Random Variables - Introduction

e Dealing with a summary variable is often easier than dealing
with the original probability structure.

e Example: Opinion poll with "agree” and "disagree” responses.

e Define a variable X as the number of people who agree.



Definition of Random Variable

Definition
For a given random experiment with a sample space S, a function

X(+) that assigns to each element s in S one and only one real
number X(s) = x is called a random variable.

Examples of Random Variables

Experiment Random Variable X ‘ Sample Space X ‘
Toss two dice Sum of the numbers | {2,3,...,12}
Toss a coin 25 times Number of heads {0,1,...,25}
Apply fertilizer to corn Yield per acre [0, 00)




Examples (cont’d)

Example

Tossing a fair coin once. Let X denote the number of heads.
Note: A random variable will be denoted by an uppercase letter,
e.g., X, and the realized values by corresponding lowercase letters,
e.g., X.

Example

(Distribution of a random variable) Toss a fair coin 3 times. Let
X = number of heads in the three tosses. Find the distribution of
X.



Examples (cont’d)

Solution: Here X takes the following values for each sample point
inS.

s | {HHH} | {HHT}, {HTH}, {THH} | {TTH}{THT}{HTT} | {TTT}
X 9 2 1 0

So, the range for the random variable X is X = {0,1,2,3}. Hence,
the induced probability function on X is given by

X 0| 1|23
Px(X=x)|1/8|3/8|3/8|1/8




Cumulative Distribution Function

Definition
The cumulative distribution function (cdf) of a random variable X,

denoted by Fx(x), is defined as Fx(x) = P(X < x).

.FX

(—00) = limy_ Fx(x) = 0 and
FX(oo) =

(

(

limy 00 Fx(x) = 1.
e Fx(x) is nondecreasing.

)
e Fx(x) is right-continuous.



Example
Tossing three fair coins. Let X :=number of heads. Then, the cdf
of X is

0 if —oco<x<0

1/8 if 0<x<1

Fx(x)=4¢ 1/2 if 1<x<2
7/8 if 2<x<3
1 if 3<x< .

See Figure 3 below.



Ex: discrete cdf
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Figure 1: cdf plot for number of heads tossing three fair coins



Ex: logistic cdf

Example
(Continuous cdf) The continuous function

for all x

Fx(x) = 14 eX

satisfies all the 3 properties of a cdf, and hence it is a cdf. It is

actually known as the logistic cdf.



Ex: logistic cdf

cdf of logistic distribution
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Figure 2: cdf curve for the logistic distribution



Probability Density and Mass Functions

Definition
The probability mass function (pmf) of a discrete random variable
X is given by fx(x) = P(X = x) for all x.
Definition
The probability density function (pdf) of a continuous random
variable X is fx(x) which satisfies

Fr(x) = P(X < x) = / ().

Equivalences and Theorems

Theorem
A function fx(x) is a pdf (pmf) of a random variable X if and only

if:
1. fx(x) > 0 for all x.
2. 3 fx(x) =1 (discrete) or [~ _fx(x)dx =1 (continuous).



How to get pmf or pdf from cdf

e If X is discrete fx(a) = P(X = a). In particular, if X' consists
ofar<ap<az<---,

fx(ak) = P(X = ak) = Fx(ak)—Fx(ak_l) for all ap € X with kK >1

and fx(al) = P(X = al) = Fx(al)
e If X is continuous, we get

X

Fx(x) = P(X < x) = / fx(t)dt,

—00

then we have J
aFX(X) = fx(x),

which follows from the Fundamental Theorem of Calculus.
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Notation & Continuous Distribution Properties

A note on notation:

e X has a distribution given by Fx(x): X ~ Fx or X has pmf
(or pdf) fx(x): X ~ fx:

e X2 Y : Xand Y have the same distribution (X and Y are
identically distributed).

For a continuous random variable, X, with cdf Fx(x), the
following holds for all a,b € R with a < b:

Fx(b) — Fx(a) = Pla<X<b)=Pa<X<b)
= P(a<X§b):P(a§X§b):/bfx(x)dx,

which also implies P(X = ¢) = 0 for any constant c.

