

Random Variables - Introduction

- Dealing with a summary variable is often easier than dealing with the original probability structure.
- Example: Opinion poll with "agree" and "disagree" responses.
- Define a variable X as the number of people who agree.

Definition of Random Variable

Definition

For a given random experiment with a sample space S , a function $X(\cdot)$ that assigns to each element s in S one and only one real number $X(s) = x$ is called a **random variable**.

Examples of Random Variables

Experiment	Random Variable X	Sample Space \mathcal{X}
Toss two dice	Sum of the numbers	$\{2, 3, \dots, 12\}$
Toss a coin 25 times	Number of heads	$\{0, 1, \dots, 25\}$
Apply fertilizer to corn	Yield per acre	$[0, \infty)$

Examples (cont'd)

Example

Tossing a fair coin once. Let X denote the number of heads.

Note: A random variable will be denoted by an uppercase letter, e.g., X , and the realized values by corresponding lowercase letters, e.g., x .

Example

(Distribution of a random variable) Toss a fair coin 3 times. Let X = number of heads in the three tosses. Find the distribution of X .

Examples (cont'd)

Solution: Here X takes the following values for each sample point in S .

s	{HHH}	{HHT}, {HTH}, {THH}	{TTH}, {THT}, {HTT}	{TTT}
X	3	2	1	0

So, the range for the random variable X is $\mathcal{X} = \{0, 1, 2, 3\}$. Hence, the induced probability function on \mathcal{X} is given by

x	0	1	2	3
$P_X(X = x)$	1/8	3/8	3/8	1/8

Cumulative Distribution Function

Definition

The cumulative distribution function (cdf) of a random variable X , denoted by $F_X(x)$, is defined as $F_X(x) = P(X \leq x)$.

- $F_X(-\infty) = \lim_{x \rightarrow -\infty} F_X(x) = 0$ and $F_X(\infty) = \lim_{x \rightarrow \infty} F_X(x) = 1$.
- $F_X(x)$ is nondecreasing.
- $F_X(x)$ is right-continuous.

Ex: cdf

Example

Tossing three fair coins. Let X := number of heads. Then, the cdf of X is

$$F_X(x) = \begin{cases} 0 & \text{if } -\infty < x < 0 \\ 1/8 & \text{if } 0 \leq x < 1 \\ 1/2 & \text{if } 1 \leq x < 2 \\ 7/8 & \text{if } 2 \leq x < 3 \\ 1 & \text{if } 3 \leq x < \infty. \end{cases}$$

See Figure 3 below.

Ex: discrete cdf

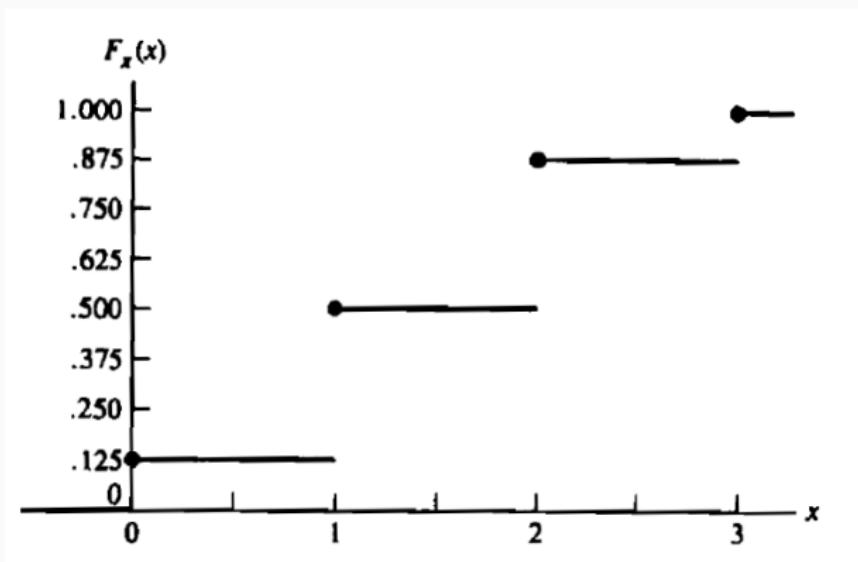


Figure 1: cdf plot for number of heads tossing three fair coins

Ex: logistic cdf

Example

(Continuous cdf) The continuous function

$$F_X(x) = \frac{1}{1 + e^{-x}} \text{ for all } x$$

satisfies all the 3 properties of a cdf, and hence it is a cdf. It is actually known as the *logistic cdf*.

