,
£(0,1) = £(1,1) = 3/12

(2) £(0,0) =g(0,1) =1/6,
g(1,0) =g(1,1)=1/3



Joint pmf Tables

X 4 0 1 fx(x)
0 1/12 | 5/12 | 1/2
1 3/12 | 3/12 | 1)2
fy(y) 1/3 2/3 1
S0 |1 s
0 1/6 | 1/3 | 1/2
1 1/6 | 1/3| 1/2
gv(v) 1/3 |2/3 1

(X,Y) and (U, V) have the same marginal distributions, but their
joint pmfs are different!
10



Continuous Bivariate Random Vectors

To this point, we discussed discrete bivariate random vectors. We
can also consider random vectors whose components are
continuous random variables.

Definition

Joint Density Function: A function f(x,y) from R? into R is
called a joint probability density function or joint pdf of the
continuous bivariate random vector (X, Y) if:

P((X,Y) € A) = / /A Ao WEEE

11



Properties of Joint pdf

Notes:

1. A valid joint pdf f(x,y) must satisfy:
e f(x,y) >0 forall x,y

/ / f(x,y)dxdy =1

2. The marginal pdfs of X and Y (respectively):

K= [ fl)dy

—00

and
fr(y) = / f(x,y)dx

—0o0

12



Example: Calculating Joint Probabilities - 1

Define the joint pdf of (X, Y) by:
6xy?, if0<x<landO<y<1
f(x,y) = _
0, otherwise.
Questions:

1. Show it's a valid joint pdf.
2. Find fx(x) and fy(y).
3. Calculate P(X + Y > 1).

Solution:

13



Example: Calculating Joint Probabilities - 2

Joint pdf for a continuous random vector:

( ? ) ’
r(x _y '

if0<x<y<oo

Find P(X+Y >1).
See the last slide for the Solution.

14



Joint CDF of (X,Y)

Definition
The joint cdf of (X,Y) is:

F(x,y)=P(X <x,Y <y)

For discrete case:
Flx,y) = > f(s,t).
t<y s<x

For continuous case:

F(x,y) = /_yoo /_; f(s, t)dsdt

From the Fundamental Theorem of Calculus (for two variables):
9?F(x,y)

— == .

xdy (x,y)

ii5)



Conditional Distributions and Independence

When observing two random variables, (X, Y), the values are
usually related. Knowing the value of X can give us information
about Y. Conditional probabilities can be computed using the
joint distribution of (X, Y).

Conditional Distribution: Discrete Case

Definition
For a discrete bivariate random vector (X, Y) with joint pmf
f(x,y) and marginal pmfs fx(x) and fy(y):

f
e Conditional pmf of X given Y = y: f(x|y) = f(X(, Y))
Y\
provided that fy(y) #0
e Conditional pmf of Y given X = x: f(y|x) = ff(x(,)i/))
X

provided that fx(x) # 0 16



Properties of Conditional pmf

f(x|y) is a valid pmf (provided fy(y) # 0) since:
e f(x|y) >0 for all x.
o X flxly) =1
Similarly for f(y|x).
Example (Calculating Conditional pmfs)
Define the joint pmf of (X, Y):
o £(10,0) = £(20,0) = 2/18
e f(10,1) = 7(30,1) = 3/18
£(20,1) = 4/18, £(30,2) = 4/18

1. Obtain conditional distribution of X given Y = y.
2. Find P(X > 10]Y =1).

17



0 1 2 fx(X)

10 2/18 | 3/18 | 0 | 5/18

20 2/18 | 4/18 | 0 | 6/18

30 0 | 3/18 |4/18 | 7/18
fy(y) 4/18 | 10/18 | 4/18 | 1

18



Conditional Distribution: Continuous Case

Definition
For a continuous bivariate random vector with joint pdfs f(x, y)

and marginal pdfs fx(x) and fy(y):

e Conditional pdf of X given Y =y (provided that fy(y) # 0):

f(x,y)
f(xly) =
=5
e Conditional pdf of Y given X = x (provided that fx(x) # 0):
f(x,y)

) = E0%

19



Indicator Functions

Recall

1 fxeA
Ia(x) = _
0 otherwise

We will use the indicator function to specify support of a

distribution or a r.v.

