

Introduction

Variance

As in Section on Expectation (Ch 3 in Matloff), the concepts and properties introduced in this section form the very core of probability and statistics.

Note: Except for some specific calculations, these apply to both discrete and continuous random variables.

Definition

While the expected value tells us the long-run average of a random variable, we also need a measure of its variability.

In other words, we want a measure of **dispersion** or **spread**. The classical measure of spread is **variance**.

Variance Definition: For a random variable U for which the expected values exist, the **variance** of U is defined to be:

$$\text{Var}(U) = E[(U - EU)^2] \quad (1)$$

Die Example

For X in the die example:

$$\text{Var}(X) = E[(X - 3.5)^2] \quad (2)$$

Here, $W = (X - 3.5)^2$ is a function of X . We find the expected value of this new random variable W .

Notebook View

line	X	W
1	2	2.25
2	5	2.25
3	6	6.25
4	3	0.25
5	5	2.25
6	1	6.25

Calculating Variance

To evaluate, apply:

$$\text{Var}(X) = \sum_{c=1}^6 (c - 3.5)^2 \cdot \frac{1}{6} = 2.92$$

Variance gives us a measure of dispersion.

Intuition

In the expression $\text{Var}(U) = E[(U - EU)^2]$:

- If values of U are clustered near its mean, then $(U - EU)^2$ will usually be small.
- Then variance of U will be small.
- If U varies widely, then its variance will be large.

Properties of Variance

Property F

$$\text{Var}(U) = E(U^2) - (EU)^2 \quad (3)$$

The term $E(U^2)$ is evaluated using Property D of expectation.

Derivation of Property F

Using properties of expected values:

$$\begin{aligned}\text{Var}(U) &= E[(U - EU)^2] \\ &= E[U^2 - 2EU \cdot U + (EU)^2] \quad (\text{algebra}) \\ &= E(U^2) + E(-2EU \cdot U) + E[(EU)^2] \quad (\text{property B}) \\ &= E(U^2) - 2EU \cdot EU + (EU)^2 \quad (\text{properties C}) \\ &= E(U^2) - (EU)^2\end{aligned}$$

Note on Property F: Remember, (3) is a shortcut formula for finding the variance, not the *definition* of variance.

Example using Property F

If X is the number of dots which come up when we roll a die:

$$\text{Var}(X) = E(X^2) - (EX)^2 \quad (4)$$

From Property D of expectation

$$E(X^2) = \sum_{i=1}^6 i^2 \cdot \frac{1}{6} = \frac{91}{6} \quad (5)$$

Thus,

$$\text{Var}(X) = E(X^2) - (EX)^2 = \frac{91}{6} - 3.5^2 \approx 2.92$$

Property G

An important behavior of variance is:

$$\text{Var}(cU) = c^2 \text{Var}(U) \quad (6)$$

This means: If we multiply a random variable by c , its variance multiplies by c^2 .

Proof of Property G: Defining $V = cU$:

$$\begin{aligned}\text{Var}(V) &= E[(V - EV)^2] \text{ (def.)} \\ &= E\{[cU - E(cU)]^2\} \text{ (subst.)} \\ &= E\{[cU - cEU]^2\} \text{ (property C)} \\ &= E\{c^2[U - EU]^2\} \text{ (algebra)} \\ &= c^2 E\{[U - EU]^2\} \text{ (property C)} \\ &= c^2 \text{Var}(U) \text{ (def.)}\end{aligned}$$

Property H

Shifting data over by a constant does not change the amount of variation in them:

$$\text{Var}(U + d) = \text{Var}(U) \quad (7)$$

for any constant d .

Variance of a Constant: Intuitively, the variance of a constant is 0—after all, it never varies!

Formally:

$$\text{Var}(c) = E(c^2) - [E(c)]^2 = c^2 - c^2 = 0 \quad (8)$$

Standard Deviation: The square root of the variance is called the **standard deviation**: $SD(X) = \sqrt{\text{Var}(X)}$.

An Alternative Measure of Dispersion

Variance is used historically and mathematically, not because it's the most meaningful measure (of spread).

- Squaring exaggerates larger differences.
- A more natural measure: **mean absolute deviation** (MAD), $E(|U - EU|)$.
- MAD is less mathematically tractable.

The choice of variance allows for powerful mathematical derivations (e.g., Pythagorean Theorem in abstract vector spaces).

