
Introduction



Variance

As in Section on Expectation (Ch 3 in Matloff), the concepts and

properties introduced in this section form the very core of

probability and statistics.

Note: Except for some specific calculations, these apply to both

discrete and continuous random variables.

1



Definition

While the expected value tells us the long-run average of a random

variable, we also need a measure of its variability.

In other words, we want a measure of dispersion or spread. The

classical measure of spread is variance.

Variance Definition: For a random variable U for which the

expected values exist, the variance of U is defined to be:

Var(U) = E [(U − EU)2] (1)
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Die Example

For X in the die example:

Var(X ) = E [(X − 3.5)2] (2)

Here, W = (X − 3.5)2 is a function of X . We find the expected

value of this new random variable W .

Notebook View

line X W

1 2 2.25

2 5 2.25

3 6 6.25

4 3 0.25

5 5 2.25

6 1 6.25
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Calculating Variance

To evaluate, apply:

Var(X ) =
6∑

c=1

(c − 3.5)2 · 1
6
= 2.92

Variance gives us a measure of dispersion.

Intuition

In the expression Var(U) = E [(U − EU)2]:

� If values of U are clustered near its mean, then (U − EU)2 will

usually be small.

� Then variance of U will be small.

� If U varies widely, then its variance will be large.
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Properties of Variance



Property F

Var(U) = E (U2)− (EU)2 (3)

The term E (U2) is evaluated using Property D of expectation.

Derivation of Property F

Using properties of expected values:

Var(U) = E [(U − EU)2]

= E [U2 − 2EU · U + (EU)2] (algebra)

= E (U2) + E (−2EU · U) + E [(EU)2] (property B)

= E (U2)− 2EU · EU + (EU)2 (properties C)

= E (U2)− (EU)2

Note on Property F: Remember, (3) is a shortcut formula for

finding the variance, not the definition of variance.
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Example using Property F

If X is the number of dots which come up when we roll a die:

Var(X ) = E (X 2)− (EX )2 (4)

From Property D of expectation

E (X 2) =
6∑

i=1

i2 · 1
6
=

91

6
(5)

Thus,

Var(X ) = E (X 2)− (EX )2 =
91

6
− 3.52 ≈ 2.92

6



Property G

An important behavior of variance is:

Var(cU) = c2Var(U) (6)

This means: If we multiply a random variable by c, its variance

multiplies by c2.

Proof of Property G: Defining V = cU:

Var(V ) = E [(V − EV )2] (def.)

= E{[cU − E (cU)]2} (subst.)

= E{[cU − cEU]2} (property C)

= E{c2[U − EU]2} (algebra)

= c2E{[U − EU]2} (property C)

= c2Var(U) (def.) 7



Property H

Shifting data over by a constant does not change the amount of

variation in them:

Var(U + d) = Var(U) (7)

for any constant d .

Variance of a Constant: Intuitively, the variance of a constant is

0—after all, it never varies!

Formally:

Var(c) = E (c2)− [E (c)]2 = c2 − c2 = 0 (8)

Standard Deviation: The square root of the variance is called the

standard deviation: SD(X ) =
√

Var(X ).
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An Alternative Measure of Dispersion

Variance is used historically and mathematically, not because it’s

the most meaningful measure (of spread).

� Squaring exaggerates larger differences.

� A more natural measure: mean absolute deviation (MAD),

E (|U − EU|).
� MAD is less mathematically tractable.

The choice of variance allows for powerful mathematical

derivations (e.g., Pythagorean Theorem in abstract vector spaces).
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Variance of Sum of Independent RVs

If U and V are independent,

Var(U + V ) = Var(U) + Var(V ) (9)

Generalizing (9), for constants a1, ..., ak and independent random

variables X1, ...,Xk , form the new random variable

a1X1 + ...+ akXk . Then

Var(a1X1 + ...+ akXk) =
k∑

i=1

a2i Var(Xi ) (10)
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Importance of Variance

Importance of Variance Properties

� The properties of variance are crucial for understanding the

rest of the content.

� Recognize settings where they are applicable. Think of a

property like (9) and check for independence.

Central Importance of the Concept of Variance

� The mean is a fundamental descriptor of a random variable.

� Variance is of central importance.

� Used constantly throughout subsequent discussions.

� Next: A quantitative look at variance as a measure of

dispersion.
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Intuition Regarding the Size of Var(X)

The variance of a random variable X is a measure of dispersion.