Ex: logistic cdf

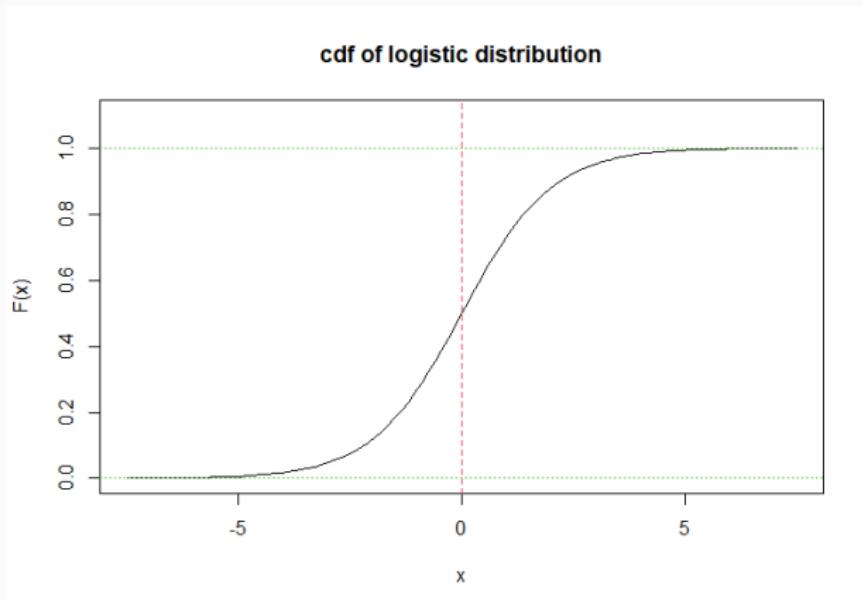


Figure 2: cdf curve for the logistic distribution

Probability Density and Mass Functions

Definition

The probability mass function (pmf) of a discrete random variable X is given by $f_X(x) = P(X = x)$ for all x .

Definition

The probability density function (pdf) of a continuous random variable X is $f_X(x)$ which satisfies

$$F_X(x) = P(X \leq x) = \int_{-\infty}^x f_X(t)dt.$$

Equivalences and Theorems

Theorem

A function $f_X(x)$ is a pdf (pmf) of a random variable X if and only if:

1. $f_X(x) \geq 0$ for all x .
2. $\sum_x f_X(x) = 1$ (discrete) or $\int_{-\infty}^{\infty} f_X(x)dx = 1$ (continuous).

How to get pmf or pdf from cdf

- If X is discrete $f_X(a) = P(X = a)$. In particular, if \mathcal{X} consists of $a_1 < a_2 < a_3 < \dots$,

$$f_X(a_k) = P(X = a_k) = F_X(a_k) - F_X(a_{k-1}) \text{ for all } a_k \in \mathcal{X} \text{ with } k > 1$$

$$\text{and } f_X(a_1) = P(X = a_1) = F_X(a_1)$$

- If X is continuous, we get

$$F_X(x) = P(X \leq x) = \int_{-\infty}^x f_X(t)dt,$$

then we have

$$\frac{d}{dx} F_X(x) = f_X(x),$$

which follows from the *Fundamental Theorem of Calculus*.

Notation & Continuous Distribution Properties

A note on notation:

- X has a distribution given by $F_X(x)$: $X \sim F_X$ or X has pmf (or pdf) $f_X(x)$: $X \sim f_X$:
- $X \stackrel{d}{=} Y$: X and Y have the same distribution (X and Y are identically distributed).

For a continuous random variable, X , with cdf $F_X(x)$, the following holds for all $a, b \in \mathbb{R}$ with $a \leq b$:

$$\begin{aligned} F_X(b) - F_X(a) &= P(a < X < b) = P(a \leq X < b) \\ &= P(a < X \leq b) = P(a \leq X \leq b) = \int_a^b f_X(x) dx, \end{aligned}$$

which also implies $P(X = c) = 0$ for any constant c .

Continuous Distribution Properties

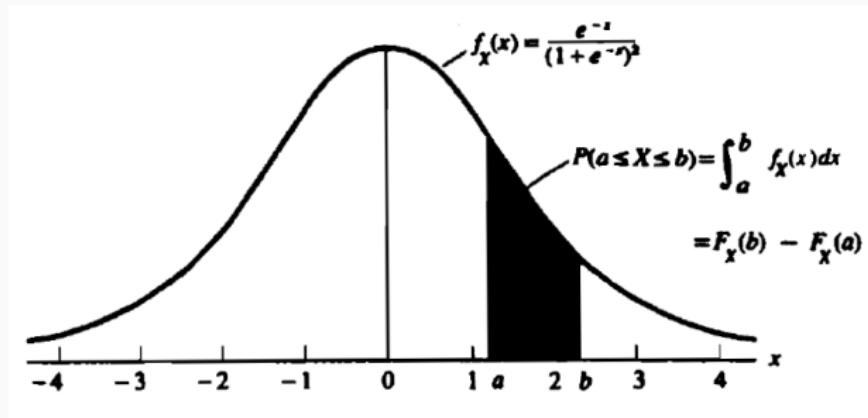


Figure 3: Illustration of probability as area under the pdf curve for logistic distribution

Examples

Example

Obtain the pdf of a logistic random variable with cdf

$$F_X(x) = \frac{1}{1 + e^{-x}}.$$

Example

Let X denote the amount of space occupied by a (random) item placed in a 1-ft³ packing container. Suppose the pdf of X is given as:

$$f_X(x) = \begin{cases} kx^8(1-x) & 0 \leq x \leq 1 \\ 0 & \text{otherwise.} \end{cases}$$

- (1) Find the value of k that will make this a valid density function.
- (2) Obtain the cdf of X .
- (3) Find $P(0.2 \leq X \leq 0.8)$.

