Monte Carlo Simulation - Introduction

Computer simulation essentially does in actual code what one does
conceptually in our "notebook” view of probability.

Example: (Rolling Dice) If we roll three dice, what is the
probability that their total is 87

Simulating Rolling Dice

roll d dice; find P(total = k)
probtotk <- function(d, k, nreps) {
count <- O
do the experiment nreps times --
like doing nreps notebook lines
for (rep in 1l:nreps) {
sum <- 0
roll d dice and find their sum
for (j in 1:d) sum <- sum + roll()
if (sum == k) count <- count + 1
}
return(count/nreps)

}

simulate roll of one die; the possible return values are
#1,2,3,4,5,6, all equally likely

roll <- function() return(sample(1:6,1))

example

probtotk(3,8,1000)

First Improvement
Since applications of R often use large amounts of computer time,
good R programmers are always looking for ways to speed things
up.

Improved Simulation Code

roll d dice; find P(total = k)

probtotk <- function(d, k, nreps) {
count <- 0
do the experiment nreps times
for (rep in 1:nreps) {
total <- sum(sample(1:6, d, replace=TRUE))
if (total == k) count <- count + 1
}

return(count/nreps)

Second Improvement

Further improvements are possible.

Vectorized Simulation Code

roll d dice; find P(total = k)

simulate roll of nd dice; the possible return values are
#1,2,3,4,5,6, all equally likely
roll <- function(nd) return(sample(1:6, nd, replace=TRUE))

probtotk <- function(d, k, nreps) {
sums <- vector(length=nreps)
do the experiment nreps times
for (rep in 1l:nreps) sums[rep] <- sum(roll(d))
return(mean(sums == k))

Third Improvement

Even better. Improved Simulation Code with Replicate

roll <- function(nd) return(sample(1:6, nd, replace=TRUE))

probtotk <- function(d, k, nreps) {
do the experiment nreps times
sums <- replicate(nreps, sum(roll(d)))
return(mean(sums == k))

Example: Dice Problem

» Suppose three fair dice are rolled.

> We wish to find the approximate probability that the first die
shows fewer than 3 dots, given that the total number of dots
for the 3 dice is more than 8, using simulation.

» Simulation is writing code that implements our " notebook”
view of probability.

Simulating the Dice Problem

1 dicesim <— function(nreps) {

2 countl <— 0

3 count2 <— 0

4 for (i in 1l:nreps) {

5 d <— sample(1:6,3,replace=T)

6 if (sum(d) > 8) {

7 countl <— countl + 1

8 if (d[1] < 3) count2 <— count2 + 1

9 }
10 }
11 return(count2 / countl)

Example: Bus Ridership - Introduction

Consider the following analysis of bus ridership. In this
oversimplified model, we'll explore various probabilities related to
of bus passengers and stops.

Model Assumptions

> At each stop, each passenger alights from the bus,
independently, with probability 0.2 each.

» Either 0, 1, or 2 new passengers get on the bus with
probabilities 0.5, 0.4, and 0.1, respectively.

P> Passengers at successive stops act independently.

P> Assume the bus is so large that it never becomes full, so new
passengers can always get on.

» Suppose the bus is empty when it arrives at its first stop.

Bus Ridership - Notation

Let's define some notation for the analysis:
» N; : Number of passengers on the bus as it leaves the it/
stop, i =1,2,3,...
» B; : Number of new passengers who board the bus at the i
stop.
» A; : Number of passengers who alights from the bus at the /*
stop.

h

(i) Probability that No Passengers Boarding in First Three
Stops?
P(B; =0 and B, =0 and B3 = 0) = 0.5°

Bus Ridership - cont'd

(ii) Probability that Bus Leaves Second Stop Empty, i.e.,
P(Ny = 0)?
To calculate this, we employ a very common approach:

» Ask, "How can this event happen?”

> Break big events into smaller events.

> Apply the mailing tubes.

P(N;=0) = P(Bi=0and B,=0
or Bi=1and Bp=0and A, =1
or Bp =2and B, =0 and A, = 2)
= PBi=0and B,=0)+P(Bi=1and B, =0and A, =1)
+P(B; =2 and B, =0 and A, =2)
= 0.5% +(0.4)(0.5)(0.2) + (0.1)(0.5)(0.2?)
= 0.292 (1)

Bus Ridership - cont'd

(iii) Suppose we are told that the bus arrives empty at the
third stop. What is the probability that exactly two people
boarded the bus at the first stop?.

Note first that we want to find: P(B; = 2|N, = 0).

P(B; =2 and N, = 0)
P(N, = 0)
= P(By=2)P(N,=0] By =2) /0292
= P(B;=2) P(B,=0and Ay =2) / 0.292
= (0.1)(0.5)(0.2)/0.292

P(Bi=2| Ny =0) =

(the 0.292 had been previously calculated in Equation (1)).

Bus Ridership - cont'd

(v) Probability that fewer people board at the second stop than at
the first?

P(BQ < Bl) =04-054+0.1- (0.5 + 0.4—)

(vi) Probability that Only One Passenger on Bus When the Bus
Left First Stop?
0.4-0.2-05

P(Ny = 1INy =0 and Ny > 0) = o 07027 05

(vii) An observer at the second stop notices that no one alights
there. Find the probability that there was already one passenger on
the bus when it came to the second stop?

B 0.4-0.8

~ 05-1+04-0.8+0.1-0.82

P(Ny = 1|A; = 0)

Use of runif() for Simulating Events

» To simulate whether a simple event occurs or not, we typically
use R function runif ().

» This function generates random numbers from the interval
(0,1), with all the points inside being equally likely.