But, how do we quantify its magnitude?

Chebychev’s Inequality: This inequality provides concrete

meaning to the concept of variance/standard deviation:

P(|X − µ| ≥ cσ) ≤ 1

c2
(11)

� For instance, X strays more than 3 standard deviations from

its mean at most only 1/9 of the time.

� Used in grading schemes:

“An A grade is 1.5 standard deviations above the mean” and

“A C grade is 1.5 standard deviations below the mean”

(here c = 1.5).

� Proof of the inequality provided later. 12



The Coefficient of Variation

� Reflect on the magnitude of variance.

� E.g., if the price of a widget hovers around a $1 million, but

the variation around that figure is only about a dollar, there is

essentially no variation. But a variation of about a dollar in

the price of a hamburger would be a lot.

� Relate size of SD(X ) to E (X ) for context.

� Define the coefficient of variation:

coef. of var. =
SD(X )

EX
=

√
Var(X )

EX

� A scale-free measure to judge the size of variance.
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A Useful Fact

For a random variable X :

g(c) = E [(X − c)2] (12)

The function g(c) maps a real number c to a real output. What

value of c minimizes g(c)?

Using the properties of expected value:

g(c) = E (X 2)− 2cEX + c2 (13)

Differentiate with respect to c and set to 0 to find:

c = EX

14



Optimal Guessing

� Consider guessing people’s weights without any prior

information.

� Initial inclination: use the mean weight as your guess.

� When you measure the error in your guess using “mean

squared error”:

E [(X − c)2]

c = EX minimizes the error.

� This confirms that the optimal guess is the mean weight.
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Conclusion and Alternate Consideration

� Plugging c = EX into g(c) shows the minimum value is

E (X − EX )2, i.e., Var(X ).

� Think of this in terms of long-run average squared error.

� Alternative: minimize average absolute error:

E (|X − c |)

� The optimal c for this is the median weight.
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Indicator Random Variables, and

Their Means and Variances



Definition: Indicator Random Variable

Definition
A random variable that has the value 1 or 0, depending on whether

a specified event occurs or not, is called an indicator random

variable for that event.

Handy Facts

� If X is an indicator random variable for event A and

p = P(A), then:

E (X ) = p (14)

Var(X ) = p(1− p) (15)

� For example: EX = P(X = 1) = P(A) = p.
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Application Example

Consider three coins:

� Coin A has P(heads) = 0.6

� Coin B (fair) has P(heads) = 0.5

� Coin C has P(heads) = 0.2

Toss each once (independently), recording heads as X , Y , and Z

respectively. W = X + Y + Z is the total number of heads.

Find P(W = 1) and Var(W ): To find P(W = 1):

P(W = 1) = P(X = 1,Y = 0,Z = 0) + . . .

= 0.6× 0.5× 0.8 + 0.4× 0.5× 0.8 + 0.4× 0.5× 0.2

= 0.44

To find Var(W ) using indicator random variables:

Var(W ) = 0.6× 0.4 + 0.5× 0.5 + 0.2× 0.8 = 0.65 18



Example: Return Time for Library Books, Version I

Suppose at a public library:

� Patrons return books exactly 7 days after borrowing.

� Returning to a different branch adds 2 days delay.

� 50% return their books to a “foreign” library.

Find Var(T ), where T is the time (either 7 or 9 days) for a book

to come back.

Solution:

T = 7 + 2I

where I is the indicator for the book being returned to a “foreign”

branch. ∝

Var(T ) = Var(7 + 2I ) = 4Var(I ) = 4× 0.5× (1− 0.5) = 1.0
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Example: Return Time for Library Books, Version II

� Borrowers return books after 4, 5, 6 or 7 days with

probabilities 0.1, 0.2, 0.3, 0.4.

� 50% return their books to a “foreign” branch (causing 2-day

delay).

� Library is open 7 days a week.

� Suppose you wish to borrow a certain book, and inquire at the

library near the close of business on Monday.

� You are told that it had been checked out the previous

Thursday.

� Assume that no one else is waiting for the book, you check

every evening, and a borrower returning to a foreign branch is

independent of his/her return day.