Examples

Solution:

(1) $\int_0^1 kx^8(1-x)dx = 1$ implies that

$$k \int_0^1 (x^8 - x^9)dx = k(x^9/9 - x^{10}/10) \Big|_{x=0}^{x=1} = 1. \text{ Hence}$$
$$k(1/9 - 1/10) = 1 \Rightarrow k = 90.$$

(2) Then $F_X(x) = \int_{-\infty}^x f_X(t)dt$, so

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ 10x^9 - 9x^{10} & \text{if } 0 \leq x < 1 \\ 1 & \text{if } 1 \leq x \end{cases}$$

(3) (i) Using the pdf

$$P(.2 \leq X \leq .8) = \int_{.2}^{.8} f_X(x)dx = \int_{.2}^{.8} 90x^8(1-x)dx = \dots \approx .376.$$

(ii) Using the cdf $P(.2 \leq X \leq .8) = F_X(.8) - F_X(.2) \approx .376.$

Ex: Point Chosen in the Unit Circle

Example

Suppose we pick a point at random from the interior of a circle of radius 1 (and for the unit circle, origin = $(0, 0)$ is the center). Let Z be the distance of the selected point from the origin. Then the sample space for the experiment is

$$S = \{z : 0 \leq z < 1\}.$$

(a) Find the cdf and the pdf of Z .

Solution: Point Chosen in the Unit Circle

- For $0 < z < 1$, event $\{Z \leq z\}$ is equivalent to the point lying in a circle of radius z .
- Let $C_z = \{(x, y) : x^2 + y^2 < z^2\}$.

Conclusion

- Random variables help us summarize complex probability structures.
- They can be discrete or continuous (or mixed).
- The cumulative distribution function (cdf) and probability density/mass function (pdf/pmf) are essential concepts for understanding random variables.
- Equivalences like the one presented in the theorem help us identify valid pdfs/pmf.

Distributions of Functions of a Random Variable

- For a random variable X with cumulative distribution function (cdf) $F_X(x)$, we're often interested in the behavior of functions of X , called transformations.
- In this section, we'll study the distribution of transformed random variables.
- Let's explore how different functions of X impact the distribution of the resulting random variable $Y = g(X)$.

Transformations of Random Variables

- If X is a random variable with cdf $F_X(x)$, any function of X , denoted as $g(X)$, is also a random variable.
- Write $Y = g(X)$, and we can describe the probabilistic behavior of Y in terms of X .
- The distribution of Y depends on the functions F_X and g .
- For any set A ,

$$P(Y \in A) = P(g(X) \in A).$$

- The mapping g can be one-to-one or onto, and its inverse g^{-1} takes sets into sets.

Discrete Case: Probability Mass Function (pmf)

- If X is a discrete random variable with pmf $f_X(x)$, then $Y = g(X)$ is also discrete.
- The pmf of Y is given by

$$f_Y(y) = P(Y = y) = \sum_{x:g(x)=y} f_X(x) \quad \text{for } y \in \mathcal{Y},$$

where $\mathcal{Y} = \{y : y = g(x), x \in \mathcal{X}\}$ and \mathcal{X} is the support set of X .

Example: Discrete Transformation

Example

Suppose X takes values i with probability $f_X(i) = 1/6$ for $i = 1, 2, 3, 4, 5, 6$. If $Y = (X - 3)^2$, find \mathcal{Y} and $f_Y(y)$.

Solution: $\mathcal{Y} = \{0, 1, 4, 9\}$, and $f_Y(0) = f_X(3) = 1/6$,
 $f_Y(1) = f_X(2) + f_X(4) = 2/6$, $f_Y(4) = f_X(1) + f_X(5) = 2/6$, and
 $f_Y(9) = f_X(6) = 1/6$.

Continuous Case: The cdf Technique

- If X and $Y = g(X)$ are continuous random variables, we can find expressions for the cdf and pdf of Y in terms of those of X .
- The cdf of Y is given by

$$F_Y(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{\{x \in \mathcal{X} : g(x) \leq y\}} f_X(x) dx.$$

- This technique is called *the cdf technique*.

Ex: The cdf Technique

Example

(Relation between Uniform and Exponential Distributions)

Suppose X has a uniform distribution on $(0, 1)$: $f_X(x) = 1$ if $0 < x < 1$ and 0 otherwise. Let $Y = -\log(X)$. Obtain the pdf and cdf of Y .

Continuous Case: Probability Density Function (pdf)

- Recall that the pdf of Y is obtained by differentiating the cdf with respect to y .

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

- From this, using the derivative rule for the inverse functions, one can obtain the pdf of Y (provided that $g(x)$ is monotone).
- Thus, the pdf of Y in terms of those of X is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| \quad \text{for } y \in \mathcal{Y},$$

where $\mathcal{Y} = \{y : y = g(x), x \in \mathcal{X}\}$.

Ex: Continuous Transformation

Example

Suppose X has a uniform distribution on $(0, 1)$: $f_X(x) = 1$ if $0 < x < 1$ and 0 otherwise. Obtain the pdf of $Y = -\log(X)$.

Example: Continuous Transformation

Example

Let X have pdf $f_X(x) = \begin{cases} (x+1)/2 & \text{for } -1 \leq x \leq 1, \\ 0 & \text{otherwise.} \end{cases}$ Find the pdf of $Y = X^2$.

