
Multiple Random Variables



Univariate vs. Multivariate Models

� Discussed so far: univariate models.

� This lecture’s focus: multivariate models.

Why Multivariate Models?

� Rare to observe just one random variable.

� E.g., with people: body weight, temperature, height, blood

pressure, etc.

� Need models for multiple random variables.

� Focus: Bivariate models with two random variables.
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Random Vectors

Definition: An n-dimensional random vector is a function from

a sample space S into Rn.

Example
Roll two dice. There are 36 outcomes.

� X = |difference of 2 dice| (i.e., absolute value of the

difference between the outcomes of the two dice)

� Y = sum of 2 dice

(X ,Y ) is a 2-dimensional random vector, specifically a discrete

bivariate random vector.
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Joint Probability Mass Function

Definition: For discrete bivariate random vector (X ,Y ), the

function f (x , y) defined as:

f (x , y) = P(X = x ,Y = y)

is called the joint pmf of (X ,Y ).

Requirements:

1. 0 ≤ f (x , y) ≤ 1

2.
∑

(x ,y)∈R2

f (x , y) = 1

That is, any nonnegative function from R2 into R that:

� is nonzero for at most a countable number of (x , y) pairs,

� sums to 1,

is the joint pmf for some bivariate discrete random vector (X ,Y ).
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Examples

Example 1: Define:

f (x , y) =


f (0, 0) = f (0, 1) = 1/6

f (1, 0) = f (1, 1) = 1/3

otherwise = 0

Example 2 (Joint pmf for Two Dice)
Find fX ,Y (x , y) for (X ,Y ) defined with two dice before.

X\Y 2 3 4 5 6 7 8 9 10 11 12

0 1
36

0 1
36

0 1
36

0 1
36

0 1
36

0 1
36

1 0 1
18

0 1
18

0 1
18

0 1
18

0 1
18

0

2 0 0 1
18

0 1
18

0 1
18

0 1
18

0 0

3 0 0 0 1
18

0 1
18

0 1
18

0 0 0

4 0 0 0 0 1
18

0 1
18

0 0 0 0

5 0 0 0 0 0 1
18

0 0 0 0 0
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Using the Joint pmf

The joint pmf can be used to compute the probability of any event

defined in terms of (X ,Y ). Given:

P((X ,Y ) ∈ A) =
∑

(x ,y)∈A

f (x , y)

Example: Consider:

A = {(x , y) : x ≤ 4 and y = 7}

Only relevant pairs: (x , y) = (1, 7) and (x , y) = (3, 7).

P(X ≤ 4, Y = 7) = f (1, 7) + f (3, 7) =
1

18
+

1

18
=

1

9
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Marginal pmf

Even if considering a model for (X ,Y ), we might be interested in

probabilities only for X .

fX (x) = P(X = x)

This is called the marginal pmf of X .

Theorem (Calculating the Marginal pmf)

For random vector (X ,Y ) with joint pmf fX ,Y (x , y):

fX (x) =
∑
y

fX ,Y (x , y)

and

fY (y) =
∑
x

fX ,Y (x , y)
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Example

Marginal pmf for the rv’s in the two-dice example:

X\Y 2 3 4 5 6 7 8 9 10 11 12 fX (x)

0 1
36

0 1
36

0 1
36

0 1
36

0 1
36

0 1
36

6
36

1 0 1
18

0 1
18

0 1
18

0 1
18

0 1
18

0 10
36

2 0 0 1
18

0 1
18

0 1
18

0 1
18

0 0 8
36

3 0 0 0 1
18

0 1
18

0 1
18

0 0 0 6
36

4 0 0 0 0 1
18

0 1
18

0 0 0 0 4
36

5 0 0 0 0 0 1
18

0 0 0 0 0 2
36

fY (y)
1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

1

7



Marginal pmf - Usage

The marginal pmf of X or Y :

� Matches the pmf of X or Y defined previously.

� Computes probabilities involving only X or only Y .

� Joint pmf is required for probabilities involving both X and Y .

Dice Probabilities: Marginal Distribution

Example
Calculate the quantities involved only X or Y . E.g.

P(X < 3) = fX (0) + fX (1) + fX (2) = 1/6 + 5/18 + 2/9 = 2/3.
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Importance of Joint Distribution

Notes:

� Marginal distributions of X and Y do not completely describe

the joint distribution.

� There could be many joint distributions with the same

marginal distributions.