� Find the probability of waiting until Wednesday evening.
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Example: Return Time for Library Books, Version II

Solution Let B: the time (# of days) needed for the book to

arrive back at its home branch,

R: the amount of time it takes for borrowers to return books, and

define I as before. Note that B = R + 2 I . Then

P(B = 6 | B > 4) =
P(B = 6 and B > 4)

P(B > 4)

=
P(B = 6)

1− P(B ≤ 4)
=

P(B = 6)

1− P(B = 4)

So, B = 6 occurs when “R=6 and I=0” or “R=4 and I=1”. Thus,

P(B = 6 | B > 4) =
P(“R = 6 and I = 0” or “R = 4 and I = 1”)

1− P(R = 4 and I = 0)

=
0.3 · 0.5 + 0.1 · 0.5

1− 0.1 · 0.5

=
4

19
≈ .21
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Simulation Check

l i b s i m <= funct ion ( n r ep s ) {
p r t <= sample ( c ( 4 , 5 , 6 , 7 ) , nreps , rep lace=T,

prob=c ( 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 ) )

i <= sample ( c ( 0 , 1 ) , nreps , rep lace=T)

b <= p r t + 2* i

x <= cbind ( pr t , i , b )

bgt4 <= x [ b > 4 , ]

mean( bgt4 [ , 3 ] == 6)

}

Use R’s vector operations for easier coding and faster running.

22



Introduction



Variance

As in Section on Expectation (Ch 3 in Matloff), the concepts and

properties introduced in this section form the very core of

probability and statistics.

Note: Except for some specific calculations, these apply to both

discrete and continuous random variables.

1



Definition

While the expected value tells us the average value a random

variable takes on, we also need a measure of its variability.

In other words, we want a measure of dispersion. The classical

measure is variance.
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Variance Definition

For a random variable U for which the expected values exist, the

variance of U is defined to be:

Var(U) = E [(U − EU)2] (1)
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Die Example

For X in the die example:

Var(X ) = E [(X − 3.5)2] (2)

Here, W = (X − 3.5)2 is a function of X . We find the expected

value of this new random variable W .
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Notebook View

line X W

1 2 2.25

2 5 2.25

3 6 6.25

4 3 0.25

5 5 2.25

6 1 6.25
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Calculating Variance

To evaluate, apply:

Var(X ) =
6∑

c=1

(c − 3.5)2 · 1
6
= 2.92

Variance gives us a measure of dispersion.
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Summary

In the expression Var(U) = E [(U − EU)2]:

� If values of U are clustered near its mean, then (U − EU)2 will

usually be small.

� Variance of U will be small.

� If U varies widely, variance will be large.
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Properties of Variance



Property F

Var(U) = E (U2)− (EU)2 (3)

The term E (U2) is evaluated using (??).
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Example using Property F

If X is the number of dots which come up when we roll a die:

Var(X ) = E (X 2)− (EX )2 (4)

From (??),

E (X 2) =
6∑

i=1

i2 · 1
6
=

91

6
(5)

Thus,

Var(X ) = E (X 2)− (EX )2 =
91

6
− 3.52
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Note on Property F

Remember, (3) is a shortcut formula for finding the variance, not

the definition of variance.
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Derivation of Property F

Using properties of expected values:

Var(U) = E [(U − EU)2]

= . . .

= E (U2)− (EU)2

11



Property G

An important behavior of variance is:

Var(cU) = c2Var(U) (6)

This means: If we multiply a random variable by c, its variance

multiplies by c2.
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Proof of Property G

Defining V = cU:

Var(V ) = E [(V − EV )2] (definition)

= . . .

= c2Var(U) (definition)
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Property H

Shifting data over by a constant does not change the amount of

variation in them:

Var(U + d) = Var(U) (7)

for any constant d .
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Variance of a Constant

Intuitively, the variance of a constant is 0—after all, it never varies!

Formally:

Var(c) = E (c2)− [E (c)]2 = c2 − c2 = 0 (8)
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Standard Deviation

The square root of the variance is called the standard deviation.
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Alternative Measure of Dispersion

Variance is used historically and mathematically, not because it’s

the most meaningful measure.

� Squaring exaggerates larger differences.

� A more natural measure: mean absolute deviation (MAD),

E (|U − EU|).
� MAD is less mathematically tractable.

The choice of variance allows for powerful mathematical

derivations (e.g., Pythagorean Theorem in abstract vector spaces).
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Importance of Variance Properties

� The properties of variance are crucial for understanding the

rest of the content.