Solution: $-1 \leq X \leq 1$ corresponds to $0 \leq Y \leq 1$. The cdf of Y is

$$F_Y(y) = P(Y \leq y) = P(X^2 \leq y) = P(-\sqrt{y} \leq X \leq \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) dx = \dots = \sqrt{y} \quad \text{for } 0 < y < 1$$

$$\text{So, } F_Y(y) = \begin{cases} 0 & \text{for } y \leq 0, \\ \sqrt{y} & \text{for } 0 < y \leq 1 \\ 1 & \text{for } y > 1 \end{cases}$$

The pdf of Y is $f_Y(y) = \frac{dF_Y(y)}{dy} = \dots = \begin{cases} \frac{1}{2\sqrt{y}} & \text{for } 0 < y < 1 \\ 0 & \text{otherwise.} \end{cases}$

Conclusion

- Transformations of random variables are essential in probability and statistics to model real-world scenarios.
- The distribution of a transformed random variable depends on the cumulative distribution function of the original random variable and the transformation function.
- Discrete transformations have pmfs, while continuous transformations have pdfs derived using the cdf technique.
- Understanding these concepts is crucial for solving problems in various fields, including engineering, finance, and data science.

Random Variables

Random Variables

Definition

A **random variable** is a numerical outcome of our experiment.

Random variables are fundamental in probability and statistics.

Discrete Random Variables

- In our dice example, the random variable X could take on six values.
- Support of X is a finite set.
- Discussed other examples of discrete random variables.

Independent Random Variables

*Random variables X and Y are said to be **independent** if for any sets A and B , the events $\{X \text{ is in } A\}$ and $\{Y \text{ is in } B\}$ are independent, i.e. $P(X \text{ is in } A \text{ and } Y \text{ is in } B) = P(X \text{ is in } A) P(Y \text{ is in } B)$.*

Ex: Roll two dice, with X and Y denoting the number of dots on the blue and yellow dice. It is intuitively clear that the random variables X and Y not “affect” each other. If I know, say, that $X = 6$, that knowledge won’t help me guess Y at all. For instance, the probability that $Y = 2$, knowing $X=6$, is still $1/6$.

That is,

$$P(Y = 2|X = 6) = P(Y = 2)$$

which in turn implies

$$P(X = 6 \text{ and } Y = 2) = P(X = 6)P(Y = 2)$$

Example: The Monty Hall Problem

Introduction

An illustration of how random variables can simplify the translation of a probability problem to mathematical terms.

Background

- Named after a TV game show host.
- Contestant chooses one of three doors.
- One door hides a car, the others hide goats.
- Contestant's goal: find the car.

Example: The Monty Hall Problem

The Twist

- Host knows where the car is.
- After the contestant chooses, the host opens a goat door.
- Should the contestant switch to the unopened door?

Common Misconception

Assumption

Both unopened doors have a $1/2$ chance of hiding the car.

Reality

Remaining door (unchosen and unopened) has a $2/3$ chance!

Example: The Monty Hall Problem

Defining the Problem with Random Variables

- C : contestant's door choice (1, 2, or 3)
- H : host's door choice (1, 2, or 3) after contestant chooses
- A : door with the car

Mathematical Formulation

Considering the case $C = 1, H = 2$:

Then the problem is to find the probability that the contestant should change her mind, i.e., the probability that the car is actually behind door 3:

$$P(A = 3 \mid C = 1, H = 2) = \frac{P(A = 3, C = 1, H = 2)}{P(C = 1, H = 2)} \quad (1)$$

Example: The Monty Hall Problem

Role of the Host

The host's knowledge influences the problem's outcomes. The mathematical expression considering this role:

$$P(A = 3, C = 1) P(H = 2 | A = 3, C = 1) \quad (2)$$

Paul Erdős's Mistake

Even the famous mathematician Paul Erdős initially got it wrong. This showcases the importance of a structured mathematical approach.

Expected Value

Expected Value

Overview

Understanding the concept of expected value is central to probability and statistics.

Generality of the Concept

- The concepts and properties introduced apply to both discrete and continuous random variables.
- Properties extend to variance as well.

“Expected Value”:

A Misnomer, Not Always What We “Expect”

The term “expected value” often does not align with intuition.

- Example: Expected heads in 1000 coin tosses is 500, but $P(H = 500)$ is around 0.025.
- Dice roll: Expected value is 3.5, but a die never shows a 3.5.

Definition of Expected Value

Expected Value of a Random Variable

Expected value is the long-run average value of a random variable X . That is, the long-run average value as the experiment is repeated indefinitely.

$$\lim_{n \rightarrow \infty} \frac{X_1 + \dots + X_n}{n} \quad (3)$$

Example: Rolling two dice and summing their faces. The expected sum is the long-run average of sum of the two dice.

Existence of the Expected Value

- The definition assumes the limit exists.
- In practice, the limit exists if random variables have finite bounds, i.e., if values (of the rv) have finite upper and lower bounds.
- Real-world scenarios always adhere to this rule.
- We often refer to “the” expected value without the “if it exists” qualifier.

Computation and Properties of Expected Value

Computation and Properties of Expected Value

Objective

Understand the computational formula for the expected value of a discrete random variable.

Coin Toss Experiment

- Experiment: Toss 10 coins.
- Random variable X : Number of heads in 10 tosses.
- Observations:
 - $X_1 = 4$ (Four heads in first repetition)
 - $X_2 = 7$ (Seven heads in second repetition)
 - ... and so on.
- Intuitive long-run average of X : 5

Thus, $E(X) = 5$.

