
Random Variables - Introduction

� Dealing with a summary variable is often easier than dealing

with the original probability structure.

� Example: Opinion poll with ”agree” and ”disagree” responses.

� Define a variable X as the number of people who agree.
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Definition of Random Variable

Definition
For a given random experiment with a sample space S , a function

X (·) that assigns to each element s in S one and only one real

number X (s) = x is called a random variable.

Examples of Random Variables

Experiment Random Variable X Sample Space X
Toss two dice Sum of the numbers {2, 3, . . . , 12}

Toss a coin 25 times Number of heads {0, 1, . . . , 25}
Apply fertilizer to corn Yield per acre [0,∞)
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Examples (cont’d)

Example
Tossing a fair coin once. Let X denote the number of heads.

Note: A random variable will be denoted by an uppercase letter,

e.g., X , and the realized values by corresponding lowercase letters,

e.g., x .

Example
(Distribution of a random variable) Toss a fair coin 3 times. Let

X = number of heads in the three tosses. Find the distribution of

X .
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Examples (cont’d)

Solution: Here X takes the following values for each sample point

in S .

s {HHH} {HHT}, {HTH}, {THH} {TTH},{THT},{HTT} {TTT}
X 3 2 1 0

So, the range for the random variable X is X = {0, 1, 2, 3}. Hence,
the induced probability function on X is given by

x 0 1 2 3

PX (X = x) 1/8 3/8 3/8 1/8
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Cumulative Distribution Function

Definition
The cumulative distribution function (cdf) of a random variable X ,

denoted by FX (x), is defined as FX (x) = P(X ≤ x).

� FX (−∞) = limx→−∞ FX (x) = 0 and

FX (∞) = limx→∞ FX (x) = 1.

� FX (x) is nondecreasing.

� FX (x) is right-continuous.
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Ex: cdf

Example
Tossing three fair coins. Let X :=number of heads. Then, the cdf

of X is

FX (x) =



0 if −∞ < x < 0

1/8 if 0 ≤ x < 1

1/2 if 1 ≤ x < 2

7/8 if 2 ≤ x < 3

1 if 3 ≤ x < ∞.

See Figure 3 below.
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Ex: discrete cdf

Figure 1: cdf plot for number of heads tossing three fair coins
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Ex: logistic cdf

Example
(Continuous cdf) The continuous function

FX (x) =
1

1 + e−x
for all x

satisfies all the 3 properties of a cdf, and hence it is a cdf. It is

actually known as the logistic cdf.
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Ex: logistic cdf

Figure 2: cdf curve for the logistic distribution
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Probability Density and Mass Functions

Definition
The probability mass function (pmf) of a discrete random variable

X is given by fX (x) = P(X = x) for all x .

Definition
The probability density function (pdf) of a continuous random

variable X is fX (x) which satisfies

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (t)dt.

Equivalences and Theorems

Theorem
A function fX (x) is a pdf (pmf) of a random variable X if and only

if:

1. fX (x) ≥ 0 for all x.

2.
∑

x fX (x) = 1 (discrete) or
∫∞
−∞ fX (x)dx = 1 (continuous).
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How to get pmf or pdf from cdf

� If X is discrete fX (a) = P(X = a). In particular, if X consists

of a1 < a2 < a3 < · · · ,

fX (ak) = P(X = ak) = FX (ak)−FX (ak−1) for all ak ∈ X with k > 1.

and fX (a1) = P(X = a1) = FX (a1)

� If X is continuous, we get

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (t)dt,

then we have
d

dx
FX (x) = fX (x),

which follows from the Fundamental Theorem of Calculus.
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Notation & Continuous Distribution Properties

A note on notation:

� X has a distribution given by FX (x): X ∼ FX or X has pmf

(or pdf) fX (x): X ∼ fX :

� X
d
= Y : X and Y have the same distribution (X and Y are

identically distributed).

For a continuous random variable, X , with cdf FX (x), the

following holds for all a, b ∈ R with a ≤ b:

FX (b)− FX (a) = P(a < X < b) = P(a ≤ X < b)

= P(a < X ≤ b) = P(a ≤ X ≤ b) =

∫ b

a
fX (x)dx ,

which also implies P(X = c) = 0 for any constant c .
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Continuous Distribution Properties

Figure 3: Illustration of probability as area under the pdf curve for

logistic distribution
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Examples

Example
Obtain the pdf of a logistic random variable with cdf

FX (x) =
1

1 + e−x
.