� Recognize settings where they are applicable.

� Example: Seeing variance of sum of two random variables?

Think of a property like (??) and check for independence.
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More Practice with the Properties of Variance

Suppose X and Y are independent random variables with given

expectations and variances. Let’s find Var(XY ):

Var(XY ) = E (X 2Y 2)− [E (XY )]2

= E (X 2) · E (Y 2)− (EX · EY )2

= [Var(X ) + (EX )2] · [Var(Y ) + (EY )2]− (EX · EY )2

= 28
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Central Importance of the Concept of Variance

� The mean is a fundamental descriptor of a random variable.

� Variance is of central importance.

� Used constantly throughout subsequent discussions.

� Next: A quantitative look at variance as a measure of

dispersion.
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Intuition Regarding the Size of Var(X)

The variance of a random variable X is a measure of dispersion.

But how do we quantify its significance?

Quote:
“A billion here, a billion there, pretty soon, you’re talking

real money” - Senator Everitt Dirksen
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Chebychev’s Inequality

This inequality provides concrete meaning to the concept of

variance/standard deviation:

P(|X − µ| ≥ cσ) ≤ 1

c2
(9)

� For instance, X strays more than 3 standard deviations from

its mean at most only 1/9 of the time.

� Used in grading schemes: “An A grade is 1.5 standard

deviations above the mean” (here c = 1.5).

� Proof of the inequality provided later.
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More Practice with the Properties of Variance

Suppose X and Y are independent random variables with given

expectations and variances. Let’s find Var(XY ):

Var(XY ) = E (X 2Y 2)− [E (XY )]2

= E (X 2) · E (Y 2)− (EX · EY )2

= [Var(X ) + (EX )2] · [Var(Y ) + (EY )2]− (EX · EY )2

= 28
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Central Importance of the Concept of Variance

� The mean is a fundamental descriptor of a random variable.

� Variance is of central importance.

� Used constantly throughout subsequent discussions.

� Next: A quantitative look at variance as a measure of

dispersion.
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Intuition Regarding the Size of Var(X)

The variance of a random variable X is a measure of dispersion.

But how do we quantify its significance?

Quote:
“A billion here, a billion there, pretty soon, you’re talking

real money” - Senator Everitt Dirksen
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Chebychev’s Inequality

This inequality provides concrete meaning to the concept of

variance/standard deviation:

P(|X − µ| ≥ cσ) ≤ 1

c2
(10)

� For instance, X strays more than 3 standard deviations from

its mean at most only 1/9 of the time.

� Used in grading schemes: “An A grade is 1.5 standard

deviations above the mean” (here c = 1.5).

� Proof of the inequality provided later.
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The Coefficient of Variation

� Reflect on the magnitude of variance.

� Relate size of Var(X ) to E (X ) for context.

� Define the coefficient of variation:

coef. of var. =

√
Var(X )

EX

� A scale-free measure to judge the size of variance.
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A Useful Fact

For a random variable X :

g(c) = E [(X − c)2] (11)

The function g(c) maps a real number c to a real output. What

value of c minimizes g(c)?

Using the properties of expected value:

g(c) = E (X 2)− 2cEX + c2 (12)
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Optimal Guessing

� Consider guessing people’s weights without any prior

information.

� Initial inclination: guess the mean weight.

� Error measure using mean squared error:

E [(X − c)2]

� Differentiate with respect to c and set to 0 to find:

c = EX

� This confirms that the optimal guess is the mean weight.

29



Conclusion and Alternate Consideration

� Plugging c = EX into g(c) shows the minimum value is

E (X − EX )2, i.e., Var(X ).

� Think of this in terms of long-run average squared error.

� Alternative: minimize average absolute error:

E (|X − c |)

� The optimal c for this is the median weight.
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Covariance

� Covariance measures the degree to which two variables U and

V vary together.

� Defined as:

Cov(U,V ) = E [(U − EU)(V − EV )]

� Indicates if two variables are positively or negatively related.
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Understanding Covariance

� If both variables are usually large or small together, covariance

is positive.

� E.g. Height and weight: Taller people tend to be heavier and

vice-versa, indicating a positive covariance.
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Properties of Covariance

� Covariance can be rewritten as:

Cov(U,V ) = E (UV )− EU · EV

� Variance relation:

Var(U + V ) = Var(U) + Var(V ) + 2Cov(U,V )

� And more generally:

Var(aU + bV ) = a2Var(U) + b2Var(V ) + 2abCov(U,V )

33



Special Cases and Generalizations

� If Cov(U,V ) = 0, Var(U + V ) = Var(U) + Var(V ).