Deriving the Formula

Starting with Definition of Expected Value

$$E(X) = \lim_{n \rightarrow \infty} \frac{X_1 + \dots + X_n}{n}$$

Rearranging with K_{in} groups

$$E(X) = \sum_{i=0}^{10} i \cdot \lim_{n \rightarrow \infty} \frac{K_{in}}{n}$$

- K_{in} : Number of times value i occurs among X_1, \dots, X_n .
- Group by number of heads. E.g.,
 $2 + 3 + 1 + 2 + 1 + 2 = 3 \times 2 + 2 \times 1 + 1 \times 3.$

Expected Value Formula

- $\lim_{n \rightarrow \infty} \frac{K_{in}}{n}$ is the long-run fraction where $X = i$.
- This limit is essentially $P(X = i)$.

Final Expected Value Formula

$$E(X) = \sum_{i=0}^{10} i \cdot P(X = i)$$

In general,

Property A: Expected Value of a Discrete Random Variable

The expected value of a discrete random variable X which takes values in the set \mathcal{X} is:

$$E(X) = \sum_{i \in \mathcal{X}} i \cdot P(X = i) \tag{4}$$

Insights on Expected Value

Insights on Expected Value

- Expected value $E(X)$ is a weighted average.
- Weights = Probabilities of the values.
- Some values of X appear more frequently, influencing the average.
- Expected value $E(X)$ is constant.

For continuous random variables, the summation becomes an integral.

Example: Coin Tosses

(a)

$$P(X = i) = \binom{10}{i} 0.5^i (1 - 0.5)^{10-i}$$
$$E(X) = \sum_{i=0}^{10} i \binom{10}{i} 0.5^i (1 - 0.5)^{10-i}$$

Result: $E(X) = 5$

(b) N : Number of coin tosses till we obtain a head

$$E(N) = \sum_{c=1}^{\infty} c \cdot \frac{1}{2^c} = 2$$

Example: Dice

X : the number of dots we get in one roll of a die

S : sum of the dots on our yellow and blue die

$$E(X) = \sum_{c=1}^6 c \cdot \frac{1}{6} = 3.5$$

$$E(S) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + \dots + 12 \cdot \frac{1}{36} = 7$$

Intuitive understanding: $E(X)$ represents the long-run average value.

Dice Problem: Expanded Notebook

notebook line	outcome	blue+yellow = 6?	S
1	blue 2, yellow 6	No	8
2	blue 3, yellow 1	No	4
3	blue 1, yellow 1	No	2
4	blue 4, yellow 2	Yes	6
5	blue 1, yellow 1	No	2
6	blue 3, yellow 4	No	7
7	blue 5, yellow 1	Yes	6
8	blue 3, yellow 6	No	9
9	blue 2, yellow 5	No	7

Table 1: Expanded Notebook for the Dice Problem

Note: $E(Y)$ for the yellow die will also be 3.5.

Property B: Expected Value of a Sum & Properties C

Property B:

For random variables U and V :

$$E(U + V) = E(U) + E(V) \quad (5)$$

Note: U and V do **not** need to be independent for this to hold.

This can be verified with the notebook analogy.

Properties C

- For any random variable U and constant a : $E(aU) = aEU$
- For any constant b : $E(b) = b$

Intuition: If X is constant with value 3, then $EX = 3$.

Special Cases

- For X and Y : $E(aX + bY) = aEX + bEY$
- Combining properties, we get:

$$E(aX + b) = aEX + b$$

Example: Temperature Conversion

Say U is temperature in Celsius. Then the temperature in Fahrenheit is $W = \frac{9}{5}U + 32$. Using our property, we can find its expected value of the temperature in Fahrenheit, if the expected value in Celsius is available.

Property D

If $E[g(X)]$ exists, then

$$E[g(X)] = \sum_{c \in \mathcal{X}} g(c) \cdot P(X = c)$$

where the sum is over all values c that X can take.

Example: (Die Roll) Let's find $E(\sqrt{X})$ where X is the number of dots on a die roll.

$$E(\sqrt{X}) = \sum_{i=1}^6 \sqrt{i} \cdot \frac{1}{6} \approx 1.805$$

Property E

If U and V are independent:

$$E(UV) = EU \cdot EV$$

Equation $E(UV) = EU \cdot EV$ lacks an easy notebook illustration.
Refer to Appendix Section for detailed proof.

Example: Dice with blue and yellow dots, $D = XY$.

$$E(D) = E(XY) = EX \cdot EY = 3.5^2 = 12.25.$$

Importance of $E[g(X)]$

$E[g(X)]$ is crucial and will be frequently used.

Mailing Tubes Concept

- Properties of expected value are central to understanding.
- Equations like $E[g(X)]$ are “mailing tubes”.
- Recognize scenarios to apply these properties.

Remember to always utilize the “mailing tubes” throughout your studies and work.

Bus Ridership: Expected Values

- Find the expected value of N_1 , the number of passengers on the bus as it leaves the first stop.
- Extend the concept to find $E[N_2]$.

Given Data

- Bus arrives empty at the first stop.
- $N_1 = B_1$, where B_1 is the number who board at the first stop.
- Support of N_1 (equivalently B_1): 0, 1, and 2 (i.e., $\mathcal{N}_1 = \{0, 1, 2\}$).
- Probabilities: $P(B_1 = 0) = 0.5$, $P(B_1 = 1) = 0.4$, and $P(B_1 = 2) = 0.1$.