12



ontinuous Distribution Properties

e
A= T

P(as)lsb)ssb flords
a

=F, () - F (@

Figure 3: lllustration of probability as area under the pdf curve for
logistic distribution
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Example
Obtain the pdf of a logistic random variable with cdf

Example
Let X denote the amount of space occupied by a (random) item

placed in a 1-ft3 packing container. Suppose the pdf of X is given
as:
kB(1l—x) 0<x<1
fx(X) = ( ) -
0 otherwise.

(1) Find the value of k that will make this a valid density function.
(2) Obtain the cdf of X.

(3) Find P(0.2 < X < 0.8).
14



Soluti?n:
(1) / kx®(1 — x)dx = 1 implies that
0

1 =il
k/ (x® — x%)dx = k(x°/9 — 10/10)‘ _, =L Hence

k(1/9—-1/10)=1 = k= 90.

(2) Then Fx(x / fx(t)dt, so

0 if x<0
Fx(x) = ¢ 10x° — 9x° if 0<x<1
1 if 1<x

(3) (i) Using the pdf
.8 .8

P(2<X<.8)= / fx(x)dx = / 90x3(1 — x)dx = ... ~ .376.
2 2

(i) Using the cdf P(.2 < X < .8) = Fx(.8) — Fx(.2) ~ .376. 15



Ex: Point Chosen in the Unit Circle

Example
Suppose we pick a point at random from the interior of a circle of

radius 1 (and for the unit circle, origin = (0,0) is the center). Let
Z be the distance of the selected point from the origin. Then the
sample space for the experiment is

S={z:0<z<1}.
(a) Find the cdf and the pdf of Z.

Solution: Point Chosen in the Unit Circle

e For 0 < z <1, event {Z < z} is equivalent to the point lying

in a circle of radius z.
o Let C, = {(x,y) : x> +y? < Z%}.

16



Conclusion

e Random variables help us summarize complex probability
structures.

e They can be discrete or continuous (or mixed).

e The cumulative distribution function (cdf) and probability
density/mass function (pdf/pmf) are essential concepts for
understanding random variables.

e Equivalences like the one presented in the theorem help us
identify valid pdfs/pmfs.

17



Distributions of Functions of a Random Variable

e For a random variable X with cumulative distribution function
(cdf) Fx(x), we're often interested in the behavior of
functions of X, called transformations.

o In this section, we'll study the distribution of transformed
random variables.

e Let's explore how different functions of X impact the
distribution of the resulting random variable Y = g(X).

18



Transformations of Random Variables

e If X is a random variable with cdf Fx(x), any function of X,
denoted as g(X), is also a random variable.

e Write Y = g(X), and we can describe the probabilistic
behavior of Y in terms of X.

e The distribution of Y depends on the functions Fx and g.
e For any set A,

P(Y € A) = P(g(X) € A).

e The mapping g can be one-to-one or onto, and its inverse

g~ ! takes sets into sets.

19



Discrete Case: Probability Mass Function (pmf)

e If X is a discrete random variable with pmf fx(x), then
Y = g(X) is also discrete.

e The pmf of Y is given by

fy(y) = = ) fx(x) forye,

x:g(x)=y

where Y = {y : y = g(x),x € X} and X is the support set of
X.

20



Example: Discrete Transformation

Example
Suppose X takes values i with probability fx(i) = 1/6 for

i=1,2,3,4,56.If Y = (X —3)2 find Y and fy(y).

Solution: Y = {0,1,4,9}, and fy(0) = x(3) =1/6,

fy(l) = fx(2) + fx(4) = 2/6, fy(4) = fx(l) + fx(5) = 2/6, and
fy(9) = fx(6) = 1/6.