For example:
f(x; A) = de MI(x > 0)

20



Example: Calculating Conditional pdfs

Let the continuous random vector (X, Y) have joint pdf:
fxy(x,y)=e7-1(0<x <y <o0)
Questions:

1. Marginal pdfs of X and Y.
2. Find f(y|x) for any x such that fx(x) > 0.

Solution:

21



Independence

Definition
Let (X, Y) be a bivariate random vector with joint pdf or pmf

f(x,y) and marginal pdfs or pmfs fx(x) and fy(y). The random
variables X and Y are independent if:

fx.y(x,y) = ix(x)fy(y) forall (x,y) € R?

If X and Y are independent, then:

f(xly) = fx(x) and f(y[x) = fy(y)

22



Example: Checking Independence - 1

Consider the discrete bivariate random vector (X, Y') with:
£(10,1) = £(20,1) = £(20,2) = 1/10
£(10,2) = £(10,3) = 1/5
f(20,3) =3/10

Are X and Y independent?
Solution:

23



Checking Independence without Marginals

Question: Can we determine independence from a joint pdf or
pmf function without the marginals?

Theorem

Let (X, Y) have joint pdf or pmf f(x,y). X and Y are

independent iff functions g(x) and h(y) exist such that:
f(x,y) =g(x)h(y) forallx,y eR

Note: If true, then fx(x) = cg(x) and fy(y) = dh(y) where ¢ and
d make them valid pdfs or pmfs.

24



Example: Checking Independence - 2

Consider X and Y with joint pdf:

1
fx v(x,y) = @x2y4e_y_x/2 forx >0, y>0

Are X and Y independent?

Solution:

25



Notes on Independence

1. If the support of joint pdf of X, Y isn't rectangular, X and Y
aren’t independent.

2. If X and Y are independent with marginals fx(x) and fy(y),
then:

f(x,y) = fx(x)fy(y)
Theorem

If X ~ N(px,02) and Y ~ N(,uy,af/) are independent, then
Z=X+Y has N(ux + py,02 + 0}2,) distribution.

26



Let X and Y be independent Exponential(1) random variables.
(a) Joint pdf of (X, Y).
(b) Find P(X > 4,Y < 3).

Solution:
fix,y) =e ) forx>0, y>0

P(X>4Y <3)=e*1—-e3)~0.017

27



STAT 5600/6600

27



Multivariate Distributions



Multivariate PMFs and Densities

Introduction:

e Individual pmfs fx and densities fx don't describe correlations
(i.e., joint trends) between variables.

e Need multivariate distributions to describe these relationships.



Multivariate PMFs



Multivariate Probability Mass Functions

Multivariate Probability Mass Functions
Recall: For a single discrete random variable X, the distribution
lists all values of X with their probabilities.

For discrete random variables U and V:

fuv(i,j)=P(U=iand V =) (1)



Example: Yellow and Blue Marbles

Consider a bag with two yellow marbles, three blue ones, and four
green ones. Four marbles are chosen at random, without
replacement. Let Y and B denote the number of yellow and blue
marbles chosen:

fy B(i,J) = Ig)

Distribution Table for Y and B
i\ Jj 0 1 2 3
0 0.0079 | 0.0952 | 0.1429 | 0.0317
1 0.0635 | 0.2857 | 0.1905 | 0.1587

2 0.0476 | 0.0952 | 0.0238 0

This table represents the distribution of the pair (Y, B).



Marginal PMFs

The univariate pmfs, termed marginal pmfs, can be derived from
the multivariate pmf:

fu(i) = qu,v("yf) (3)

and similarly for V.