Calculation of $E[N_1]$

Using the formula:

$$E[N_1] = \sum_{i \in \mathcal{N}_1} i \times P(N_1 = i)$$

$$E[N_1] = 0(0.5) + 1(0.4) + 2(0.1) = 0.6$$

Interpretation of $E[N_1]$: On observing the bus over many days, on average, it will leave the first stop with 0.6 passengers.

Extension to $E[N_2]$

- Support of N_2 : $\{0, 1, 2, 3, 4\}$.
- Need to find $P(N_2 = i)$ for $i = 0, 1, 2, 3, 4$.
- Known: $P(N_2 = 0) = 0.292$.
- Other probabilities can be determined similarly as above.

Expected Values via Simulation

When the expected values EX are too intricate to determine analytically, one can use simulation as an alternative. By understanding the expected value as a long-run average, the approach is straightforward:

- Execute `nreps` replications of the experiment.
- For each run, record the value of X .
- Calculate the average over `nreps` values.

To illustrate this, a modified version of the code from Section 2.4 is provided, aiming to estimate the expected number of passengers on a bus as it departs from the tenth stop.

Expected Values via Simulation

```
nreps <- 10000
NSTOPS <- 10
total <- 0
for (i in 1: nreps ) {
  passengers <- 0
  for (j in 1: NSTOPS ) {
    if ( passengers > 0)
      for (k in 1: passengers )
        if ( runif (1) < 0.2)
          passengers <- passengers - 1
    newpass <- sample (0:2 ,1 , prob =c (0.5 ,0.4 ,0.1))
    passengers <- passengers + newpass
  }
  total <- total + passengers
}
print ( total / nreps )
```

Expected Value for Continuous RVs

The *expected value* or *mean* of a random variable $g(X)$, denoted by $E[g(X)]$, is

$$E[g(X)] = \begin{cases} \int_{-\infty}^{\infty} g(x)f_X(x)dx & \text{if } X \text{ is continuous,} \\ \sum_{x \in \mathcal{X}} g(x)f_X(x) = \sum_{x \in \mathcal{X}} g(x)P(X = x) & \text{if } X \text{ is discrete,} \end{cases}$$

provided that the integral or sum exists.

Mean of the Exponential Distribution

Suppose X has an $\text{Exponential}(\lambda)$ distribution, that is, it has pdf given by

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \geq 0, \\ 0 & \text{otherwise,} \end{cases}$$

for $\lambda > 0$. Find the mean of X .

Solution

$$\begin{aligned} E[X] &= \int_0^{\infty} x \lambda e^{-\lambda x} dx = -xe^{-\lambda x} \Big|_0^{\infty} + \int_0^{\infty} e^{-\lambda x} dx = \\ &\quad -\frac{1}{\lambda} e^{-\lambda x} \Big|_0^{\infty} = \frac{1}{\lambda} \text{ (integration by parts)} \end{aligned}$$

Example: Relation between Uniform and Exponential Distributions - II

Let X have a $\text{Uniform}(0, 1)$ distribution, i.e., its pdf is

$$f_X(x) = \begin{cases} 1 & \text{if } 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Define $Y = g(X) = -\log X$ and find $E[Y]$.

Solution

Solution 1: Using the density of

$$\begin{aligned} E[Y] &= E[g(X)] = E[-\log X] = \int_0^1 -\log x dx = \\ &= -x \log x \Big|_0^1 + \int_0^1 -x \frac{d(\log x)}{dx} dx = 1. \end{aligned}$$

Solution 2:

Using the density of Y . Recall

$$f_Y(y) = \frac{d}{dy} (1 - e^{-y}) = e^{-y}$$

for $0 < y < \infty$.

This is the special case of exponential distribution with $\lambda = 1$.

Thus, $EY = 1/\lambda = 1$.

Central Tendency: Mean vs. Median

- Expected value is a measure of central tendency.
- Other measures: Median (halfway point of distribution).
- Mean has historical significance in probability and statistics.

Misconceptions about Expected Value

- Not always the value we truly “expect”.
- Example: Expected number of dots on a die is 3.5, but this is impossible in reality.

Limitations of the Mean

- Can be skewed by outliers, e.g., if Bill Gates moved to a town.
- Mean might not capture the true central tendency.
- The significance of mean in real-life scenarios might be ambiguous.

When Mean Makes Sense

- Useful when interested in totals (e.g., total defects in a batch).
- In many scenarios (e.g., describing wealth or exam scores), the total is not directly relevant.
- The median might be more representative in such cases.

Mean in Business: Casinos and Insurance Companies

- Mean has tangible significance for casinos and insurance companies.
- Useful for predicting totals over long runs (e.g., total payouts).
- Helps businesses plan and set prices or premiums.

Introduction

Variance

As in Section on Expectation (Ch 3 in Matloff), the concepts and properties introduced in this section form the very core of probability and statistics.

Note: Except for some specific calculations, these apply to both discrete and continuous random variables.

Definition

While the expected value tells us the long-run average of a random variable, we also need a measure of its variability.

In other words, we want a measure of **dispersion** or **spread**. The classical measure of spread is **variance**.

Variance Definition: For a random variable U for which the expected values exist, the **variance** of U is defined to be:

$$\text{Var}(U) = E[(U - EU)^2] \quad (1)$$

Die Example

For X in the die example:

$$\text{Var}(X) = E[(X - 3.5)^2] \quad (2)$$

Here, $W = (X - 3.5)^2$ is a function of X . We find the expected value of this new random variable W .