Example
Let X denote the amount of space occupied by a (random) item

placed in a 1-ft3 packing container. Suppose the pdf of X is given

as:

fX (x) =

{
kx8(1− x) 0 ≤ x ≤ 1

0 otherwise.

(1) Find the value of k that will make this a valid density function.

(2) Obtain the cdf of X .

(3) Find P(0.2 ≤ X ≤ 0.8).
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Examples

Solution:

(1)

∫ 1

0
kx8(1− x)dx = 1 implies that

k

∫ 1

0
(x8 − x9)dx = k(x9/9− x10/10)

∣∣∣x=1

x=0
= 1. Hence

k(1/9− 1/10) = 1 ⇒ k = 90.

(2) Then FX (x) =

∫ x

−∞
fX (t)dt, so

FX (x) =


0 if x < 0

10x9 − 9x10 if 0 ≤ x < 1

1 if 1 ≤ x

(3) (i) Using the pdf

P(.2 ≤ X ≤ .8) =

∫ .8

.2
fX (x)dx =

∫ .8

.2
90x8(1− x)dx = ... ≈ .376.

(ii) Using the cdf P(.2 ≤ X ≤ .8) = FX (.8)− FX (.2) ≈ .376. 15



Ex: Point Chosen in the Unit Circle

Example
Suppose we pick a point at random from the interior of a circle of

radius 1 (and for the unit circle, origin = (0, 0) is the center). Let

Z be the distance of the selected point from the origin. Then the

sample space for the experiment is

S = {z : 0 ≤ z < 1}.

(a) Find the cdf and the pdf of Z .

Solution: Point Chosen in the Unit Circle

� For 0 < z < 1, event {Z ≤ z} is equivalent to the point lying

in a circle of radius z .

� Let Cz = {(x , y) : x2 + y2 < z2}.
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Conclusion

� Random variables help us summarize complex probability

structures.

� They can be discrete or continuous (or mixed).

� The cumulative distribution function (cdf) and probability

density/mass function (pdf/pmf) are essential concepts for

understanding random variables.

� Equivalences like the one presented in the theorem help us

identify valid pdfs/pmfs.
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Distributions of Functions of a Random Variable

� For a random variable X with cumulative distribution function

(cdf) FX (x), we’re often interested in the behavior of

functions of X , called transformations.

� In this section, we’ll study the distribution of transformed

random variables.

� Let’s explore how different functions of X impact the

distribution of the resulting random variable Y = g(X ).
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Transformations of Random Variables

� If X is a random variable with cdf FX (x), any function of X ,

denoted as g(X ), is also a random variable.

� Write Y = g(X ), and we can describe the probabilistic

behavior of Y in terms of X .

� The distribution of Y depends on the functions FX and g .

� For any set A,

P(Y ∈ A) = P(g(X ) ∈ A).

� The mapping g can be one-to-one or onto, and its inverse

g−1 takes sets into sets.
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Discrete Case: Probability Mass Function (pmf)

� If X is a discrete random variable with pmf fX (x), then

Y = g(X ) is also discrete.

� The pmf of Y is given by

fY (y) = P(Y = y) =
∑

x :g(x)=y

fX (x) for y ∈ Y,

where Y = {y : y = g(x), x ∈ X} and X is the support set of

X .
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Example: Discrete Transformation

Example
Suppose X takes values i with probability fX (i) = 1/6 for

i = 1, 2, 3, 4, 5, 6. If Y = (X − 3)2, find Y and fY (y).

Solution: Y = {0, 1, 4, 9}, and fY (0) = fX (3) = 1/6,

fY (1) = fX (2) + fX (4) = 2/6, fY (4) = fX (1) + fX (5) = 2/6, and

fY (9) = fX (6) = 1/6.
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Continuous Case: The cdf Technique

� If X and Y = g(X ) are continuous random variables, we can

find expressions for the cdf and pdf of Y in terms of those of

X .