21



Continuous Case: The cdf Technique

e If X and Y = g(X) are continuous random variables, we can
find expressions for the cdf and pdf of Y in terms of those of
X.

e The cdf of Y is given by
Fr(y) = P(Y <) = Pe() <) = [ ().
{xeX:g(x)<y}

e This technique is called the cdf technique.

22



Ex: The cdf Technique

Example
(Relation between Uniform and Exponential Distributions)

Suppose X has a uniform distribution on (0,1): fx(x) =1 if
0 < x <1 and 0 otherwise. Let Y = —log(X). Obtain the pdf
and cdf of Y.

23



Continuous Case: Probability Density Function (pdf)

e Recall that the pdf of Y is obtained by differentiating the cdf
with respect to y.

frly) = Cj’yFY(y)

e From this, using the derivative rule for the inverse functions,
one can obtain the pdf of Y (provided that g(x) is monotone).

e Thus, the pdf of Y in terms of those of X is
=i d
W) = e )| e 0)| fory ey,
where Y = {y : y = g(x),x € X'}.

24



Ex: Continuous Transformation

Example
Suppose X has a uniform distribution on (0,1): fx(x) =1 if

0 < x < 1 and 0 otherwise. Obtain the pdf of Y = —log(X).

25



Example: Continuous Transformation

Example
x+1)/2 for —1<x<1,

Let X have pdf fx(x) = ( )/ ~ = Find the
0 otherwise.

pdf of Y = X2.

Solution: —1 < X <1 correspondsto 0 < Y < 1. The cdf of Y is

Fy(y)=P(Y <y)=P(X*<y)=P(—/y <X < y) =

VY
/ fx(x)dx=...=y for0<y<1
-y
0 for y <0,
So, Fy(y) =4y for0<y<1
1 fory >1

Yy

The pdf of Yis fy(y) = dFy(y) (2) .
otherwise.

dy

A for0<y<1
= coo = 26



Conclusion

e Transformations of random variables are essential in
probability and statistics to model real-world scenarios.

e The distribution of a transformed random variable depends on
the cumulative distribution function of the original random
variable and the transformation function.

e Discrete transformations have pmfs, while continuous
transformations have pdfs derived using the cdf technique.

e Understanding these concepts is crucial for solving problems in

various fields, including engineering, finance, and data science.

27



Random Variables



Random Variables

Definition
A random variable is a numerical outcome of our experiment.

Random variables are fundamental in probability and statistics.

Discrete Random Variables

e In our dice example, the random variable X could take on six

values.
e Support of X is a finite set.

e Discussed other examples of discrete random variables.



Independent Random Variables

Random variables X and Y are said to be independent if
for any sets A and B, the events {X is in A} and {Y is in
B} are independent, i.e. P(Xisin A and Y isin B) = P(X
isin A) P(Y is in B).

Ex: Roll two dice, with X and Y denoting the number of dots on
the blue and yellow dice. It is intuitively clear that the random
variables X and Y not “affect” each other. If | know, say, that X =
6, that knowledge won't help me guess Y at all. For instance, the
probability that Y = 2, knowing X=6, is still 1/6.

That is,
P(Y =2|X=6)=P(Y =2)
which in turn implies

P(X=6and Y =2)=P(X =6)P(Y =2) 2



Example: The Monty Hall Problem

Introduction
An illustration of how random variables can simplify the translation

of a probability problem to mathematical terms.
Background

o Named after a TV game show host.
e Contestant chooses one of three doors.
e One door hides a car, the others hide goats.

e Contestant's goal: find the car.



Example: The Monty Hall Problem

The Twist

e Host knows where the car is.
e After the contestant chooses, the host opens a goat door.

e Should the contestant switch to the unopened door?

Common Misconception

Assumption
Both unopened doors have a 1/2 chance of hiding the car.

Reality
Remaining door (unchosen and unopened) has a 2/3 chance!