Example
(Same Marginals, but Different Joint pmf)

(1) f (0, 0) = 1/12, f (1, 0) = 5/12,

f (0, 1) = f (1, 1) = 3/12

(2) g(0, 0) = g(0, 1) = 1/6,

g(1, 0) = g(1, 1) = 1/3
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Joint pmf Tables

HHH
HHHHX

Y
0 1 fX (x)

0 1/12 5/12 1/2

1 3/12 3/12 1/2

fY (y) 1/3 2/3 1

HHH
HHHHU

V
0 1 gU(u)

0 1/6 1/3 1/2

1 1/6 1/3 1/2

gV (v) 1/3 2/3 1

(X ,Y ) and (U,V ) have the same marginal distributions, but their

joint pmfs are different!
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Continuous Bivariate Random Vectors

To this point, we discussed discrete bivariate random vectors. We

can also consider random vectors whose components are

continuous random variables.

Definition
Joint Density Function: A function f (x , y) from R2 into R is

called a joint probability density function or joint pdf of the

continuous bivariate random vector (X ,Y ) if:

P((X ,Y ) ∈ A) =

∫∫
A
f (x , y)dxdy .
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Properties of Joint pdf

Notes:

1. A valid joint pdf f (x , y) must satisfy:

� f (x , y) ≥ 0 for all x , y

�

∫ ∞

−∞

∫ ∞

−∞
f (x , y)dxdy = 1

2. The marginal pdfs of X and Y (respectively):

fX (x) =

∫ ∞

−∞
f (x , y)dy

and

fY (y) =

∫ ∞

−∞
f (x , y)dx
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Example: Calculating Joint Probabilities - 1

Define the joint pdf of (X ,Y ) by:

f (x , y) =

6xy2, if 0 < x < 1 and 0 < y < 1

0, otherwise.

Questions:

1. Show it’s a valid joint pdf.

2. Find fX (x) and fY (y).

3. Calculate P(X + Y ≥ 1).

Solution:
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Example: Calculating Joint Probabilities - 2

Joint pdf for a continuous random vector:

f (x , y) =

e−y , if 0 < x < y < ∞

0, otherwise.

Find P(X + Y ≥ 1).

See the last slide for the Solution.
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Joint CDF of (X,Y)

Definition
The joint cdf of (X ,Y ) is:

F (x , y) = P(X ≤ x ,Y ≤ y)

For discrete case:

F (x , y) =
∑
t≤y

∑
s≤x

f (s, t).

For continuous case:

F (x , y) =

∫ y

−∞

∫ x

−∞
f (s, t)dsdt

From the Fundamental Theorem of Calculus (for two variables):

∂2F (x , y)

∂x∂y
= f (x , y).
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Conditional Distributions and Independence

When observing two random variables, (X ,Y ), the values are

usually related. Knowing the value of X can give us information

about Y . Conditional probabilities can be computed using the

joint distribution of (X ,Y ).

Conditional Distribution: Discrete Case

Definition
For a discrete bivariate random vector (X ,Y ) with joint pmf

f (x , y) and marginal pmfs fX (x) and fY (y):

� Conditional pmf of X given Y = y : f (x |y) = f (x , y)

fY (y)
provided that fY (y) ̸= 0

� Conditional pmf of Y given X = x : f (y |x) = f (x , y)

fX (x)
provided that fX (x) ̸= 0 16



Properties of Conditional pmf

f (x |y) is a valid pmf (provided fY (y) ̸= 0) since:

� f (x |y) ≥ 0 for all x .

�

∑
x f (x |y) = 1.

Similarly for f (y |x).

Example (Calculating Conditional pmfs)

Define the joint pmf of (X ,Y ):

� f (10, 0) = f (20, 0) = 2/18

� f (10, 1) = f (30, 1) = 3/18

� f (20, 1) = 4/18, f (30, 2) = 4/18

1. Obtain conditional distribution of X given Y = y .

2. Find P(X > 10|Y = 1).
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Solution:

HHH
HHHHX

Y
0 1 2 fX (x)

10 2/18 3/18 0 5/18

20 2/18 4/18 0 6/18

30 0 3/18 4/18 7/18

fY (y) 4/18 10/18 4/18 1
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Conditional Distribution: Continuous Case

Definition
For a continuous bivariate random vector with joint pdfs f (x , y)

and marginal pdfs fX (x) and fY (y):

� Conditional pdf of X given Y = y (provided that fY (y) ̸= 0):

f (x |y) = f (x , y)

fY (y)

� Conditional pdf of Y given X = x (provided that fX (x) ̸= 0):

f (y |x) = f (x , y)

fX (x)
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Indicator Functions

Recall

IA(x) =

1 if x ∈ A

0 otherwise

We will use the indicator function to specify support of a

distribution or a r.v.