� The cdf of Y is given by

FY (y) = P(Y ≤ y) = P(g(X ) ≤ y) =

∫
{x∈X :g(x)≤y}

fX (x)dx .

� This technique is called the cdf technique.
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Ex: The cdf Technique

Example
(Relation between Uniform and Exponential Distributions)

Suppose X has a uniform distribution on (0, 1): fX (x) = 1 if

0 < x < 1 and 0 otherwise. Let Y = − log(X ). Obtain the pdf

and cdf of Y .
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Continuous Case: Probability Density Function (pdf)

� Recall that the pdf of Y is obtained by differentiating the cdf

with respect to y .

fY (y) =
d

dy
FY (y)

� From this, using the derivative rule for the inverse functions,

one can obtain the pdf of Y (provided that g(x) is monotone).

� Thus, the pdf of Y in terms of those of X is

fY (y) = fX (g
−1(y))

∣∣∣∣ ddy g−1(y)

∣∣∣∣ for y ∈ Y,

where Y = {y : y = g(x), x ∈ X}.
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Ex: Continuous Transformation

Example
Suppose X has a uniform distribution on (0, 1): fX (x) = 1 if

0 < x < 1 and 0 otherwise. Obtain the pdf of Y = − log(X ).
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Example: Continuous Transformation

Example

Let X have pdf fX (x) =

(x + 1)/2 for − 1 ≤ x ≤ 1,

0 otherwise.
Find the

pdf of Y = X 2.

Solution: −1 ≤ X ≤ 1 corresponds to 0 ≤ Y ≤ 1. The cdf of Y is

FY (y) = P(Y ≤ y) = P(X 2 ≤ y) = P(−√
y ≤ X ≤ √

y) =∫ √
y

−√
y

fX (x)dx = . . . =
√
y for 0 < y < 1

So, FY (y) =


0 for y ≤ 0,
√
y for 0 < y ≤ 1

1 for y > 1

The pdf of Y is fY (y) =
dFY (y)

dy = ... =

 1
2
√
y for 0 < y < 1

0 otherwise.
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Conclusion

� Transformations of random variables are essential in

probability and statistics to model real-world scenarios.

� The distribution of a transformed random variable depends on

the cumulative distribution function of the original random

variable and the transformation function.

� Discrete transformations have pmfs, while continuous

transformations have pdfs derived using the cdf technique.

� Understanding these concepts is crucial for solving problems in

various fields, including engineering, finance, and data science.
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Random Variables

Definition
A random variable is a numerical outcome of our experiment.

Random variables are fundamental in probability and statistics.

Discrete Random Variables

� In our dice example, the random variable X could take on six

values.

� Support of X is a finite set.

� Discussed other examples of discrete random variables.
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Independent Random Variables

Random variables X and Y are said to be independent if

for any sets A and B, the events {X is in A} and {Y is in

B} are independent, i.e. P(X is in A and Y is in B) = P(X

is in A) P(Y is in B).

Ex: Roll two dice, with X and Y denoting the number of dots on

the blue and yellow dice. It is intuitively clear that the random

variables X and Y not “affect” each other. If I know, say, that X =

6, that knowledge won’t help me guess Y at all. For instance, the

probability that Y = 2, knowing X=6, is still 1/6.

That is,

P(Y = 2|X = 6) = P(Y = 2)

which in turn implies

P(X = 6 and Y = 2) = P(X = 6)P(Y = 2) 2



Example: The Monty Hall Problem

Introduction
An illustration of how random variables can simplify the translation

of a probability problem to mathematical terms.

Background

� Named after a TV game show host.

� Contestant chooses one of three doors.

� One door hides a car, the others hide goats.

� Contestant’s goal: find the car.
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Example: The Monty Hall Problem

The Twist

� Host knows where the car is.

� After the contestant chooses, the host opens a goat door.

� Should the contestant switch to the unopened door?

Common Misconception

Assumption
Both unopened doors have a 1/2 chance of hiding the car.