Example: The Monty Hall Problem

Defining the Problem with Random Variables

e C: contestant’s door choice (1, 2, or 3)
e H: host’s door choice (1, 2, or 3) after contestant chooses

e A: door with the car

Mathematical Formulation

Considering the case C =1, H=2:

Then the problem is to find the probability that the contestant
should change her mind, i.e., the probability that the car is actually
behind door 3:

PA=3|C=1, H=2)=



Example: The Monty Hall Problem

Role of the Host
The host's knowledge influences the problem’s outcomes. The
mathematical expression considering this role:

P(A=3, C=1)P(H=2|A=3, C=1) (2)

Paul Erdos’s Mistake
Even the famous mathematician Paul Erdds initially got it wrong.
This showcases the importance of a structured mathematical

approach.



Expected Value




Expected Value

Overview
Understanding the concept of expected value is central to

probability and statistics.
Generality of the Concept

e The concepts and properties introduced apply to both discrete
and continuous random variables.
e Properties extend to variance as well.
“Expected Value”:
A Misnomer, Not Always What We “Expect”
The term “expected value” often does not align with intuition.
e Example: Expected heads in 1000 coin tosses is 500, but
P(H = 500) is around 0.025.
e Dice roll: Expected value is 3.5, but a die never shows a 3.5.



Definition of Expected Value

Expected Value of a Random Variable
Expected value is the long-run average value of a random variable

X. That is, the long-run average value as the experiment is
repeated indefinitely.

. X1+---+Xn
im —

n— 00 n

(3)

Example: Rolling two dice and summing their faces. The expected

sum is the long-run average of sum of the two dice.



Existence of the Expected Value

e The definition assumes the limit exists.

e In practice, the limit exists if random variables have finite
bounds, i.e., if values (of the rv) have finite upper and lower
bounds.

o Real-world scenarios always adhere to this rule.

e We often refer to “the” expected value without the “if it
exists” qualifier.



Computation and Properties of
Expected Value



Computation and Properties of Expected Value

Objective
Understand the computational formula for the expected value of a

discrete random variable.

Coin Toss Experiment

e Experiment: Toss 10 coins.

e Random variable X: Number of heads in 10 tosses.

Observations:

e X; =4 (Four heads in first repetition)
e X, =7 (Seven heads in second repetition)
e ... and so on.

Intuitive long-run average of X: 5

Thus, E(X) = 5.

10



Deriving the Formula

Starting with Definition of Expected Value

X1+ ...+ X
E(X)= lim At X
n—o0
Rearranging with Kj, groups
10 K.
o .‘ . n
Y= 0 1

e Ki,: Number of times value i occurs among X, ..., Xj.

e Group by number of heads. E.g.,
2434+14+24+14+2=3x24+2x14+1x3.

11



Expected Value Formula

o lim,—oo K,;'" is the long-run fraction where X = /.

e This limit is essentially P(X = ).

Final Expected Value Formula
10

E(X)=> i-P(X=1i)

i=0

In general,

Property A: Expected Value of a Discrete Random Variable
The expected value of a discrete random variable X which takes
values in the set X is:

E(X)=) _i-P(X=1i) (4)

iex

12



Insights on Expected Value

Insights on Expected Value

e Expected value E(X) is a weighted average.
e Weights = Probabilities of the values.

e Some values of X appear more frequently, influencing the

average.

e Expected value E(X) is constant.

For continuous random variables, the summation becomes an

integral.

13



Example: Coin Tosses

(a)
4 10 i 10—
P(X=i)= (" )0.5 (1-0.5)
E(X) = Z <10>0 5(1 —0.5)10
i=0
Result: E(X) =

(b) N: Number of coin tosses till we obtain a head
besel-
e
c=1

14



Example: Dice

X: the number of dots we get in one roll of a die
S: sum of the dots on our yellow and blue die

6
Zc
c=1

1 2 1
E(S)=2 o3 gt +12: 5. =7

[e)] \

Intuitive understanding: E(X) represents the long-run average
value.

ii5)



Dice Problem: Expanded Notebook

‘ notebook line ‘ outcome ‘ blue-+yellow = 67 ‘ S
1 blue 2, yellow 6 | No 8
2 blue 3, yellow 1 | No 4
3 blue 1, yellow 1 | No 2
4 blue 4, yellow 2 | Yes 6
5 blue 1, yellow 1 | No 2
6 blue 3, yellow 4 | No 7
7 blue 5, yellow 1 | Yes 6
8 blue 3, yellow 6 | No 9
9 blue 2, yellow 5 | No 7

Table 1: Expanded Notebook for the Dice Problem

Note: E(Y') for the yellow die will also be 3.5.