For example:

f (x ;λ) = λe−λ x I (x > 0)
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Example: Calculating Conditional pdfs

Let the continuous random vector (X ,Y ) have joint pdf:

fX ,Y (x , y) = e−y · I (0 < x < y < ∞)

Questions:

1. Marginal pdfs of X and Y .

2. Find f (y |x) for any x such that fX (x) > 0.

Solution:
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Independence

Definition
Let (X ,Y ) be a bivariate random vector with joint pdf or pmf

f (x , y) and marginal pdfs or pmfs fX (x) and fY (y). The random

variables X and Y are independent if:

fX ,Y (x , y) = fX (x)fY (y) for all (x , y) ∈ R2

If X and Y are independent, then:

f (x |y) = fX (x) and f (y |x) = fY (y)
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Example: Checking Independence - 1

Consider the discrete bivariate random vector (X ,Y ) with:

f (10, 1) = f (20, 1) = f (20, 2) = 1/10

f (10, 2) = f (10, 3) = 1/5

f (20, 3) = 3/10

Are X and Y independent?

Solution:
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Checking Independence without Marginals

Question: Can we determine independence from a joint pdf or

pmf function without the marginals?

Theorem
Let (X ,Y ) have joint pdf or pmf f (x , y). X and Y are

independent iff functions g(x) and h(y) exist such that:

f (x , y) = g(x)h(y) for all x , y ∈ R

Note: If true, then fX (x) = cg(x) and fY (y) = dh(y) where c and

d make them valid pdfs or pmfs.
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Example: Checking Independence - 2

Consider X and Y with joint pdf:

fX ,Y (x , y) =
1

384
x2y4e−y−x/2 for x > 0, y > 0

Are X and Y independent?

Solution:
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Notes on Independence

1. If the support of joint pdf of X ,Y isn’t rectangular, X and Y

aren’t independent.

2. If X and Y are independent with marginals fX (x) and fY (y),

then:

f (x , y) = fX (x)fY (y)

Theorem
If X ∼ N(µx , σ

2
x) and Y ∼ N(µy , σ

2
y ) are independent, then

Z = X + Y has N(µx + µy , σ
2
x + σ2

y ) distribution.
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Example

Let X and Y be independent Exponential(1) random variables.

(a) Joint pdf of (X ,Y ).

(b) Find P(X ≥ 4,Y < 3).

Solution:

f (x , y) = e−(x+y) for x > 0, y > 0

P(X ≥ 4,Y < 3) = e−4(1− e−3) ≈ 0.017
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Multivariate Distributions



Multivariate PMFs and Densities

Introduction:

� Individual pmfs fX and densities fX don’t describe correlations

(i.e., joint trends) between variables.

� Need multivariate distributions to describe these relationships.
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Multivariate PMFs



Multivariate Probability Mass Functions

Multivariate Probability Mass Functions

Recall: For a single discrete random variable X , the distribution

lists all values of X with their probabilities.

For discrete random variables U and V :

fU,V (i , j) = P(U = i and V = j) (1)
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Example: Yellow and Blue Marbles

Consider a bag with two yellow marbles, three blue ones, and four

green ones. Four marbles are chosen at random, without

replacement. Let Y and B denote the number of yellow and blue

marbles chosen:

fY ,B(i , j) =

(2
i

)(3
j

)( 4
4−i−j

)(9
4

) (2)

Distribution Table for Y and B
i \ j 0 1 2 3

0 0.0079 0.0952 0.1429 0.0317

1 0.0635 0.2857 0.1905 0.1587

2 0.0476 0.0952 0.0238 0

This table represents the distribution of the pair (Y ,B).
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Marginal PMFs

The univariate pmfs, termed marginal pmfs, can be derived from

the multivariate pmf:

fU(i) =
∑
j

fU,V (i , j) (3)

and similarly for V .
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Expected Value

For any function g() of two discrete random variables U and V ,

the expected value of g(U,V ) is:

E [g(U,V )] =
∑
i

∑
j

g(i , j)fU,V (i , j) (4)

Example: Consider the earlier marble example. If we wish to find

the expected value of the product of the numbers of yellow and

blue marbles:

E (YB) =
2∑

i=0

3∑
j=0

ij fY ,B(i , j) = 0.255 (5)
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Multivariate PDFs