Reality
Remaining door (unchosen and unopened) has a 2/3 chance!
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Example: The Monty Hall Problem

Defining the Problem with Random Variables

� C : contestant’s door choice (1, 2, or 3)

� H: host’s door choice (1, 2, or 3) after contestant chooses

� A: door with the car

Mathematical Formulation

Considering the case C = 1, H = 2:

Then the problem is to find the probability that the contestant

should change her mind, i.e., the probability that the car is actually

behind door 3:

P(A = 3 | C = 1, H = 2) =
P(A = 3, C = 1, H = 2)

P(C = 1, H = 2)
(1)

5



Example: The Monty Hall Problem

Role of the Host

The host’s knowledge influences the problem’s outcomes. The

mathematical expression considering this role:

P(A = 3, C = 1) P(H = 2 | A = 3, C = 1) (2)

Paul Erdös’s Mistake

Even the famous mathematician Paul Erdős initially got it wrong.

This showcases the importance of a structured mathematical

approach.
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Expected Value

Overview
Understanding the concept of expected value is central to

probability and statistics.

Generality of the Concept

� The concepts and properties introduced apply to both discrete

and continuous random variables.

� Properties extend to variance as well.

“Expected Value”:

A Misnomer, Not Always What We “Expect”
The term “expected value” often does not align with intuition.

� Example: Expected heads in 1000 coin tosses is 500, but

P(H = 500) is around 0.025.

� Dice roll: Expected value is 3.5, but a die never shows a 3.5.
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Definition of Expected Value

Expected Value of a Random Variable
Expected value is the long-run average value of a random variable

X. That is, the long-run average value as the experiment is

repeated indefinitely.

lim
n→∞

X1 + ...+ Xn

n
(3)

Example: Rolling two dice and summing their faces. The expected

sum is the long-run average of sum of the two dice.
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Existence of the Expected Value

� The definition assumes the limit exists.

� In practice, the limit exists if random variables have finite

bounds, i.e., if values (of the rv) have finite upper and lower

bounds.

� Real-world scenarios always adhere to this rule.

� We often refer to “the” expected value without the “if it

exists” qualifier.
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Computation and Properties of

Expected Value



Computation and Properties of Expected Value

Objective
Understand the computational formula for the expected value of a

discrete random variable.

Coin Toss Experiment

� Experiment: Toss 10 coins.

� Random variable X : Number of heads in 10 tosses.

� Observations:

� X1 = 4 (Four heads in first repetition)

� X2 = 7 (Seven heads in second repetition)

� ... and so on.

� Intuitive long-run average of X : 5

Thus, E (X ) = 5.
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Deriving the Formula

Starting with Definition of Expected Value

E (X ) = lim
n→∞

X1 + ...+ Xn

n

Rearranging with Kin groups

E (X ) =
10∑
i=0

i · lim
n→∞

Kin

n

� Kin: Number of times value i occurs among X1, ...,Xn.

� Group by number of heads. E.g.,

2 + 3 + 1 + 2 + 1 + 2 = 3× 2 + 2× 1 + 1× 3.
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Expected Value Formula

� limn→∞
Kin
n is the long-run fraction where X = i .

� This limit is essentially P(X = i).

Final Expected Value Formula

E (X ) =
10∑
i=0

i · P(X = i)

In general,

Property A: Expected Value of a Discrete Random Variable

The expected value of a discrete random variable X which takes

values in the set X is:

E (X ) =
∑
i∈X

i · P(X = i) (4)
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Insights on Expected Value

Insights on Expected Value

� Expected value E (X ) is a weighted average.

� Weights = Probabilities of the values.

� Some values of X appear more frequently, influencing the

average.

� Expected value E (X ) is constant.

For continuous random variables, the summation becomes an

integral.
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Example: Coin Tosses

(a)

P(X = i) =

(
10

i

)
0.5i (1− 0.5)10−i

E (X ) =
10∑
i=0

i

(
10

i

)
0.5i (1− 0.5)10−i

Result: E (X ) = 5

(b) N: Number of coin tosses till we obtain a head

E (N) =
∞∑
c=1

c · 1

2c
= 2
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Example: Dice

X: the number of dots we get in one roll of a die

S: sum of the dots on our yellow and blue die

E (X ) =
6∑

c=1

c · 1
6
= 3.5

E (S) = 2 · 1

36
+ 3 · 2

36
+ · · ·+ 12 · 1

36
= 7

Intuitive understanding: E (X ) represents the long-run average

value.
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Dice Problem: Expanded Notebook

notebook line outcome blue+yellow = 6? S

1 blue 2, yellow 6 No 8

2 blue 3, yellow 1 No 4

3 blue 1, yellow 1 No 2

4 blue 4, yellow 2 Yes 6

5 blue 1, yellow 1 No 2

6 blue 3, yellow 4 No 7

7 blue 5, yellow 1 Yes 6

8 blue 3, yellow 6 No 9

9 blue 2, yellow 5 No 7

Table 1: Expanded Notebook for the Dice Problem

Note: E (Y ) for the yellow die will also be 3.5.
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Property B: Expected Value of a Sum & Properties C