Notebook View

line	X	W
1	2	2.25
2	5	2.25
3	6	6.25
4	3	0.25
5	5	2.25
6	1	6.25

Calculating Variance

To evaluate, apply:

$$\text{Var}(X) = \sum_{c=1}^6 (c - 3.5)^2 \cdot \frac{1}{6} = 2.92$$

Variance gives us a measure of dispersion.

Intuition

In the expression $\text{Var}(U) = E[(U - EU)^2]$:

- If values of U are clustered near its mean, then $(U - EU)^2$ will usually be small.
- Then variance of U will be small.
- If U varies widely, then its variance will be large.

Properties of Variance

Property F

$$\text{Var}(U) = E(U^2) - (EU)^2 \quad (3)$$

The term $E(U^2)$ is evaluated using Property D of expectation.

Derivation of Property F

Using properties of expected values:

$$\begin{aligned}\text{Var}(U) &= E[(U - EU)^2] \\ &= E[U^2 - 2EU \cdot U + (EU)^2] \quad (\text{algebra}) \\ &= E(U^2) + E(-2EU \cdot U) + E[(EU)^2] \quad (\text{property B}) \\ &= E(U^2) - 2EU \cdot EU + (EU)^2 \quad (\text{properties C}) \\ &= E(U^2) - (EU)^2\end{aligned}$$

Note on Property F: Remember, (3) is a shortcut formula for finding the variance, not the *definition* of variance.

Example using Property F

If X is the number of dots which come up when we roll a die:

$$\text{Var}(X) = E(X^2) - (EX)^2 \quad (4)$$

From Property D of expectation

$$E(X^2) = \sum_{i=1}^6 i^2 \cdot \frac{1}{6} = \frac{91}{6} \quad (5)$$

Thus,

$$\text{Var}(X) = E(X^2) - (EX)^2 = \frac{91}{6} - 3.5^2 \approx 2.92$$

Property G

An important behavior of variance is:

$$\text{Var}(cU) = c^2 \text{Var}(U) \quad (6)$$

This means: If we multiply a random variable by c , its variance multiplies by c^2 .

Proof of Property G: Defining $V = cU$:

$$\begin{aligned}\text{Var}(V) &= E[(V - EV)^2] \text{ (def.)} \\ &= E\{[cU - E(cU)]^2\} \text{ (subst.)} \\ &= E\{[cU - cEU]^2\} \text{ (property C)} \\ &= E\{c^2[U - EU]^2\} \text{ (algebra)} \\ &= c^2 E\{[U - EU]^2\} \text{ (property C)} \\ &= c^2 \text{Var}(U) \text{ (def.)}\end{aligned}$$

Property H

Shifting data over by a constant does not change the amount of variation in them:

$$\text{Var}(U + d) = \text{Var}(U) \quad (7)$$

for any constant d .

Variance of a Constant: Intuitively, the variance of a constant is 0 — after all, it never varies!

Formally:

$$\text{Var}(c) = E(c^2) - [E(c)]^2 = c^2 - c^2 = 0 \quad (8)$$

Standard Deviation: The square root of the variance is called the **standard deviation**: $SD(X) = \sqrt{\text{Var}(X)}$.

An Alternative Measure of Dispersion

Variance is used historically and mathematically, not because it's the most meaningful measure (of spread).

- Squaring exaggerates larger differences.
- A more natural measure: **mean absolute deviation** (MAD), $E(|U - EU|)$.
- MAD is less mathematically tractable.

The choice of variance allows for powerful mathematical derivations (e.g., Pythagorean Theorem in abstract vector spaces).

Variance of Sum of Independent RVs

If U and V are independent,

$$\text{Var}(U + V) = \text{Var}(U) + \text{Var}(V) \quad (9)$$

Generalizing (9), for constants a_1, \dots, a_k and independent random variables X_1, \dots, X_k , form the new random variable $a_1X_1 + \dots + a_kX_k$. Then

$$\text{Var}(a_1X_1 + \dots + a_kX_k) = \sum_{i=1}^k a_i^2 \text{Var}(X_i) \quad (10)$$

Importance of Variance

Importance of Variance Properties

- The properties of variance are crucial for understanding the rest of the content.
- Recognize settings where they are applicable. Think of a property like (9) and check for independence.

Central Importance of the Concept of Variance

- The mean is a fundamental descriptor of a random variable.
- Variance is of central importance.
- Used constantly throughout subsequent discussions.
- Next: A quantitative look at variance as a measure of dispersion.

Intuition Regarding the Size of $\text{Var}(X)$

The variance of a random variable X is a measure of dispersion.
But, how do we quantify its magnitude?

Chebychev's Inequality: This inequality provides concrete meaning to the concept of variance/standard deviation:

$$P(|X - \mu| \geq c\sigma) \leq \frac{1}{c^2} \quad (11)$$

- For instance, X strays more than 3 standard deviations from its mean at most only $1/9$ of the time.
- Used in grading schemes:
“An A grade is 1.5 standard deviations above the mean” and
“A C grade is 1.5 standard deviations below the mean”
(here $c = 1.5$).
- Proof of the inequality provided later.

The Coefficient of Variation

- Reflect on the magnitude of variance.
- E.g., if the price of a widget hovers around a \$1 million, but the variation around that figure is only about a dollar, there is essentially no variation. But a variation of about a dollar in the price of a hamburger would be a lot.
- Relate size of $SD(X)$ to $E(X)$ for context.
- Define the coefficient of variation:

$$\text{coef. of var.} = \frac{SD(X)}{EX} = \frac{\sqrt{Var(X)}}{EX}$$

- A scale-free measure to judge the size of variance.