Motivation and Definition

Extending our previous definition of cdf for a single variable, we

define the two-dimensional cdf for a pair of random variables X

and Y (discrete or continuous) as:

FX ,Y (x , y) = P(X ≤ x and Y ≤ y) (6)

If X and Y were discrete, we would evaluate that cdf via a double

sum of their bivariate pmf. You may have guessed by now that the

analog for continuous random variables would be a double integral,

and it is. The integrand is the bivariate density:

FX ,Y (x , y) =

∫ x

−∞

∫ y

−∞
fX ,Y (x , y)dxdy (7)

1
1Some rv’s are neither discrete nor continuous, there are some pairs of

continuous random variables whose cdfs do not have the requisite derivatives.

We will not pursue such cases here.
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Bivariate Density

As in the univariate case, a bivariate density shows which regions

of the X − Y plane occur more frequently, and which occur less

frequently.

By analogy, for any region A in the X − Y plane,

P[(X ,Y ) ∈ A] =

∫∫
A

fX ,Y (x , y) dx dy (8)

Probabilities involving X and Y are found by taking the double

integral of fX ,Y over that region.
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Expected Values & Marginal Densities

For any function g(X ,Y ):

E [g(X ,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x , y)fX ,Y (x , y) dx dy (9)

Marginal densities:

fX (x) =

∫
y
fX ,Y (x , y) dy (10)

Example (A Distribution with Triangular Support) Suppose

(X ,Y ) has the density:

fX ,Y (x , y) =

8xy , if 0 < y < x < 1

0, otherwise.
, (11)

i.e. the density is 0 outside the region 0 < y < x < 1. Find

P(X + Y > 1).
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Probability Calculation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

y=1−x

y=x

To find P(X + Y > 1):

P(X + Y > 1) =

∫ 1

1/2

∫ x

1−x
8xy dy dx =

5

6
(12)

Expected Value of
√
X + Y : Following the formula:

E [
√
X + Y ] =

∫ 1

0

∫ x

0

√
x + y 8xy dy dx (13) 9



Marginal Densities and Other Calculations

fX (x) =

∫ x

0
8xy dy = 4x3 for 0 < x < 1

fY (y) =

∫ 1

y
8xy dx = 4y(1− y2) for 0 < y < 1

E (X 2) =

∫ 1

0
x2 · 4x3 dx =

2

3

Var(X ) =
2

3
−
(
4

5

)2

= 0.027

E (Y 2) =

∫ 1

0
y2 · (4y − 4y3) dy =

1

3

Var(Y ) =
1

3
−
(

8

15

)2

= 0.049

ρ(X ,Y ) =
0.018√

0.027 · 0.049
= 0.49
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Example: Train Rendezvous

Train lines A and B intersect at a certain transfer point, with the

schedule stating that trains from both lines will arrive there at 3:00

p.m. However, they are often late, by amounts X and Y

(respectively), measured in hours, for the two trains. The bivariate

density is

fX ,Y (x , y) = 2− x − y , 0 < x , y < 1 (14)

Two friends agree to meet at the transfer point, one taking line A

and the other B. Let W denote the time in minutes the person

arriving on line B must wait for the friend. Find

P(W > 6 minutes).

P(W > 6) = P(60(X − Y ) > 6) = P(X − Y > 0.1)

=

∫ 1

0.1

∫ x−0.1

0
(2− x − y) dy dx ≈ 0.405
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More on Sets of Independent Random Variables

Probability Mass Functions and Densities Factor in the

Independent Case

The joint pmf/density is the product of the marginal ones.

That is, if X and Y are independent:

fX ,Y (x , y) = fX (x) · fY (y)

Proof for Discrete Case

fX ,Y (i , j) = P(X = i and Y = j)

= P(X = i)P(Y = j)

= fX (i)fY (j)

12



Proof for Continuous Case

Recall that

fX ,Y (x , y) =
∂2

∂x∂y
FX ,Y (x , y) (15)

fX ,Y (x , y) =
∂2

∂x∂y
FX ,Y (x , y) =

∂2

∂x∂y
P(X ≤ x and Y ≤ y)

=
∂2

∂x∂y
[P(X ≤ x) · P(Y ≤ y)] =

∂2

∂x∂y
(FX (x)FY (y))

= fX (x)fY (y)
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Moments, Conditional Expectation,

Multivariate Distributions, and

Inequalities



Moments and Moment Generating

Functions



Moments and Moment Generating Functions

The various moments of a distribution are an important class of

expectations.