Expected Value

For any function g() of two discrete random variables U and V/,

the expected value of g(U, V) is:

Elg(U, V)] = 3 3 gl )fu (i) *)

Example: Consider the earlier marble example. If we wish to find
the expected value of the product of the numbers of yellow and

blue marbles:

2 3
E(YB)=> > ij fys(i,j) = 0.255 (5)

i=0 j=0



Multivariate PDFs




Motivation and Definition

Extending our previous definition of cdf for a single variable, we
define the two-dimensional cdf for a pair of random variables X

and Y (discrete or continuous) as:
Fx,y(x,y)=P(X < xand Y <y) (6)

If X and Y were discrete, we would evaluate that cdf via a double
sum of their bivariate pmf. You may have guessed by now that the
analog for continuous random variables would be a double integral,
and it is. The integrand is the bivariate density:

Bl = / ’ /  Gedeamey (7)

1
1 : - ] ] :
Some rv's are neither discrete nor continuous, there are some pairs of

continuous random variables whose cdfs do not have the requisite derivatives. 6

We will not pursue such cases here.



Bivariate Density

As in the univariate case, a bivariate density shows which regions
of the X — Y plane occur more frequently, and which occur less
frequently.

By analogy, for any region A in the X — Y plane,

PI(X, ) € A] = / / v (x,y) dx dy (8)
A

Probabilities involving X and Y are found by taking the double
integral of fx y over that region.



Expected Values & Marginal Densities

For any function g(X, Y):

Eex = [ [ ey dedy ()
Marginal densities:

fx(x) = / fx.y(x,y) dy (10)
y

Example (A Distribution with Triangular Support) Suppose
(X, Y) has the density:
8xy, if0<y<x<l1

fx,v(x,y) = _ ; (11)
0, otherwise.

i.e. the density is 0 outside the region 0 < y < x < 1. Find
P(X+Y >1).



Probability Calculation

<
P}

@ |
c

©
S
>

g
c

y=1-x

o~
S

o |
5

To find P(X + Y > 1):
1 X
P(X+Y>1)/ / 8xy dy dx:§ (12)
1/2 J1—x 6

Expected Value of v/ X + Y: Following the formula:

E[\/m]/o/:\/m8xydydx (13)



Marginal Densities and Other Calculations

fx(x):/ 8xy dy = 4x3 for 0 < x < 1
0

1

fy(y) :/ 8xy dx = 4y(1—y?) for 0 <y <1
y
! 2
E(X?) :/ x? . 4x3 dx = =
0 3
4\ 2
Var(X) = = — <5 = 0.027

= —04
1/0.027 - 0.049 10



Example: Train Rendezvous

Train lines A and B intersect at a certain transfer point, with the
schedule stating that trains from both lines will arrive there at 3:00
p.m. However, they are often late, by amounts X and Y
(respectively), measured in hours, for the two trains. The bivariate
density is

fxy(x,y)=2—-x—y, 0<x,y <1 (14)

Two friends agree to meet at the transfer point, one taking line A
and the other B. Let W denote the time in minutes the person
arriving on line B must wait for the friend. Find

P(W > 6 minutes).

P(W > 6) = P(60(X — Y) >6) = P(X — Y > 0.1)

XOl
/ / 2—x—y) dy dx =~ 0.405
0.1

11



More on Sets of Independent Random Variables

Probability Mass Functions and Densities Factor in the
Independent Case

The joint pmf/density is the product of the marginal ones.
That is, if X and Y are independent:

fx.y (%) = fx(x) - fr ()

Proof for Discrete Case

fx7y(l',j) = P(X =jand Y :j)
= P(X=)P(Y =))
= fx(fy ()

12



Proof for Continuous Case

Recall that
82
fxv(x,y) = 9x3y Fx,y(x,y) (15)
G 02
fx,v (X, y) axayFX y(x,y) = 9x3y P(X <xand Y <y)

- af;y [P(X < x)-P(Y <y)] = aaa (Fx(x)Fy(y))

= fx(x)fy(y)

13



Moments, Conditional Expectation,
Multivariate Distributions, and
Inequalities



Moments and Moment Generating
Functions



Moments and Moment Generating Functions

The various moments of a distribution are an important class of
expectations.