A Useful Fact

For a random variable X :

$$g(c) = E[(X - c)^2] \quad (12)$$

The function $g(c)$ maps a real number c to a real output. What value of c minimizes $g(c)$?

Using the properties of expected value:

$$g(c) = E(X^2) - 2cEX + c^2 \quad (13)$$

Differentiate with respect to c and set to 0 to find:

$$c = EX$$

Optimal Guessing

- Consider guessing people's weights without any prior information.
- Initial inclination: use the mean weight as your guess.
- When you measure the error in your guess using “mean squared error”:

$$E[(X - c)^2]$$

$c = EX$ minimizes the error.

- This confirms that the optimal guess is the mean weight.

Conclusion and Alternate Consideration

- Plugging $c = EX$ into $g(c)$ shows the minimum value is $E(X - EX)^2$, i.e., $Var(X)$.
- Think of this in terms of long-run average squared error.
- Alternative: Minimize average absolute error:

$$E(|X - c|)$$

- The optimal c for this is the **median** weight.

Indicator Random Variables, and Their Means and Variances

Definition: Indicator Random Variable

Definition

A random variable that has the value 1 or 0, depending on whether a specified event occurs or not, is called an **indicator random variable** for that event.

Handy Facts

- If X is an indicator random variable for event A and $p = P(A)$, then:

$$E(X) = p \tag{14}$$

$$\text{Var}(X) = p(1 - p) \tag{15}$$

- For example: $EX = P(X = 1) = P(A) = p$.

Application Example

Consider three coins:

- Coin A has $P(\text{heads}) = 0.6$
- Coin B (fair) has $P(\text{heads}) = 0.5$
- Coin C has $P(\text{heads}) = 0.2$

Toss each once, recording heads as X , Y , and Z respectively.

$W = X + Y + Z$ is the total number of heads.

Find $P(W = 1)$ and $\text{Var}(W)$: To find $P(W = 1)$:

$$\begin{aligned}P(W = 1) &= P(X = 1, Y = 0, Z = 0) + \dots \\&= 0.6 \times 0.5 \times 0.8 + 0.4 \times 0.5 \times 0.8 + 0.4 \times 0.5 \times 0.2 \\&= 0.44\end{aligned}$$

To find $\text{Var}(W)$ using indicator random variables:

$$\text{Var}(W) = 0.6 \times 0.4 + 0.5 \times 0.5 + 0.2 \times 0.8 = 0.65$$

Example: Return Time for Library Books, Version I

Suppose at a public library:

- Patrons return books exactly 7 days after borrowing.
- Returning to a different branch adds 2 days delay.
- 50% return their books to a “foreign” library.

Find $Var(T)$, where T is the time (either 7 or 9 days) for a book to come back.

Solution:

$$T = 7 + 2I$$

where I indicates if the book is returned to a “foreign” branch.

$$Var(T) = Var(7 + 2I) = 4Var(I) = 4 \times 0.5 \times (1 - 0.5) = 1.0$$

Example: Return Time for Library Books, Version II

- Borrowers return books after 4, 5, 6 or 7 days with probabilities 0.1, 0.2, 0.3, 0.4.
- 50% return their books to a “foreign” branch (causing 2-day delay).
- Library is open 7 days a week.
- Suppose you wish to borrow a certain book, and inquire at the library near the close of business on Monday.
- You are told that it had been checked out the previous Thursday.
- Assume that no one else is waiting for the book, you check every evening, and a borrower returning to a foreign branch is independent of his/her return day.
- Find the probability of waiting until Wednesday evening.

Example: Return Time for Library Books, Version II

Solution Let B : the time (# of days) needed for the book to arrive back at its home branch,

R : the amount of time it takes for borrowers to return books, and define I as before. Note that $B = R + 2I$. Then

$$\begin{aligned} P(B = 6 \mid B > 4) &= \frac{P(B = 6 \text{ and } B > 4)}{P(B > 4)} \\ &= \frac{P(B = 6)}{1 - P(B \leq 4)} = \frac{P(B = 6)}{1 - P(B = 4)} \end{aligned}$$

So, $B = 6$ occurs when “ $R=6$ and $I=0$ ” or “ $R=4$ and $I=1$ ”. Thus,

$$\begin{aligned} P(B = 6 \mid B > 4) &= \frac{P(\text{“}R = 6 \text{ and } I = 0\text{” or “}R = 4 \text{ and } I = 1\text{”})}{1 - P(R = 4 \text{ and } I = 0)} \\ &= \frac{0.3 \cdot 0.5 + 0.1 \cdot 0.5}{1 - 0.1 \cdot 0.5} \\ &= \frac{4}{19} \approx 0.21 \end{aligned}$$

Simulation Check

```
libsim <- function(nreps) {  
  prt <- sample(c(4,5,6,7),nreps,replace=T,  
                  prob=c(0.1,0.2,0.3,0.4))  
  i <- sample(c(0,1),nreps,replace=T)  
  b <- prt + 2*i  
  x <- cbind(prt,i,b)  
  bgt4 <- x[b > 4,]  
  mean(bgt4[,3] == 6)  
}
```

Use *R*'s vector operations for easier coding and faster running.