16



Property B: Expected Value of a Sum & Properties C

Property B:
For random variables U and V:

E(U+ V) = E(U) + E(V) (5)

Note: U and V do not need to be independent for this to hold.
This can be verified with the notebook analogy.
Properties C

e For any random variable U and constant a: E(aU) = aEU

e For any constant b: E(b) = b

Intuition: If X is constant with value 3, then EX = 3.

17



Special Cases

e For X and Y: E(aX + bY) = aEX + bEY

e Combining properties, we get:

E(aX + b) = aEX + b

Example: Temperature Conversion

Say U is temperature in Celsius. Then the temperature in
Fahrenheit is W = %U + 32. Using our property, we can find its
expected value of the temperature in Fahrenheit, if the expected

value in Celsius is available.

18



Property D

If E[g(X)] exists, then

Elg(X)] =) _glc)-P(X =c)

ceX

where the sum is over all values ¢ that X can take.

Example: (Die Roll) Let's find E(v/X) where X is the number of
dots on a die roll.

E(VX) = Z\/, é ~ 1.805

6
i=1

19



Property E

If U and V are independent:

E(UV) = EU-EV

Equation E(UV) = EU - EV lacks an easy notebook illustration.
Refer to Appendix Section for detailed proof.

Example: Dice with blue and yellow dots, D = XY

E(D) = E(XY) = EX - EY = 3.5 = 12.25.

20



Importance of E[g(X)]

E[g(X)] is crucial and will be frequently used.

Mailing Tubes Concept

e Properties of expected value are central to understanding.
e Equations like E[g(X)] are "mailing tubes”.

e Recognize scenarios to apply these properties.

Remember to always utilize the “mailing tubes” throughout your
studies and work.

21



Bus Ridership: Expected Values

e Find the expected value of Np, the number of passengers on
the bus as it leaves the first stop.

e Extend the concept to find E[N5].
Given Data

e Bus arrives empty at the first stop.
e N; = Bj, where Bj is the number who board at the first stop.
e Support of Ny (equivalently B;): 0, 1, and 2 (i.e.,
N1 ={0,1,2}).
e Probabilities: P(B; =0) = 0.5, P(By = 1) = 0.4, and
P(By =2)=0.1.

22



Calculation of E[N;]

Using the formula:
E[Ng] =Y i x P(Ny =1)
f€N1
E[N;] = 0(0.5) + 1(0.4) +2(0.1) = 0.6

Interpretation of E[N;]: On observing the bus over many days,
on average, it will leave the first stop with 0.6 passengers.

Extension to E[N5]

e Support of Np: {0,1,2,3,4}.
e Need to find P(N, =) for i =0,1,2,3,4.
e Known: P(N, =0) = 0.292.

e Other probabilities can be determined similarly as above. ”3



Expected Values via Simulation

When the expected values EX are too intricate to determine
analytically, one can use simulation as an alternative. By
understanding the expected value as a long-run average, the
approach is straightforward:

e Execute nreps replications of the experiment.
e For each run, record the value of X.

e Calculate the average over nreps values.

To illustrate this, a modified version of the code from Section 2.4
is provided, aiming to estimate the expected number of passengers
on a bus as it departs from the tenth stop.