Property B:

For random variables U and V :

E (U + V ) = E (U) + E (V ) (5)

Note: U and V do not need to be independent for this to hold.

This can be verified with the notebook analogy.

Properties C

� For any random variable U and constant a: E (aU) = aEU

� For any constant b: E (b) = b

Intuition: If X is constant with value 3, then EX = 3.
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Special Cases

� For X and Y : E (aX + bY ) = aEX + bEY

� Combining properties, we get:

E (aX + b) = aEX + b

Example: Temperature Conversion

Say U is temperature in Celsius. Then the temperature in

Fahrenheit is W = 9
5U + 32. Using our property, we can find its

expected value of the temperature in Fahrenheit, if the expected

value in Celsius is available.
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Property D

If E [g(X )] exists, then

E [g(X )] =
∑
c∈X

g(c) · P(X = c)

where the sum is over all values c that X can take.

Example: (Die Roll) Let’s find E (
√
X ) where X is the number of

dots on a die roll.

E (
√
X ) =

6∑
i=1

√
i · 1

6
≈ 1.805
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Property E

If U and V are independent:

E (UV ) = EU · EV

Equation E (UV ) = EU · EV lacks an easy notebook illustration.

Refer to Appendix Section for detailed proof.

Example: Dice with blue and yellow dots, D = XY .

E (D) = E (XY ) = EX · EY = 3.52 = 12.25.
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Importance of E [g(X )]

E [g(X )] is crucial and will be frequently used.

Mailing Tubes Concept

� Properties of expected value are central to understanding.

� Equations like E [g(X )] are “mailing tubes”.

� Recognize scenarios to apply these properties.

Remember to always utilize the “mailing tubes” throughout your

studies and work.
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Bus Ridership: Expected Values

� Find the expected value of N1, the number of passengers on

the bus as it leaves the first stop.

� Extend the concept to find E [N2].

Given Data

� Bus arrives empty at the first stop.

� N1 = B1, where B1 is the number who board at the first stop.

� Support of N1 (equivalently B1): 0, 1, and 2 (i.e.,

N1 = {0, 1, 2}).
� Probabilities: P(B1 = 0) = 0.5, P(B1 = 1) = 0.4, and

P(B1 = 2) = 0.1.
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Calculation of E [N1]

Using the formula:

E [N1] =
∑
i∈N1

i × P(N1 = i)

E [N1] = 0(0.5) + 1(0.4) + 2(0.1) = 0.6

Interpretation of E [N1]: On observing the bus over many days,

on average, it will leave the first stop with 0.6 passengers.

Extension to E [N2]

� Support of N2: {0, 1, 2, 3, 4}.
� Need to find P(N2 = i) for i = 0, 1, 2, 3, 4.

� Known: P(N2 = 0) = 0.292.

� Other probabilities can be determined similarly as above.
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Expected Values via Simulation

When the expected values EX are too intricate to determine

analytically, one can use simulation as an alternative. By

understanding the expected value as a long-run average, the

approach is straightforward:

� Execute nreps replications of the experiment.

� For each run, record the value of X .

� Calculate the average over nreps values.