Ex: Simulating a Coin Toss

if (runif(l) < 0.5) heads <— TRUE else
heads <— FALSE

Example: Simulating ALOHA Network

Following is a computation via simulation of the approximate values of P(X; = 2), P(Xy = 2) and
P(Xo = 2|X; = 1).

1 # finds P(X1 = 2), P(X2 = 2) and P(X2 = 2|X1 = 1) in ALOHA example
2 sim <— function(p,q,nreps) {

3 countx2eq2 <— 0; countxleql <— 0; countxleq2 <— 0; countx2eq2givxleql <— 0
4 # simulate nreps repetitions of the experiment

5 for (i in l:nreps) {

6 numsend <— 0

7 for (j in 1:2)

8 if (runif(l) < p) numsend <— numsend + 1

9 if (numsend = 1) Xl <— 1

10 else X1 <— 2

11 if (X1 == 2) countxleq2 <— countxleq2 + 1

12 numactive <— X1

13 if (X1 =1 && runif(l) < q) numactive <— numactive + 1
14 if (numactive = 1)

15 if (runif(l) < p) X2<=0

16 else X2 <— 1

17 else {

18 numsend <— 0

19 for (i in 1:2)

20 if (runif(1) < p) numsend <— numsend + 1

21 if (numsend = 1) X2 <— 1

22 else X2 <— 2

23 }

24 if (X2 = 2) countx2eq2 <— countx2eq2 + 1

25 if (X1 = 1)

26 countxleql <— countxleql + 1

27 if (X2 = 2) countx2eq2givxleql <— countx2eq2givxleql + 1
28 }

29 }

30 # print results

31 cat("P(X1 = 2):" ,countxleq2/nreps,”\n")

32 cat("P(X2 2):" ,countx2eq2/nreps,”\n")

33 cat("P(X2 2 | X1 = 1):” ,countx2eq2givxleql/countxleqgl,”\n")

Example: Bus Ridership (cont'd.)

©oO~NOOTHA WN -

» Consider Example 1.1 (in Matloff).

P> Let's find the probability that after visiting the tenth stop, the
bus is empty. This is too complicated to solve analytically but
can easily be simulated.

Simulating Bus Ridership

nreps <— 10000
nstops <— 10
count <— 0
for (i in 1l:nreps) {
passengers <— 0
for (j in 1l:nstops) {
if (passengers > 0)
for (k in 1l:passengers)
if (runif(l) < 0.2)
passengers <— passengers — 1
newpass <— sample(0:2,1,prob=c(0.5,0.4,0.1))
passengers <— passengers + newpass
}
if (passengers = 0) count <— count + 1

}

print(count/nreps)

Example: Board Game

» Recall the board game example in Section 1.8 in Matloff.

» Below is simulation code to find the probability in (2) below.

P(B>0|R+B=4)

P(R+B=4,B>0)

P(R1 B =4) 2)

P(R+B=4,B>0)

PR+B=4,B>00rR+B=4B=0)
P(R+B=4,B>0)

P(R+B=4,B>0)+P(R+B=4,B=0)

P(R=3,B=1)
P(R=3,B=1)+P(R=4)
1.1
6 6
1 1
616

~N| = o

Simulating the Board Game

boardsim <— function(nreps) {

count4 <— 0
countbonusgiven4d <— 0
for (i in 1l:nreps) {
position <— sample(1:6,1)
if (position = 3) {
bonus <— TRUE
position <— (position + sample(1:6,1)) %% 8
} else bonus <— FALSE

if (position = 4) {
count4 <— count4 + 1
if (bonus)

{countbonusgiven4 <— countbonusgiven4 + 1}
}
}

return(countbonusgiven4 /count4)

Example: Broken Rod

CO~NO O~ WN -

—_
o ©o

11
12
13
14

» Say a glass rod drops and breaks into 5 random pieces.

» Let's find the probability that the smallest piece has a length
below 0.02.

Simulating the Broken Rod

random breaks the rod into k pieces, returning the
#length of the shortest one
minpiece <— function (k) {

breakpts <— sort(runif(k—1))

lengths <— diff(c(0,breakpts 1))

min(lengths)

}
returns the approximate probability that the smallest
#of k pieces will have a length less than q

bkrod <— function(nreps , k,q) {
minpieces <— replicate(nreps, minpiece(k))
mean(minpieces < q)

Example: Toss a Coin Until k Consecutive Heads
> We toss a coin until we get k heads in a row.
> Let N denote the number of tosses needed.
» Here is code that finds the approximate probability that

N> m.
1 ngtm <— function(k,m,nreps) {
2 count <— 0
3 for (rep in 1l:nreps) {
4 consech <— 0
5 for (i in 1:m) {
6 toss <— sample(0:1,1)
7 if (toss) {
8 consech <— consech + 1
9 if (consech = k) break
10 } else consech <— 0
11 }
12 if (consech < k) count <— count + 1
13 }

14 return(count/nreps)

How Long Should We Run the Simulation?

» Clearly, the larger the value of nreps in our examples above,
the more accurate our simulation results are likely to be.

» But how large should this value be?

» What measure is there for the degree of accuracy one can
expect for a given value of nreps?

» These questions will be addressed in Chapter 10 (of Matloff's
book).

	Monte Carlo Simulation
	First Improvement
	Second Improvement
	Third Improvement

	Example: Bus Ridership
	Use of runif() for Simulating Events
	Example: ALOHA Network
	Example: Bus Ridership (cont'd.)
	Example: Board Game (cont'd.)
	Example: Broken Rod
	Example: Toss a Coin Until k Consecutive Heads
	How Long Should We Run the Simulation?