24



Expected Values via Simulation

nreps <- 10000

nstops <- 10

total <- 0

for (i in 1: nreps ) {

passengers <- 0

for (j in 1: nstops ) {

if ( passengers > 0)

for (k in 1: passengers )

if ( runif (1) < 0.2)

passengers <- passengers - 1
newpass <- sample (0:2 ,1 , prob =c (0.5 ,0.4 ,0.1))
passengers <- passengers + newpass
}

total <- total + passengers

}

print ( total / nreps ) 25



Expected Value for Continuous RVs

The expected value or mean of a random variable g(X), denoted

by E[g(X)]. is
Elg(X)] =
ffooo g(x)fx(x)dx if X is continuous,

Y oex 8X)fx(X) = Do cx 8(x)P(X = x) if X is discrete,

provided that the integral or sum exists.

26



Mean of the Exponential Distribution

Suppose X has an Exponential(\) distribution, that is, it has pdf
given by
e ™™ if x >0,

0 otherwise,

for A > 0. Find the mean of X.

Solution

o 0o (e.0]
E[X] = / xhe Mdx = —xe ™ , t / e Mdx =
0 0

(integration by parts)

o0

1 —Ax
)\e

!
o A

27



Example: Relation between Uniform and Exponential Distribu-

tions - 1l

Let X have a Uniform(0, 1) distribution, i.e., its pdf is

1 fo<x<l,
fx(X =
0 otherwise.

Define Y = g(X) = —log X and find E[Y].

28



Solution 1: Using the density of
1
E[Y] = E[g(X)] = E[ log X] = / _ log xdx =
0

1 1 |
—xlogx‘ +/ —xmdx: 1.
0 0 d

X

Solution 2:

Using the density of Y. Recall
d
fy(y) = dy (1-e?)=e"

for 0 < y < 0.

This is the special case of exponential distribution with A = 1.
Thus, EY =1/A=1.

29



Central Tendency: Mean vs. Median

e Expected value is a measure of central tendency.
e Other measures: Median (halfway point of distribution).

e Mean has historical significance in probability and statistics.

30



Misconceptions about Expected Value

e Not always the value we truly “expect”.

e Example: Expected number of dots on a die is 3.5, but this is

impossible in reality.
Limitations of the Mean

e Can be skewed by outliers, e.g., if Bill Gates moved to a town.
e Mean might not capture the true central tendency.

e The significance of mean in real-life scenarios might be

ambiguous.

31



When Mean Makes Sense

e Useful when interested in totals (e.g., total defects in a batch).

e In many scenarios (e.g., describing wealth or exam scores), the

total is not directly relevant.

e The median might be more representative in such cases.

Mean in Business: Casinos and Insurance Companies

e Mean has tangible significance for casinos and insurance

companies.
e Useful for predicting totals over long runs (e.g., total payouts).

e Helps businesses plan and set prices or premiums.
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Introduction



Variance

As in Section on Expectation (Ch 3 in Matloff), the concepts and
properties introduced in this section form the very core of
probability and statistics.

Note: Except for some specific calculations, these apply to both
discrete and continuous random variables.



While the expected value tells us the long-run average of a random
variable, we also need a measure of its variability.

In other words, we want a measure of dispersion or spread. The
classical measure of spread is variance.

Variance Definition: For a random variable U for which the
expected values exist, the variance of U is defined to be:

Var(U) = E[(U — EU)¥] (1)



Die Example

For X in the die example:
Var(X) = E[(X — 3.5)%] (2)

Here, W = (X — 3.5)? is a function of X. We find the expected
value of this new random variable W.

Notebook View

| line |

X
21225
51225
6| 6.25
3
5
1

0.25
2.25
6.25

|| WIN|




Calculating Variance

To evaluate, apply:

6

Var(X) = Z(c —3.5)2.

c=1

=2.92

|

Variance gives us a measure of dispersion.

Intuition
In the expression Var(U) = E[(U — EU)?|:

e If values of U are clustered near its mean, then (U — EU)? will
usually be small.
e Then variance of U will be small.

e If U varies widely, then its variance will be large.



Properties of Variance




Property F

Var(U) = E(U?) — (EU)? (3)

The term E(U?) is evaluated using Property D of expectation.