� This relation is analogous to the Pythagorean Theorem in a

special mathematical context.

� General formula:

Var(a1X1+...+akXk) =
k∑

i=1

a2i Var(Xi )+2
k∑

1≤i<j≤k

aiajCov(Xi ,Xj)

� If Xi are independent:

Var(a1X1 + ...+ akXk) =
k∑

i=1

a2i Var(Xi )

34



Indicator Random Variables, and

Their Means and Variances



Definition: Indicator Random Variable

Definition
A random variable that has the value 1 or 0, depending on whether

a specified event occurs or not, is called an indicator random

variable for that event.
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Handy Facts

� If X is an indicator random variable for event A and

p = P(A), then:

E (X ) = p (13)

Var(X ) = p(1− p) (14)

� For example: EX = P(X = 1) = P(A) = p.
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Application Example

Consider three coins:

� Coin A has P(heads) = 0.6

� Coin B (fair) has P(heads) = 0.5

� Coin C has P(heads) = 0.2

Toss each once, recording heads as X , Y , and Z respectively.

W = X + Y + Z is the total number of heads.
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Finding P(W = 1) and Var(W )

� To find P(W = 1):

P(W = 1) = P(X = 1,Y = 0,Z = 0) + . . .

= 0.6× 0.5× 0.8 + 0.4× 0.5× 0.8 + 0.4× 0.5× 0.2

� To find Var(W ) using indicator random variables:

Var(W ) = 0.6× 0.4 + 0.5× 0.5 + 0.2× 0.8
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Example: Return Time for Library Books, Version I

Suppose at a public library:

� Patrons return books exactly 7 days after borrowing.

� Returning to a different branch adds 2 days delay.

� 50% return their books to a “foreign” library.

Find Var(T ), where T is the time (either 7 or 9 days) for a book

to come back.
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Solution

T = 7 + 2I

where I indicates if the book is returned to a “foreign” branch.

Var(T ) = Var(7 + 2I ) = 4Var(I ) = 4× 0.5× (1− 0.5)
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Example: Return Time for Library Books, Version II

� Borrowers return books after 4, 5, 6 or 7 days with

probabilities 0.1, 0.2, 0.3, 0.4.

� 50% return their books to a “foreign” branch (2-day delay).

� Library open 7 days a week.

� Borrow a book on Monday; checked out previous Thursday.

Find the probability of waiting until Wednesday evening.
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Solution

Let B be return time, I indicate “foreign” branch.

P(B = 6 | B > 4) =
0.5× 0.3 + 0.5× 0.1

1− 0.5× 0.1

=
4

19
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Simulation Check

l i b s i m <= funct ion ( n r ep s ) {
p r t <= sample ( c ( 4 , 5 , 6 , 7 ) , nreps , rep lace=T, prob=c ( 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 ) )

i <= sample ( c ( 0 , 1 ) , nreps , rep lace=T)

b <= p r t + 2* i

x <= cbind ( pr t , i , b )

bgt4 <= x [ b > 4 , ]

mean( bgt4 [ , 3 ] == 6)

}

Use R’s vector operations for easier coding and faster running.
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Introduction

� The concepts and properties of variance are fundamental in

probability and statistics.

� Applicable to both discrete and continuous random variables.
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Definition of Variance

� Variance measures the variability or dispersion of a random

variable.

� It’s defined as the mean squared difference between a random

variable and its mean.

� For a random variable U: Var(U) = E [(U − E [U])2]

2



Example: Variance of a Die Roll

� Calculate the variance of a die roll, X.

� Variance: Var(X ) = E [(X − 3.5)2]

� Interpretation: Measure of dispersion for X.
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Variance Calculation

� Calculate Var(X ) using the formula.

� Use the expected value properties to simplify.
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Properties of Variance



Property F: Variance Formula

� Property F: Var(U) = E (U2)− (E [U])2

� Formula for variance in terms of the second moment.
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Property G: Scaling Variance

� Property G: Var(cU) = c2Var(U)

� Variance scales with the square of a constant factor.
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Property H: Shifting Variance

� Property H: Var(U + d) = Var(U)

� Shifting data by a constant doesn’t change the variance.