Definition
For each non-negative integer k , the kth moment of X is E

[
X k
]
.

The kth central moment of X is E
[
(X − µ)k

]
, where µ = E [X ].

Notes:

The first moment of X is the mean µ = E [X ].

The second moment of X is E [X 2].
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Variance

Aside from the mean, E [X ], of a random variable, perhaps the

most important moment is the second central moment, known as

the variance.

Definition
The variance of a random variable X is its second central moment

Var(X ) = E
[
(X − E [X ])2

]
= E

[
(X − µ)2

]
The positive square root of Var(X ) is the standard deviation of X .

Question: What is the first central moment of X?

Answer: E [X − µ] = 0

2



Notes on Variance

� Variance and standard deviation are measures of spread.

� Var(X ) is always ≥ 0, and so is the SD.

� When is Var(X ) = 0 (or SD(X ) = 0)?

� The standard deviation is easier to interpret since its

measurement unit is the same as X .

An alternate formula for variance is:

Var(X ) = E
[
X 2
]
− (E [X ])2 = E

[
X 2
]
− µ2
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A Property of Variance

If X is a random variable with finite variance, then, for any (finite)

constants a and b,

Var (aX + b) = a2Var(X ).

Proof:

Var (aX + b) = E
[
(aX + b)2

]
− (E [aX + b])2

= E
[
a2X 2 + 2abX + b2

]
− (aE [X ] + b)2

= a2E
[
X 2
]
+ 2abE [X ] + b2 − (a2(E [X ])2 + 2abE [X ] + b2)

= a2E
[
X 2
]
− a2(E [X ])2

= a2(E
[
X 2
]
− (E [X ])2)

= a2Var(X ).
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Example: Variance of Exponential Distribution

Let X have an Exponential(λ) distribution. We previously found

that E [X ] = 1
λ . Find Var(X ).

Solution:

E
[
X 2
]
=

∫ ∞

0
x2λe−λxdx

= ... =
2

λ2
(integration by parts twice)

So,

Var(X ) =
2

λ2
− 1

λ2
=

1

λ2
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Moment Generating Functions (MGFs)

Definition
Let X be a random variable with cdf FX . The moment generating

function (MGF) of X is

MX (t) = E
[
etX
]
,

provided the expectation exists for t near 0. If not, the MGF

doesn’t exist.

Discrete Case:

MX (t) =
∑
x∈X

etx fX (x) =
∑
x∈X

etxP(X = x)

Continuous Case:

MX (t) =

∫ ∞

−∞
etx fX (x)dx =

∫
X
etx fX (x)dx

6



MGF to Moments

Note: MGFs can be used to find moments of X .

Theorem
If X has MGF MX (t), then the k-th moment of X can be found as

E
[
X k
]
= M

(k)
X (0)

where M
(k)
X (0) =

dk

dtk
MX (t)

∣∣∣∣
t=0

.

Proof:
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MGF of Exponential Distribution

Example: Let X have Exponential(λ) distribution,

fX (x) = λe−λx for 0 < x < ∞, λ > 0.

Find the MGF of X .

Solution:
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MGF of Binomial Distribution

Example: Find the MGF of a Binomial(n, p) random variable X .

Solution:

MX (t) = E
[
etX
]
=

n∑
x=0

etx
(
n

x

)
px (1− p)n−x

=
n∑

x=0

(
n

x

)(
pet
)x

(1− p)n−x

=
(
pet + 1− p

)n

9



Notes on MGFs

The main use of the MGF is not in its ability to generate moments,

but rather, an MGF uniquely determines a distribution.

Theorem
If X and Y have MGFs MX (t) and MY (t) respectively, and if

MX (t) = MY (t) for all t in an interval around 0, then X and Y

have the same distribution.

MGFs for Linear Transformation of Random Variables

Theorem
For any constants a and b, the MGF of the random variable

aX + b is given by MaX+b(t) = ebtMX (at).

Proof:
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Multivariate Distributions



Extension to Multivariate Random Vectors

Recall that joint pmf of a discrete bivariate random vector,

(X ,Y ), is

f (x , y) = fX ,Y (x , y) = P(X = x ,Y = y)

and joint pdf of a continuous bivariate random vector, (X ,Y ) is

f (x , y) = fX ,Y (x , y)

Extension to Multivariate Random Vectors

Let (X1,X2, . . . ,Xn) be a discrete multivariate random vector. The

function

f (x1, x2, . . . , xn) = P(X1 = x1,X2 = x2, . . . ,Xn = xn)

is called the joint probability mass function or joint pmf of the

multivariate random vector.
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Extension to Multivariate Random Vectors (cont.)