Derivation of Property F
Using properties of expected values:

Var(U) = E[(U— EU)?]
= E[U? —2EU-U + (EU)?] (algebra)
= E(U?)+ E(—2EU - U) + E[(EU)?] (property B)
= E(U?)—2EU-EU + (EU)? (properties C)
= E(U?) - (EU)®

Note on Property F: Remember, (3) is a shortcut formula for
finding the variance, not the definition of variance.



Example using Property F

If X is the number of dots which come up when we roll a die:

Var(X) = E(X?) — (EX)? (4)

From Property D of expectation

E(X2):ZI2%:% (5)

i=1

Thus,

, 91

Var(X) = E(X?) — (EX) 5 3.52 ~ 2.92



Property G

An important behavior of variance is:

Var(cU) = ¢*Var(U) (6)
This means: If we multiply a random variable by c, its variance
multiplies by ¢?.
Proof of Property G: Defining V = cU:
Var(V) = E[(V — EV)?] (def.)

= E{[cU — E(cU)]?} (subst.)

= E{[cU — cEU)?} (property C)

= E{c?[U — EU)?} (algebra)

= Cc?E{[U — EU)?} (property C)

= Var(U) (def.) 7



Property H

Shifting data over by a constant does not change the amount of
variation in them:

Var(U + d) = Var(U) (7)
for any constant d.

Variance of a Constant: Intuitively, the variance of a constant is
0 — after all, it never varies!

Formally:

Var(c) = E(c®) — [E(c)P=c*—c* =0 (8)

Standard Deviation: The square root of the variance is called the
standard deviation: SD(X) = /Var(X).



An Alternative Measure of Dispersion

Variance is used historically and mathematically, not because it's
the most meaningful measure (of spread).

e Squaring exaggerates larger differences.

e A more natural measure: mean absolute deviation (MAD),
E(|U — EU|).

e MAD is less mathematically tractable.

The choice of variance allows for powerful mathematical
derivations (e.g., Pythagorean Theorem in abstract vector spaces).



Variance of Sum of Independent RVs

If U and V are independent,

Var(U + V) = Var(U) + Var(V) (9)

Generalizing (9), for constants ay, ..., ax and independent random
variables Xi, ..., Xi, form the new random variable
a1 X1+ ... + axXi. Then

k
Var(ai Xy + ... + akXy) = Z a?Var(X;) (10)
i=1

10



Importance of Variance

Importance of Variance Properties

e The properties of variance are crucial for understanding the
rest of the content.

e Recognize settings where they are applicable. Think of a
property like (9) and check for independence.

Central Importance of the Concept of Variance

The mean is a fundamental descriptor of a random variable.

Variance is of central importance.

Used constantly throughout subsequent discussions.

Next: A quantitative look at variance as a measure of
dispersion.

11



Intuition Regarding the Size of Var(X)

The variance of a random variable X is a measure of dispersion.
But, how do we quantify its magnitude?

Chebychev’s Inequality: This inequality provides concrete

meaning to the concept of variance/standard deviation:
1
P(X — 1l 2 co) < — (11)
e For instance, X strays more than 3 standard deviations from
its mean at most only 1/9 of the time.
e Used in grading schemes:
“An A grade is 1.5 standard deviations above the mean” and

“A C grade is 1.5 standard deviations below the mean”
(here ¢ = 1.5).

e Proof of the inequality provided later. 12



The Coefficient of Variation

o Reflect on the magnitude of variance.

e E.g., if the price of a widget hovers around a $1 million, but
the variation around that figure is only about a dollar, there is
essentially no variation. But a variation of about a dollar in
the price of a hamburger would be a lot.

e Relate size of SD(X) to E(X) for context.

e Define the coefficient of variation:

SD(X)  \/Var(X)

coef. of var. = =

EX EX

A scale-free measure to judge the size of variance.

13



A Useful Fact

For a random variable X:

g(c) = E[(X - ¢)?] (12)

The function g(c) maps a real number ¢ to a real output. What
value of ¢ minimizes g(c)?