Definition
For each non-negative integer k, the k" moment of X is E [X*].
The k' central moment of X is E [(X — u)k], where 1 = E[X].

Notes:
The first moment of X is the mean p = E[X].
The second moment of X is E[X?].



Variance

Aside from the mean, E[X], of a random variable, perhaps the
most important moment is the second central moment, known as
the variance.

Definition
The variance of a random variable X is its second central moment

Var(X) = E [(X - E[X])ﬂ —F [(X - M)Z}

The positive square root of Var(X) is the standard deviation of X.

Question: What is the first central moment of X?
Answer: E[X —pu] =0



Notes on Variance

e Variance and standard deviation are measures of spread.
Var(X) is always > 0, and so is the SD.
When is Var(X) = 0 (or SD(X) = 0)?

The standard deviation is easier to interpret since its

measurement unit is the same as X.

An alternate formula for variance is:

Var(X) = E [X¥] — (EX])? = £ [X?] -



A Property of Variance

If X is a random variable with finite variance, then, for any (finite)
constants a and b,

Var (aX + b) = a®Var(X).

Proof:

Var(aX +b) = E|(aX +b)] = (E[aX + b])
= E [ 2X? + 2abX + b?] — (aE[X] + b)?
= %E[X?+ 2abE[X] + b? — (2*(E[X])? + 2abE[X] + b?)
7€ [X] - #(EXY
= 2(E[X?] - (E[X])?)
= 2Var(X)



Example: Variance of Exponential Distribution

Let X have an Exponential(\) distribution. We previously found
that E[X] = }. Find Var(X).

Solution:
E[X?] = / x*Xe”Mdx
0

2 . . .
= =1 (integration by parts twice)

> 2 1 1
Var(X):ﬁ—F:F



Moment Generating Functions (MGFs)

Definition
Let X be a random variable with cdf Fx. The moment generating

function (MGF) of X is
Mx(t) = E [etx} :

provided the expectation exists for t near 0. If not, the MGF
doesn't exist.

Discrete Case:
E e fx(x E etXP
xeX xeX
Continuous Case:

Mx(t) = /OO e™ fx(x)dx = /Xetxfx(x)dx

—0o0



MGF to Moments

Note: MGFs can be used to find moments of X.

Theorem
If X has MGF Mx(t), then the k-th moment of X can be found as

E [xk} = M) (0)




MGF of Exponential Distribution

Example: Let X have Exponential(\) distribution,
fx(x) = Xe ™ for 0 < x < 0o, A > 0.

Find the MGF of X.

Solution:



MGF of Binomial Distribution

Example: Find the MGF of a Binomial(n, p) random variable X.

Solution:

Mx(t) = [etx} = Z e™ <Z> p*(1—p)"*

x=0
= (pe' +1—p)"



Notes on MGFs

The main use of the MGF is not in its ability to generate moments,
but rather, an MGF uniquely determines a distribution.

Theorem
If X and Y have MGFs Mx(t) and My (t) respectively, and if

Mx (t) = My(t) for all t in an interval around 0, then X and Y
have the same distribution.

MGFs for Linear Transformation of Random Variables

Theorem
For any constants a and b, the MGF of the random variable

aX + b is given by M.x p(t) = e’ Mx(at).

Proof:

10



Multivariate Distributions




Extension to Multivariate Random Vectors

Recall that joint pmf of a discrete bivariate random vector,
(X,Y),is

f(XJ/) = fX,Y(X7_y) = P(X =X, Y = y)
and joint pdf of a continuous bivariate random vector, (X, Y) is
f(Xay) = fX,Y(X7y)
Extension to Multivariate Random Vectors

Let (X1, Xa,...,X,) be a discrete multivariate random vector. The
function

f(Xl,XQ,.. o 7Xn) = P(Xl = X1,X2 = XQ,...,X,, = Xn)
is called the joint probability mass function or joint pmf of the
multivariate random vector.