To illustrate this, a modified version of the code from Section 2.4

is provided, aiming to estimate the expected number of passengers

on a bus as it departs from the tenth stop.
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Expected Values via Simulation

nreps <- 10000

nstops <- 10

total <- 0

for (i in 1: nreps ) {

passengers <- 0

for (j in 1: nstops ) {

if ( passengers > 0)

for (k in 1: passengers )

if ( runif (1) < 0.2)

passengers <- passengers - 1

newpass <- sample (0:2 ,1 , prob =c (0.5 ,0.4 ,0.1))

passengers <- passengers + newpass

}

total <- total + passengers

}

print ( total / nreps )
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Expected Value for Continuous RVs

The expected value or mean of a random variable g(X ), denoted

by E [g(X )], is

E [g(X )] =
∫∞
−∞ g(x)fX (x)dx if X is continuous,∑
x∈X g(x)fX (x) =

∑
x∈X g(x)P(X = x) if X is discrete,

provided that the integral or sum exists.
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Mean of the Exponential Distribution

Suppose X has an Exponential(λ) distribution, that is, it has pdf

given by

fX (x) =

λe−λx if x ≥ 0,

0 otherwise,

for λ > 0. Find the mean of X .

Solution

E [X ] =

∫ ∞

0
xλe−λxdx = −xe−λx

∣∣∣∞
0

+

∫ ∞

0
e−λxdx =

− 1

λ
e−λx

∣∣∣∣∞
0

=
1

λ
(integration by parts)
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Example: Relation between Uniform and Exponential Distribu-

tions - II

Let X have a Uniform(0, 1) distribution, i.e., its pdf is

fX (x) =

1 if 0 < x < 1,

0 otherwise.

Define Y = g(X ) = − logX and find E [Y ].
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Solution

Solution 1: Using the density of

E [Y ] = E [g(X )] = E [− logX ] =

∫ 1

0
− log xdx =

− x log x
∣∣∣1
0
+

∫ 1

0
−x

d (log x)

dx
dx = 1.

Solution 2:

Using the density of Y . Recall

fY (y) =
d

dy

(
1− e−y

)
= e−y

for 0 < y < ∞.

This is the special case of exponential distribution with λ = 1.

Thus, EY = 1/λ = 1.
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Central Tendency: Mean vs. Median

� Expected value is a measure of central tendency.

� Other measures: Median (halfway point of distribution).

� Mean has historical significance in probability and statistics.
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Misconceptions about Expected Value

� Not always the value we truly “expect”.

� Example: Expected number of dots on a die is 3.5, but this is

impossible in reality.

Limitations of the Mean

� Can be skewed by outliers, e.g., if Bill Gates moved to a town.

� Mean might not capture the true central tendency.

� The significance of mean in real-life scenarios might be

ambiguous.
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When Mean Makes Sense

� Useful when interested in totals (e.g., total defects in a batch).

� In many scenarios (e.g., describing wealth or exam scores), the

total is not directly relevant.

� The median might be more representative in such cases.

Mean in Business: Casinos and Insurance Companies

� Mean has tangible significance for casinos and insurance

companies.

� Useful for predicting totals over long runs (e.g., total payouts).

� Helps businesses plan and set prices or premiums.
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Introduction



Variance

As in Section on Expectation (Ch 3 in Matloff), the concepts and

properties introduced in this section form the very core of

probability and statistics.

Note: Except for some specific calculations, these apply to both

discrete and continuous random variables.
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Definition

While the expected value tells us the long-run average of a random

variable, we also need a measure of its variability.

In other words, we want a measure of dispersion or spread. The

classical measure of spread is variance.

Variance Definition: For a random variable U for which the

expected values exist, the variance of U is defined to be:

Var(U) = E [(U − EU)2] (1)
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Die Example

For X in the die example:

Var(X ) = E [(X − 3.5)2] (2)

Here, W = (X − 3.5)2 is a function of X . We find the expected

value of this new random variable W .

Notebook View

line X W

1 2 2.25

2 5 2.25

3 6 6.25

4 3 0.25

5 5 2.25

6 1 6.25

3



Calculating Variance

To evaluate, apply:

Var(X ) =
6∑

c=1

(c − 3.5)2 · 1
6
= 2.92

Variance gives us a measure of dispersion.

Intuition

In the expression Var(U) = E [(U − EU)2]:

� If values of U are clustered near its mean, then (U − EU)2 will

usually be small.

� Then variance of U will be small.

� If U varies widely, then its variance will be large.

4



Properties of Variance



Property F

Var(U) = E (U2)− (EU)2 (3)

The term E (U2) is evaluated using Property D of expectation.