Variance of Sum of Independent RVs

If U and V are independent,

$$\text{Var}(U + V) = \text{Var}(U) + \text{Var}(V) \quad (9)$$

Generalizing (9), for constants a_1, \dots, a_k and independent random variables X_1, \dots, X_k , form the new random variable $a_1X_1 + \dots + a_kX_k$. Then

$$\text{Var}(a_1X_1 + \dots + a_kX_k) = \sum_{i=1}^k a_i^2 \text{Var}(X_i) \quad (10)$$

Importance of Variance

Importance of Variance Properties

- The properties of variance are crucial for understanding the rest of the content.
- Recognize settings where they are applicable. Think of a property like (9) and check for independence.

Central Importance of the Concept of Variance

- The mean is a fundamental descriptor of a random variable.
- Variance is of central importance.
- Used constantly throughout subsequent discussions.
- Next: A quantitative look at variance as a measure of dispersion.

Intuition Regarding the Size of $\text{Var}(X)$

The variance of a random variable X is a measure of dispersion.
But, how do we quantify its magnitude?

Chebychev's Inequality: This inequality provides concrete meaning to the concept of variance/standard deviation:

$$P(|X - \mu| \geq c\sigma) \leq \frac{1}{c^2} \quad (11)$$

- For instance, X strays more than 3 standard deviations from its mean at most only $1/9$ of the time.
- Used in grading schemes:
“An A grade is 1.5 standard deviations above the mean” and
“A C grade is 1.5 standard deviations below the mean”
(here $c = 1.5$).
- Proof of the inequality provided later.

The Coefficient of Variation

- Reflect on the magnitude of variance.
- E.g., if the price of a widget hovers around a \$1 million, but the variation around that figure is only about a dollar, there is essentially no variation. But a variation of about a dollar in the price of a hamburger would be a lot.
- Relate size of $SD(X)$ to $E(X)$ for context.
- Define the coefficient of variation:

$$\text{coef. of var.} = \frac{SD(X)}{EX} = \frac{\sqrt{Var(X)}}{EX}$$

- A scale-free measure to judge the size of variance.

A Useful Fact

For a random variable X :

$$g(c) = E[(X - c)^2] \quad (12)$$

The function $g(c)$ maps a real number c to a real output. What value of c minimizes $g(c)$?

Using the properties of expected value:

$$g(c) = E(X^2) - 2cEX + c^2 \quad (13)$$

Differentiate with respect to c and set to 0 to find:

$$c = EX$$

Optimal Guessing

- Consider guessing people's weights without any prior information.
- Initial inclination: use the mean weight as your guess.
- When you measure the error in your guess using “mean squared error”:

$$E[(X - c)^2]$$

$c = EX$ minimizes the error.

- This confirms that the optimal guess is the mean weight.

Conclusion and Alternate Consideration

- Plugging $c = EX$ into $g(c)$ shows the minimum value is $E(X - EX)^2$, i.e., $Var(X)$.
- Think of this in terms of long-run average squared error.
- Alternative: minimize average absolute error:

$$E(|X - c|)$$

- The optimal c for this is the median weight.

Indicator Random Variables, and Their Means and Variances

Definition: Indicator Random Variable

Definition

A random variable that has the value 1 or 0, depending on whether a specified event occurs or not, is called an **indicator random variable** for that event.

Handy Facts

- If X is an indicator random variable for event A and $p = P(A)$, then:

$$E(X) = p \tag{14}$$

$$\text{Var}(X) = p(1 - p) \tag{15}$$

- For example: $EX = P(X = 1) = P(A) = p$.

Application Example

Consider three coins:

- Coin A has $P(\text{heads}) = 0.6$
- Coin B (fair) has $P(\text{heads}) = 0.5$
- Coin C has $P(\text{heads}) = 0.2$

Toss each once (independently), recording heads as X , Y , and Z respectively. $W = X + Y + Z$ is the total number of heads.

Find $P(W = 1)$ and $\text{Var}(W)$: To find $P(W = 1)$:

$$\begin{aligned}P(W = 1) &= P(X = 1, Y = 0, Z = 0) + \dots \\&= 0.6 \times 0.5 \times 0.8 + 0.4 \times 0.5 \times 0.8 + 0.4 \times 0.5 \times 0.2 \\&= 0.44\end{aligned}$$

To find $\text{Var}(W)$ using indicator random variables:

$$\text{Var}(W) = 0.6 \times 0.4 + 0.5 \times 0.5 + 0.2 \times 0.8 = 0.65$$

Example: Return Time for Library Books, Version I

Suppose at a public library:

- Patrons return books exactly 7 days after borrowing.
- Returning to a different branch adds 2 days delay.
- 50% return their books to a “foreign” library.

Find $Var(T)$, where T is the time (either 7 or 9 days) for a book to come back.