Let (X1,X2, . . . ,Xn) be a continuous multivariate random vector.

The function

f (x1, x2, . . . , xn)

is called the joint probability density function or joint pdf of the

multivariate random vector.

Notes:

� The joint pmf and pdf provide a framework to study the

behavior of multiple random variables simultaneously.

� These distributions capture the relationships and dependencies

between variables.

� They extend naturally from bivariate to multivariate scenarios.
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Generalization of Independence

� Joint Distribution is the Product of the Marginals:

Given independent random vectors X1, . . . ,Xn with each variable Xi

having pmf or pdf fXi (xi ) for i = 1, . . . , n. The joint pmf or pdf of

X1, . . . ,Xn is

f (x1, . . . , xn) = fX1(x1) · fX2(x2) . . . fXn(xn).

� Checking Independence given the Joint Distribution:

Given random vectors X1, . . . ,Xn with joint pmf or pdf

f (x1, . . . , xn). X1, . . . ,Xn are independent if and only if there are

functions gi (xi ), with each being a function of only xi , i = 1, . . . , n,

such that:

f (x1, . . . , xn) = g1(x1) · · · gn(xn).

� Functions of Indep RVs are Indep. Let random vectors

X1, . . . ,Xn be independent. For functions gi (xi ), where each is a

function of only xi , i = 1, . . . , n, the random variables Ui = gi (Xi ),

i = 1, . . . , n, are also independent. 13
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Expectation of Functions of Multiple RVs

Let (X ,Y ) be a bivariate random vector.

Question: How do we compute the expected value of a function

g(X ,Y ) of (X ,Y )?

� Expectations of functions of random vectors are computed

similarly to univariate random variables.

� For a real-valued function g(x , y) defined for all possible

values (x , y) of a discrete random vector (X ,Y ), its expected

value E [g(X ,Y )] is:

E [g(X ,Y )] =
∑

(x ,y)∈R2

g(x , y)f (x , y) =
∑

(x ,y)∈A

g(x , y)f (x , y)

where A is the support of f (x , y).

14



Example: Two Dice Rolls

Recall the two dice roll example:

X = sum of 2 dice

Y = |difference of 2 dice|

Find E [XY ].

Solution:

For g(x , y) = xy , we have

E [g(X ,Y )] = E [XY ] =
∑

(x ,y)∈R2

xyf (x , y)

= (2)(0)
1

36
+ . . .+ (7)(5)

1

18

= 13
11

18
≈ 13.61.

15



Properties of Expectation

Notes:

� The marginal pmf of X or Y can be used to compute

expectations that involve only X or Y .

� To compute an expectation that involves both X and Y , use

the joint pmf of X and Y .

For continuous bivariate random vectors, the expected value is:

E [g(X ,Y )] =

∫∫
R2

g(x , y)f (x , y)dxdy

The expectation continues to have properties listed in previous

lectures when the random variable X is replaced by the random

vector (X ,Y ).

16



Theorems on Expectation - I

(1) For random vector (X ,Y ):

E [ag(X ,Y ) + bh(X ,Y ) + c] = aE [g(X ,Y )] + bE [h(X ,Y )] + c

In particular, E [X + Y ] = E [X ] + E [Y ].

(2) If X and Y are independent:

Var (ag(X ) + bh(Y ) + c) = a2Var(g(X )) + b2Var(h(Y ))

In particular,

Var (aX + bY + c) = a2Var(X ) + b2Var(Y )

and

Var (X + Y ) = Var(X ) + Var(Y )

17



Theorems on Expectation - II

(3) Let X and Y be independent random variables. Let g(x) be a

function of x only and h(y) be a function of y only. Then

E [g(X )h(Y )] = E [g(X )]E [h(Y )].

In particular,

E [XY ] = E [X ]E [Y ].

Generalized Theorem for Multiple RVs:

Let X1, . . . ,Xn be independent random variables with functions

g1, . . . , gn such that gi (xi ) is only a function of xi , for i = 1, . . . , n.

Then,

E [g1(X1) · · · gn(Xn)] = E [g1(X1)] · · ·E [gn(Xn)] .

In particular,

E [X1 X2 · · ·Xn] = E [X1]E [X2] · · ·E [Xn].
18



Theorems on Expectation - III

(4) Let X and Y and be independent random variables with

moment generating functions MX (t) and MY (t). Then the

moment generating function of the random variable Z = X + Y is

given by

MZ (t) = MX (t)MY (t).