Derivation of Property F

Using properties of expected values:

Var(U) = E [(U − EU)2]

= E [U2 − 2EU · U + (EU)2] (algebra)

= E (U2) + E (−2EU · U) + E [(EU)2] (property B)

= E (U2)− 2EU · EU + (EU)2 (properties C)

= E (U2)− (EU)2

Note on Property F: Remember, (3) is a shortcut formula for

finding the variance, not the definition of variance.
5



Example using Property F

If X is the number of dots which come up when we roll a die:

Var(X ) = E (X 2)− (EX )2 (4)

From Property D of expectation

E (X 2) =
6∑

i=1

i2 · 1
6
=

91

6
(5)

Thus,

Var(X ) = E (X 2)− (EX )2 =
91

6
− 3.52 ≈ 2.92

6



Property G

An important behavior of variance is:

Var(cU) = c2Var(U) (6)

This means: If we multiply a random variable by c, its variance

multiplies by c2.

Proof of Property G: Defining V = cU:

Var(V ) = E [(V − EV )2] (def.)

= E{[cU − E (cU)]2} (subst.)

= E{[cU − cEU]2} (property C)

= E{c2[U − EU]2} (algebra)

= c2E{[U − EU]2} (property C)

= c2Var(U) (def.) 7



Property H

Shifting data over by a constant does not change the amount of

variation in them:

Var(U + d) = Var(U) (7)

for any constant d .

Variance of a Constant: Intuitively, the variance of a constant is

0 — after all, it never varies!

Formally:

Var(c) = E (c2)− [E (c)]2 = c2 − c2 = 0 (8)

Standard Deviation: The square root of the variance is called the

standard deviation: SD(X ) =
√

Var(X ).

8



An Alternative Measure of Dispersion

Variance is used historically and mathematically, not because it’s

the most meaningful measure (of spread).

� Squaring exaggerates larger differences.

� A more natural measure: mean absolute deviation (MAD),

E (|U − EU|).
� MAD is less mathematically tractable.

The choice of variance allows for powerful mathematical

derivations (e.g., Pythagorean Theorem in abstract vector spaces).

9



Variance of Sum of Independent RVs

If U and V are independent,

Var(U + V ) = Var(U) + Var(V ) (9)

Generalizing (9), for constants a1, ..., ak and independent random

variables X1, ...,Xk , form the new random variable

a1X1 + ...+ akXk . Then

Var(a1X1 + ...+ akXk) =
k∑

i=1

a2i Var(Xi ) (10)

10



Importance of Variance

Importance of Variance Properties

� The properties of variance are crucial for understanding the

rest of the content.

� Recognize settings where they are applicable. Think of a

property like (9) and check for independence.

Central Importance of the Concept of Variance

� The mean is a fundamental descriptor of a random variable.

� Variance is of central importance.

� Used constantly throughout subsequent discussions.

� Next: A quantitative look at variance as a measure of

dispersion.

11



Intuition Regarding the Size of Var(X)

The variance of a random variable X is a measure of dispersion.

But, how do we quantify its magnitude?

Chebychev’s Inequality: This inequality provides concrete

meaning to the concept of variance/standard deviation:

P(|X − µ| ≥ cσ) ≤ 1

c2
(11)

� For instance, X strays more than 3 standard deviations from

its mean at most only 1/9 of the time.

� Used in grading schemes:

“An A grade is 1.5 standard deviations above the mean” and

“A C grade is 1.5 standard deviations below the mean”

(here c = 1.5).

� Proof of the inequality provided later. 12



The Coefficient of Variation

� Reflect on the magnitude of variance.

� E.g., if the price of a widget hovers around a $1 million, but

the variation around that figure is only about a dollar, there is

essentially no variation. But a variation of about a dollar in

the price of a hamburger would be a lot.

� Relate size of SD(X ) to E (X ) for context.

� Define the coefficient of variation:

coef. of var. =
SD(X )

EX
=

√
Var(X )

EX

� A scale-free measure to judge the size of variance.

13



A Useful Fact

For a random variable X :

g(c) = E [(X − c)2] (12)

The function g(c) maps a real number c to a real output. What

value of c minimizes g(c)?

Using the properties of expected value:

g(c) = E (X 2)− 2cEX + c2 (13)

Differentiate with respect to c and set to 0 to find:

c = EX

14



Optimal Guessing

� Consider guessing people’s weights without any prior

information.