7



Standard Deviation

� The square root of the variance is the standard deviation.
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Conclusion



Conclusion

� Variance is a key measure of dispersion in probability and

statistics.

� Understanding variance properties is crucial for future topics.
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Introduction



Introduction

� Practice with the properties of variance.

� Independent random variables X and Y .

� Given: EX = 1, EY = 2, Var(X ) = 3, and Var(Y ) = 4.
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Variance of XY

� Calculate Var(XY ) using properties of variance.

� Var(XY ) = E (X 2Y 2)− [E (XY )]2

11



Central Importance of Variance

� Variance is a fundamental concept in statistics.

� It measures dispersion and variability.
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Intuition Regarding Var(X)

� Understanding the magnitude of variance.

� Relating variance to standard deviation.

� Chebychev’s Inequality and coefficient of variation.
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Chebychev’s Inequality

� P(|X − µ| ≥ cσ) ≤ 1
c2

� Provides bounds on the probability of deviation from the

mean.
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The Coefficient of Variation

� Coefficient of Variation:

√
Var(X )

EX

� A scale-free measure of variability.
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A Useful Fact



Minimizing E [(X − c)2]

� Find the value of c that minimizes E [(X − c)2].

� Minimizing squared error for random variable X.
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Covariance



Covariance

� Introduction to covariance.

� Measure of how two variables vary together.

� Cov(U,V ) = E [(U − EU)(V − EV )]
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Properties of Covariance

� Covariance and correlation.

� The formula for calculating covariance.
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Covariance Calculation

� Understanding covariance through an example.

� Interpretation of positive and negative covariance.
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The Coefficient of Variation

� Coefficient of Variation:

√
Var(X )

EX

� A scale-free measure for judging variance.
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Conclusion



Conclusion

� Variance is a vital concept in statistics.

� Covariance measures the relationship between two variables.

� Coefficient of Variation helps judge the magnitude of variance.
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Introduction



Introduction

Definition
A random variable that takes values 1 or 0, based on the

occurrence of a specific event, is known as an indicator random

variable for that event.
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Properties of Indicator Random Variables

Handy facts: Suppose X is an indicator random variable

for the event A. Let p denote P(A).

E (X ) = p (1)

Var(X ) = p(1− p) (2)

These properties are essential and can be easily derived.
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Example: Tossing Coins

� Coin A: P(Heads) = 0.6

� Coin B: Fair

� Coin C: P(Heads) = 0.2

� Toss A, B, and C once to get X, Y, and Z.

� Let W = X + Y + Z (total heads).
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Calculating P(W = 1)

� Find P(W = 1) using indicator random variables.
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Calculating Var(W )

� Calculate Var(W ) using properties of indicator random

variables.
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Conclusion



Conclusion

� Indicator random variables are valuable tools in probability

and statistics.

� They help simplify complex calculations.

� Understanding their mean and variance properties is essential.
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Introduction

� Probability and statistics play a crucial role in understanding

randomness and uncertainty.

� This presentation will cover various topics related to

distributions, examples, and models.

28



Distributions



Distributions

Definition
The distribution of a discrete random variable is the set of

possible values along with their associated probabilities.

Example: Roll a fair six-sided die.

Distribution of X = {(1, 1/6), (2, 1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6)}
(3)

29



Probability Mass Function (PMF)

Definition
The probability mass function (PMF) of a discrete random

variable V, denoted pV , is defined as:

pV (k) = P(V = k) (4)

for any value k in the support of V.

Example: Toss a coin until the first head.

pN(k) =
1

2k
, k = 1, 2, . . . (5)
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Examples of Distributions

Example: Sum of two fair six-sided dice.

pS(k) =



1
36 , k = 2

2
36 , k = 3

3
36 , k = 4

. . .

1
36 , k = 12

(6)

Example: Watts-Strogatz Random Graph Model (Degree

Distribution).

pM(r) =

(n−3
r−2

)(n2/2−3n/2−(n−3)
k−(r−2)

)(n2/2−3n/2
k

) (7)
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Conclusion



Conclusion

� Probability and statistics provide tools to understand

randomness and uncertainty.

� Distributions and probability mass functions help describe the

behavior of random variables.

� Examples and models demonstrate how these concepts are

applied in various scenarios.
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