11



Extension to Multivariate Random Vectors (cont.)

Let (X1, Xa,...,X,) be a continuous multivariate random vector.
The function

f(Xl,XQ, 500 ,X,,)

is called the joint probability density function or joint pdf of the
multivariate random vector.

Notes:
e The joint pmf and pdf provide a framework to study the

behavior of multiple random variables simultaneously.

e These distributions capture the relationships and dependencies
between variables.

e They extend naturally from bivariate to multivariate scenarios.

12



Generalization of Independence

e Joint Distribution is the Product of the Marginals:
Given independent random vectors Xy, ..., X, with each variable X;
having pmf or pdf fx,(x;) for i =1,...,n. The joint pmf or pdf of
Xi,..., X, is

f(Xl, 000 ,X,,) = le(Xl) 0 fXQ(Xg) 560 an(Xn).

e Checking Independence given the Joint Distribution:

Given random vectors Xj, ..., X, with joint pmf or pdf
f(x1,...,X,). X1,...,X, are independent if and only if there are
functions g;(x;), with each being a function of only x;, i =1,...,n,
such that:

f(x1,---,%n) = g1(x1) - - &n(Xn)-
e Functions of Indep RVs are Indep. Let random vectors
Xi,..., X, be independent. For functions g;(x;), where each is a
function of only x;, i = 1,..., n, the random variables U; = g; (X;),
i=1,...,n, are also independent. 13



Expectation for Multivariate RVs




Expectation of Functions of Multiple RVs

Let (X, Y) be a bivariate random vector.
Question: How do we compute the expected value of a function
g(X,Y) of (X,Y)?
e Expectations of functions of random vectors are computed
similarly to univariate random variables.

e For a real-valued function g(x, y) defined for all possible
values (x,y) of a discrete random vector (X, Y), its expected
value E[g(X, Y)] is:

EgX. V)= D> exxn)flxy)= > &lxy)f(xy)

(x,y)ER? (x,y)EA
where A is the support of f(x,y).

14



Example: Two Dice Rolls

Recall the two dice roll example:
X = sum of 2 dice
Y = |difference of 2 dice]
Find E[XY].

Solution:
For g(x,y) = xy, we have

Elg(X.Y)] = EXY]= > x/f(xy)
(x,y)€R?

11
= 13— ~13.61.
18
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Properties of Expectation

Notes:

e The marginal pmf of X or Y can be used to compute

expectations that involve only X or Y.

e To compute an expectation that involves both X and Y/, use
the joint pmf of X and Y.

For continuous bivariate random vectors, the expected value is:
EleX. V) = [[ atcnfix ey

The expectation continues to have properties listed in previous
lectures when the random variable X is replaced by the random
vector (X, Y).

16



Theorems on Expectation - |

(1) For random vector (X, Y):
Elag(X,Y)+ bh(X,Y)+ c] = aE[g(X,Y)]+ bE[h(X,Y)] + ¢

In particular, E[X + Y] = E[X] + E[Y].
(2) If X and Y are independent:

Var (ag(X) + bh(Y) + ¢) = a*Var(g(X)) + b*Var(h(Y))
In particular,
Var (aX 4 bY + ¢) = a?Var(X) + b*Var(Y)

and
Var (X + Y) = Var(X) + Var(Y)

17



Theorems on Expectation - Il

(3) Let X and Y be independent random variables. Let g(x) be a
function of x only and h(y) be a function of y only. Then

Elg(X)h(Y)] = Elg(X)IE[A(Y)].

In particular,
E[XY] = E[X]E[Y].