Generalized Theorem for Multiple RVs Let X1, . . . ,Xn be

independent random variables with MGFs MX1(t), . . . ,MXn(t). If

Z = X1 + · · ·+ Xn, then:

MZ (t) = MX1(t) · · ·MXn(t).

In particular, if all X1, . . . ,Xn have the same distribution with MGF

MX (t), then:

MZ (t) = (MX (t))
n.

19



Example: Sum of Two Independent Normals

Given X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) are independent. Find

the distribution of Z = X + Y .

Note that MU(t) = exp
(
µt + 1

2σ
2t2
)

Solution (using Moment Generating Functions):

The MGF of X is: MX (t) = exp
(
µ1t +

1
2σ

2
1t

2
)
and

the MGF of Y is: MY (t) = exp
(
µ2t +

1
2σ

2
2t

2
)

Since X and Y are independent, the MGF of Z = X + Y is the

product of the MGFs of X and Y : MZ (t) = MX (t) ·MY (t). So,

MZ (t) = exp

(
(µ1 + µ2)t +

1

2
(σ2

1 + σ2
2)t

2

)
Since the resulting MGF is of the form of a normal distribution, we

can infer that Z ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

20



Extension: Multivariate Normals

Consider n independent normal random variables: X1,X2, . . . ,Xn

such that Xi ∼ N(µi , σ
2
i ) and are independent for i = 1, 2, . . . , n.

The sum is given by:

S = X1 + X2 + . . .+ Xn

Using the properties of moment generating functions, we can

derive:

MS(t) =
n∏

i=1

exp

(
µi t +

1

2
σ2
i t

2

)
= exp

(
(

n∑
i=1

µi )t +
1

2
(

n∑
i=1

σ2
i )t

2

)

Thus, the distribution of S is:

S ∼ N

(
n∑

i=1

µi ,
n∑

i=1

σ2
i

)
21



Corollary: MGF of Linear Combinations

Given X1, . . . ,Xn as independent random variables with MGFs

MX1(t), . . . ,MXn(t) and constants a1, . . . , an, b1, . . . , bn:

Z = (a1X1 + b1) + · · ·+ (anXn + bn)

has MGF:

MZ (t) = et(
∑n

i=1 bi)MX1 (a1t) · · ·MXn (ant) .

Proof:

Recall that MGF of the random variable aX + b is given by

MaX+b(t) = ebtMX (at).

Normal Distribution in Linear Combinations:

A linear combination of independent normal random variables is

also normal. Given independent variables X1, . . . ,Xn where

Xi ∼ N
(
µi , σ

2
i

)
, and constants a1, . . . , an, b1, . . . , bn:

Z = (a1X1 + b1) + · · ·+ (anXn + bn)

∼ N
(∑n

i=1
aiµi + bi ,

∑n

i=1
a2i σ

2
i

)
.
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Example: Sum of two Independent Poisson variables

Given

� X ∼ Poisson(λ)

� Y ∼ Poisson(θ)

are independent. Then, X + Y ∼ Poisson(λ+ θ).

Solution (MGF Method):

Note that the MGF of Poisson(λ) distribution is eλ(e
t−1). Let

Z = X + Y , then

MZ (t) = MX (t)MY (t) = eλ(e
t−1)eθ(e

t−1) = e(λ+θ)(et−1)

which is the MGF of Poisson(λ+ θ) distribution. Hence,

X + Y ∼ Poisson(λ+ θ).

23



MGF of a Sum of Poisson Variables

Suppose X1, . . . ,Xn are independent with Xi ∼ Poisson(λi ). For

Z = X1 + · · ·+ Xn, show that

Z ∼ Poisson (λ1 + · · ·+ λn) ≡ Poisson

(
n∑

i=1

λi

)
.

Solution:

Using the expressions from above:

MZ (t) =
n∏

i=1

eλi (e
t−1) = e

∑n
i=1 λi (e

t−1) = e(
∑n

i=1 λi )(e
t−1)

This is the MGF of a Poisson (
∑n

i=1 λi ) distribution. Thus,

Z ∼ Poisson

(
n∑

i=1

λi

)
.
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Covariance and Correlation

We’ve discussed the absence or presence of a relationship between

two random variables, such as independence. However, if there is a

relationship, it may vary in strength. In this section, we discuss the

covariance and correlation, which measure the strength of the

relationship between two random variables.