� Initial inclination: use the mean weight as your guess.

� When you measure the error in your guess using “mean

squared error”:

E [(X − c)2]

c = EX minimizes the error.

� This confirms that the optimal guess is the mean weight.

15



Conclusion and Alternate Consideration

� Plugging c = EX into g(c) shows the minimum value is

E (X − EX )2, i.e., Var(X ).

� Think of this in terms of long-run average squared error.

� Alternative: Minimize average absolute error:

E (|X − c |)

� The optimal c for this is the median weight.

16



Indicator Random Variables, and

Their Means and Variances



Definition: Indicator Random Variable

Definition
A random variable that has the value 1 or 0, depending on whether

a specified event occurs or not, is called an indicator random

variable for that event.

Handy Facts

� If X is an indicator random variable for event A and

p = P(A), then:

E (X ) = p (14)

Var(X ) = p(1− p) (15)

� For example: EX = P(X = 1) = P(A) = p.

17



Application Example

Consider three coins:

� Coin A has P(heads) = 0.6

� Coin B (fair) has P(heads) = 0.5

� Coin C has P(heads) = 0.2

Toss each once, recording heads as X , Y , and Z respectively.

W = X + Y + Z is the total number of heads.

Find P(W = 1) and Var(W ): To find P(W = 1):

P(W = 1) = P(X = 1,Y = 0,Z = 0) + . . .

= 0.6× 0.5× 0.8 + 0.4× 0.5× 0.8 + 0.4× 0.5× 0.2

= 0.44

To find Var(W ) using indicator random variables:

Var(W ) = 0.6× 0.4 + 0.5× 0.5 + 0.2× 0.8 = 0.65 18



Example: Return Time for Library Books, Version I

Suppose at a public library:

� Patrons return books exactly 7 days after borrowing.

� Returning to a different branch adds 2 days delay.

� 50% return their books to a “foreign” library.

Find Var(T ), where T is the time (either 7 or 9 days) for a book

to come back.

Solution:

T = 7 + 2I

where I indicates if the book is returned to a “foreign” branch.

Var(T ) = Var(7 + 2I ) = 4Var(I ) = 4× 0.5× (1− 0.5) = 1.0

19



Example: Return Time for Library Books, Version II

� Borrowers return books after 4, 5, 6 or 7 days with

probabilities 0.1, 0.2, 0.3, 0.4.

� 50% return their books to a “foreign” branch (causing 2-day

delay).

� Library is open 7 days a week.

� Suppose you wish to borrow a certain book, and inquire at the

library near the close of business on Monday.

� You are told that it had been checked out the previous

Thursday.

� Assume that no one else is waiting for the book, you check

every evening, and a borrower returning to a foreign branch is

independent of his/her return day.

� Find the probability of waiting until Wednesday evening.

20



Example: Return Time for Library Books, Version II

Solution Let B: the time (# of days) needed for the book to

arrive back at its home branch,

R: the amount of time it takes for borrowers to return books, and

define I as before. Note that B = R + 2 I . Then

P(B = 6 | B > 4) =
P(B = 6 and B > 4)

P(B > 4)

=
P(B = 6)

1− P(B ≤ 4)
=

P(B = 6)

1− P(B = 4)

So, B = 6 occurs when “R=6 and I=0” or “R=4 and I=1”. Thus,

P(B = 6 | B > 4) =
P(“R = 6 and I = 0” or “R = 4 and I = 1”)

1− P(R = 4 and I = 0)

=
0.3 · 0.5 + 0.1 · 0.5

1− 0.1 · 0.5

=
4

19
≈ 0.21
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Simulation Check

l i b s i m <= funct ion ( n r ep s ) {
p r t <= sample ( c ( 4 , 5 , 6 , 7 ) , nreps , rep lace=T,

prob=c ( 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 ) )

i <= sample ( c ( 0 , 1 ) , nreps , rep lace=T)

b <= p r t + 2* i

x <= cbind ( pr t , i , b )

bgt4 <= x [ b > 4 , ]

mean( bgt4 [ , 3 ] == 6)

}

Use R’s vector operations for easier coding and faster running.

22
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