Generalized Theorem for Multiple RVs:

Let Xi,..., X, be independent random variables with functions
g1,---,&n such that gi(x;) is only a function of x;, for i =1,...,n.
Then,

Elgr(X1)---&n(Xn)] = E [g1(X1)] - - E [8n(Xa)] -

In particular,

E[X, X -+ Xn] = E[X1]E[Xa] - - - E[X,]- B



Theorems on Expectation - I

(4) Let X and Y and be independent random variables with
moment generating functions Mx(t) and My (t). Then the
moment generating function of the random variable Z = X + Y is
given by

Mz(t) = Mx(t)My(t).

Generalized Theorem for Multiple RVs Let Xi,..., X, be
independent random variables with MGFs Mx, (t),..., Mx,(t). If
Z =X+ -+ X,, then:
Mz(t) = Mx,(t) - - - Mx,(t).
In particular, if all Xi, ..., X, have the same distribution with MGF
Mx(t), then:
Mz(t) = (Mx(t))".

19



Example: Sum of Two Independent Normals

Given X ~ N(u1,0%) and Y ~ N(ua,03) are independent. Find
the distribution of Z =X + Y.
Note that My(t) = exp (ut + 30°t?)

Solution (using Moment Generating Functions):
The MGF of X is: Mx(t) = exp (u1t + 307t?) and
the MGF of Y is: My(t) = exp (pat + 303¢?)

Since X and Y are independent, the MGF of Z = X + Y is the
product of the MGFs of X and Y: Mz(t) = Mx(t) - My(t). So,

1
Mz(t) = exp ((Ml + p2)t + E(U% + Ug)t2>

Since the resulting MGF is of the form of a normal distribution, we
can infer that Z ~ N(u1 + 2,02 + 03).

20



Extension: Multivariate Normals

Consider n independent normal random variables: Xi, Xo,..., X,
such that X; ~ N(u;,0?) and are independent for i = 1,2,... n.

The sum is given by:

S=X1+Xo+...+ X,

Using the properties of moment generating functions, we can

derive:
Hexp(,u,t—k Jt>:exp<z,u,t+ Za )
Thus, the distribution of S is:
v (w3 e)
i=1 i=1
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Corollary: MGF of Linear Combinations

Given Xi,..., X, as independent random variables with MGFs
Mx, (t), ..., Mx,(t) and constants a1, ..., an, b1,..., by

a— (81X1 + bl) S ooo S (aan + bn)
has MGF:
Mz(t) = (=) My (agt) - My (ant).

Proof:

Recall that MGF of the random variable aX + b is given by
22
MaX+b(t) = ethX(at).



Example: Sum of two Independent Poisson variables

Given
e X ~ Poisson(\)
e Y ~ Poisson(f)
are independent. Then, X + Y ~ Poisson(\ + ).

Solution (MGF Method):
Note that the MGF of Poisson()) distribution is e*(e"~1) Let
Z=X+4Y, then

Mz(t) = Mx(t)My (t) = eMe'—Defle' 1) — o(A+0)(e'—1)

which is the MGF of Poisson(\ + 6) distribution. Hence,
X + Y ~ Poisson(A + 0).

23



MGF of a Sum of Poisson Variables

Suppose Xi, ..., X, are independent with X; ~ Poisson(};). For
Z =X+ -+ X,, show that

Z ~ Poisson (A1 + - - - + Ap) = Poisson (Z A;) .
i=1

Solution:

Using the expressions from above:
Mz(t) = H ti(ef=1) _ STy di(ef=1) _ (32 Ai)(ef-1)
i=1

This is the MGF of a Poisson (3_7_; A;) distribution. Thus,

Z ~ Poisson (Z A,-) .

i=1
24
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Covariance and Correlation

We've discussed the absence or presence of a relationship between
two random variables, such as independence. However, if there is a
relationship, it may vary in strength. In this section, we discuss the
covariance and correlation, which measure the strength of the
relationship between two random variables.

lllustrative Example:

Consider two different experiments:

e X is the weight of water and Y is its volume. Data points will
closely fall on a straight line.

e X is a human's weight and Y is height. We expect an upward
trend in the plot, but data points do not necessarily fall on a
straight line (instead will be scattered around a line).