Illustrative Example:

Consider two different experiments:

� X is the weight of water and Y is its volume. Data points will

closely fall on a straight line.

� X is a human’s weight and Y is height. We expect an upward

trend in the plot, but data points do not necessarily fall on a

straight line (instead will be scattered around a line).

25



Covariance and Correlation

For simplicity, denote

E [X ] = µX , E [Y ] = µY , Var(X ) = σ2
X , and Var(Y ) = σ2

Y .

Covariance of X and Y :

Cov(X ,Y ) = E [(X − µX )(Y − µY )]

Correlation of X and Y :

ρXY = Corr(X ,Y ) =
Cov(X ,Y )

σXσY
Notes:

1. −∞ < Cov(X ,Y ) < ∞ and −1 ≤ ρXY ≤ 1.

2. Positive covariance implies small (large) values of X observed

with small (large) values of Y .

3. Negative covariance implies small (large) values of X observed

with large (small) values of Y .

4. ρXY = −1 or 1 implies perfect linear relationship.
26



Theorem: Expression for Covariance

For any random variables X and Y :

Cov(X ,Y ) = E [XY ]− µXµY

Proof:

� Recall the definition of covariance:

Cov(X ,Y ) = E [(X − µX )(Y − µY )]

� Expanding inside the expectation:

= E [XY − µXY − µYX + µXµY ]

� = E [XY ]− µXE [Y ]− µYE [X ] + µXµY (expectation is linear)

� Now, E [Y ] = µY and E [X ] = µX , so:

= E [XY ]− µXµY − µYµX + µXµY

� Simplifying: Cov(X ,Y ) = E [XY ]− µXµY

27



Example: Bivariate Random Variables

Given the joint pdf:

fX ,Y (x , y) = 1, 0 < x < 1, x < y < x + 1

1. Find marginal pdfs.

2. Find means and variances.

3. Find covariance and correlation.

28
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Properties of Covariance and Correlation

Covariance and Independence: If X and Y are independent:

Cov(X ,Y ) = 0 and ρXY = 0

However, zero covariance does not imply independence.

Covariance only measures linear relationship!

Variances and Covariances: For random variables X and Y and

constants a, b:

Var(aX + bY ) = a2Var(X ) + b2Var(Y ) + 2abCov(X ,Y )

If X and Y are indep.: Var(aX + bY ) = a2Var(X ) + b2Var(Y )

Correlation: For any random variables X and Y :

1. −1 ≤ ρXY ≤ 1

2. |ρXY | = 1 if and only if a linear relationship exists between X

and Y .
29



Example: Covariance and Correlation

Given the joint pdf:

fX ,Y (x , y) = 10, 0 < x < 1, x < y < x + 1/10

Compute Cov(X ,Y ) and ρXY .

30
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Inequalities in Statistical Theory

Statistical theory is abundant with inequalities and identities.

Markov’s Inequality:

Given a random variable X and a nonnegative function g(x), for

any t > 0:

P(g(X ) ≥ t) ≤ E [g(X )]

t
.

Chebyshev’s Inequality (Special Case of Markov Ineq.):

Using Markov’s Inequality with g(x) = (x − µ)2/σ2:

P (|X − µ| ≥ tσ) ≤ 1

t2

equivalently P (|X − µ| ≤ tσ) ≥ 1− 1

t2

E.g. for t = 3, the probability that any random variable is within 3

standard deviations of its mean is at least 88.89%.
31
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Cauchy-Schwarz Inequality

For any two random variables U and V :

|E [UV ]| ≤
√

E [U2]E [V 2],

where equality holds if V = aU for some real number a.

Covariance Inequality:

Given random variables X and Y with variances σ2
X and σ2

Y :

|Cov(X ,Y )| ≤ σXσY and |Corr(X ,Y )| = |ρXY | ≤ 1,

with equality if P(Y = aX + b) = 1 for real numbers a and b.

32



Jensen’s Inequality

Convex Functions: A function g(x) is convex if, for all values x

and y in its domain and any t ∈ [0, 1]:

g(tx + (1− t)y) ≤ tg(x) + (1− t)g(y).

A function is concave if −g(x) is convex.

Jensen’s Inequality: For a random variable X with expected

value E [X ], if g(x) is a convex function, then:

E [g(X )] ≥ g(E [X ]).

Applications of Jensen’s Inequality:

� For X with Var(X ), Var(X ) ≥ 0 by setting g(x) = x2 in

Jensen’s inequality.

� For any random variable X , E [logX ] ≤ log E [X ].
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