Using the properties of expected value:

g(c) = E(X?) — 2cEX + 2 (13)

Differentiate with respect to ¢ and set to 0 to find:

c=EX

14



Optimal Guessing

o Consider guessing people's weights without any prior
information.

e Initial inclination: use the mean weight as your guess.

- - “
e When you measure the error in your guess using “mean

squared error”:
E[(X —¢)’]

¢ = EX minimizes the error.

e This confirms that the optimal guess is the mean weight.

ii5)



Conclusion and Alternate Consideration

Plugging ¢ = EX into g(c) shows the minimum value is
E(X — EX)?, i.e., Var(X).

Think of this in terms of long-run average squared error.

Alternative: Minimize average absolute error:

E(IX —<l)

The optimal ¢ for this is the median weight.

16



Indicator Random Variables, and
Their Means and Variances




Definition: Indicator Random Variable

Definition
A random variable that has the value 1 or 0, depending on whether

a specified event occurs or not, is called an indicator random

variable for that event.
Handy Facts

e If X is an indicator random variable for event A and
p = P(A), then:

E(XX)=p (14)
p(1—p) (15)

17



Application Example

Consider three coins:

e Coin A has P(heads) = 0.6
e Coin B (fair) has P(heads) = 0.5
e Coin C has P(heads) = 0.2

Toss each once, recording heads as X, Y, and Z respectively.
W =X+ Y + Z is the total number of heads.

Find P(W = 1) and Var(W): To find P(W =1):

PW=1)=P(X=1Y=0,Z=0)+...
=06x05x08+0.4x%x05x08+0.4x05x0.2
=0.44

To find Var(W) using indicator random variables:

Var(W) = 0.6 x 0.4 + 0.5 x 0.5+ 0.2 x 0.8 = 0.65 18



Example: Return Time for Library Books, Version |

Suppose at a public library:

e Patrons return books exactly 7 days after borrowing.
e Returning to a different branch adds 2 days delay.

e 50% return their books to a “foreign” library.

Find Var(T), where T is the time (either 7 or 9 days) for a book

to come back.

Solution:
T=7+2l

where [ indicates if the book is returned to a “foreign” branch.
Var(T) = Var(7+21) =4Var(l) =4 x 05 x (1-0.5) =1.0

19



Example: Return Time for Library Books, Version Il

e Borrowers return books after 4, 5, 6 or 7 days with
probabilities 0.1, 0.2, 0.3, 0.4.

e 50% return their books to a “foreign” branch (causing 2-day
delay).

e Library is open 7 days a week.

e Suppose you wish to borrow a certain book, and inquire at the
library near the close of business on Monday.

e You are told that it had been checked out the previous
Thursday.

e Assume that no one else is waiting for the book, you check
every evening, and a borrower returning to a foreign branch is
independent of his/her return day.

e Find the probability of waiting until Wednesday evening.

20



Example: Return Time for Library Books, Version Il

Solution Let B: the time (# of days) needed for the book to
arrive back at its home branch,
R: the amount of time it takes for borrowers to return books, and
define | as before. Note that B= R+ 2/. Then
P(B =6 and B > 4)
P(B > 4)

P(B =6) P(B =6)

1-P(B<4) 1-P(B=4)

P(B=6|B>4) =

So, B = 6 occurs when “R=6 and 1=0" or “R=4 and |=1". Thus,
P("R=6and | =0" or “R=4and | =1")
1-P(R=4and /| =0)
0.3-05+4+0.1-05
1-0.1-0.5

4
= o7 0.21 o

P(B=6|B>4) =




Simulation Check

libsim <— function(nreps) {
prt <— sample(c(4,5,6,7), nreps, replace=T,
prob=c(0.1,0.2,0.3,0.4))
i <— sample(c(0,1),nreps,replace=T)
b <— prt + 2x%i
x <— cbind(prt,i,b)
bgtd <— x[b > 4]
mean( bgt4[,3] = 6)
}

Use R's vector operations for easier coding and faster running.

22
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