25



Covariance and Correlation

For simplicity, denote
E[X] = ux, E[Y] = py, Var(X) = 0%, and Var(Y) = 0%

Covariance of X and Y:
Cov(X,Y) = E[(X — ux)(Y — py)]
Correlation of X and Y:

pxy = Corr(X,Y) = Cov(X, Y)

oxXoy
Notes:

1. —oo < Cov(X,Y) <ooand -1 < pxy < 1.

2. Positive covariance implies small (large) values of X observed
with small (large) values of Y.

3. Negative covariance implies small (large) values of X observed
with large (small) values of Y.

4. pxy = —1 or 1 implies perfect linear relationship.

26



Theorem: Expression for Covariance

For any random variables X and Y:
Cov(X,Y) = E[XY] — pxiy
Proof:

e Recall the definition of covariance:

Cov(X,Y) = E[(X — pux)(Y — py)]

Expanding inside the expectation:
= E[XY — uxY — py X + pxpy]

= E[XY] — uxE[Y] — py E[X] + pxpy (expectation is linear)
Now, E[Y] = py and E[X] = ux, so:

= E[XY] — pxpy — pypx + pxpy
Simplifying: Cov(X, Y) = E[XY] — uxpy

27



Example: Bivariate Random Variables

Given the joint pdf:
fxy(xy)=1 0<x<1l x<y<x+1

1. Find marginal pdfs.
2. Find means and variances.

3. Find covariance and correlation.

28






Properties of Covariance and Correlation

Covariance and Independence: If X and Y are independent:
Cov(X,Y)=0and pxy =0

However, zero covariance does not imply independence.
Covariance only measures linear relationship!

Variances and Covariances: For random variables X and Y and

constants a, b:

Var(aX + bY) = a*Var(X) + b?Var(Y) + 2abCov(X, Y)
If X and Y are indep.: Var(aX + bY) = a?Var(X) + bVar(Y)
Correlation: For any random variables X and Y:

1. -1<pxy <1
2. |pxy| =1 if and only if a linear relationship exists between X

and Y. 2



Example: Covariance and Correlation

Given the joint pdf:
fxy(x,y)=10, 0<x<l,x<y<x+1/10

Compute Cov(X, Y) and pxy.
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Inequalities in Statistical Theory

Statistical theory is abundant with inequalities and identities.

Markov’s Inequality:
Given a random variable X and a nonnegative function g(x), for
any t > O:

Elg(X
Pe00) 2 1) < X,
Chebyshev’s Inequality (Special Case of Markov Ineq.):
Using Markov's Inequality with g(x) = (x — u)?/o:

1
P(\X—M\ZW)S?

1
equivalently P(IX—ul<to)>1-— 2
E.g. for t = 3, the probability that any random variable is within 3

standard deviations of its mean is at least 88.89%.
31



Appendix: Additional Inequalities




Cauchy-Schwarz Inequality

For any two random variables U and V:

[E[UV]] </ E[U?IE[V?],

where equality holds if V = aU for some real number a.

Covariance Inequality:
Given random variables X and Y with variances 0)2< and 0%,:

[Cov(X, Y)[ < oxoy and [Corr(X,Y)| = |pxy| <1,

with equality if P(Y = aX + b) = 1 for real numbers a and b.

32



Jensen’s Inequality

Convex Functions: A function g(x) is convex if, for all values x
and y in its domain and any t € [0, 1]:

g(tx + (1 —t)y) < tg(x) + (1 — t)g(y).
A function is concave if —g(x) is convex.

Jensen’s Inequality: For a random variable X with expected
value E[X], if g(x) is a convex function, then:

Elg(X)] > g(E[X]).
Applications of Jensen’s Inequality:

e For X with Var(X), Var(X) > 0 by setting g(x) = x2 in
Jensen's inequality.
e For any random variable X, E[log X] < log E[X].
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