Solution:

$$T = 7 + 2I$$

where I is the indicator for the book being returned to a “foreign” branch. \propto

$$Var(T) = Var(7 + 2I) = 4Var(I) = 4 \times 0.5 \times (1 - 0.5) = 1.0$$

Example: Return Time for Library Books, Version II

- Borrowers return books after 4, 5, 6 or 7 days with probabilities 0.1, 0.2, 0.3, 0.4.
- 50% return their books to a “foreign” branch (causing 2-day delay).
- Library is open 7 days a week.
- Suppose you wish to borrow a certain book, and inquire at the library near the close of business on Monday.
- You are told that it had been checked out the previous Thursday.
- Assume that no one else is waiting for the book, you check every evening, and a borrower returning to a foreign branch is independent of his/her return day.
- Find the probability of waiting until Wednesday evening.

Example: Return Time for Library Books, Version II

Solution Let B : the time (# of days) needed for the book to arrive back at its home branch,

R : the amount of time it takes for borrowers to return books, and define I as before. Note that $B = R + 2I$. Then

$$\begin{aligned} P(B = 6 \mid B > 4) &= \frac{P(B = 6 \text{ and } B > 4)}{P(B > 4)} \\ &= \frac{P(B = 6)}{1 - P(B \leq 4)} = \frac{P(B = 6)}{1 - P(B = 4)} \end{aligned}$$

So, $B = 6$ occurs when “ $R=6$ and $I=0$ ” or “ $R=4$ and $I=1$ ”. Thus,

$$\begin{aligned} P(B = 6 \mid B > 4) &= \frac{P(\text{“}R = 6 \text{ and } I = 0\text{” or “}R = 4 \text{ and } I = 1\text{”})}{1 - P(R = 4 \text{ and } I = 0)} \\ &= \frac{0.3 \cdot 0.5 + 0.1 \cdot 0.5}{1 - 0.1 \cdot 0.5} \\ &= \frac{4}{19} \approx .21 \end{aligned}$$

Simulation Check

```
libsim <- function(nreps) {  
  prt <- sample(c(4,5,6,7),nreps,replace=T,  
                 prob=c(0.1,0.2,0.3,0.4))  
  i <- sample(c(0,1),nreps,replace=T)  
  b <- prt + 2*i  
  x <- cbind(prt,i,b)  
  bgt4 <- x[b > 4,]  
  mean(bgt4[,3] == 6)  
}
```

Use R's vector operations for easier coding and faster running.

Introduction

Variance

As in Section on Expectation (Ch 3 in Matloff), the concepts and properties introduced in this section form the very core of probability and statistics.

Note: Except for some specific calculations, these apply to both discrete and continuous random variables.

Definition

While the expected value tells us the average value a random variable takes on, we also need a measure of its variability.

In other words, we want a measure of **dispersion**. The classical measure is **variance**.

Variance Definition

For a random variable U for which the expected values exist, the **variance** of U is defined to be:

$$\text{Var}(U) = E[(U - EU)^2] \quad (1)$$

Die Example

For X in the die example:

$$\text{Var}(X) = E[(X - 3.5)^2] \quad (2)$$

Here, $W = (X - 3.5)^2$ is a function of X . We find the expected value of this new random variable W .

Notebook View

line	X	W
1	2	2.25
2	5	2.25
3	6	6.25
4	3	0.25
5	5	2.25
6	1	6.25

Calculating Variance

To evaluate, apply:

$$Var(X) = \sum_{c=1}^6 (c - 3.5)^2 \cdot \frac{1}{6} = 2.92$$

Variance gives us a measure of dispersion.

Summary

In the expression $\text{Var}(U) = E[(U - EU)^2]$:

- If values of U are clustered near its mean, then $(U - EU)^2$ will usually be small.
- Variance of U will be small.
- If U varies widely, variance will be large.

Properties of Variance

Property F

$$\text{Var}(U) = E(U^2) - (EU)^2 \quad (3)$$

The term $E(U^2)$ is evaluated using (??).

Example using Property F

If X is the number of dots which come up when we roll a die:

$$\text{Var}(X) = E(X^2) - (EX)^2 \quad (4)$$

From (??),

$$E(X^2) = \sum_{i=1}^6 i^2 \cdot \frac{1}{6} = \frac{91}{6} \quad (5)$$

Thus,

$$\text{Var}(X) = E(X^2) - (EX)^2 = \frac{91}{6} - 3.5^2$$

Note on Property F

Remember, (3) is a shortcut formula for finding the variance, not the *definition* of variance.

Derivation of Property F

Using properties of expected values:

$$\begin{aligned} \text{Var}(U) &= E[(U - EU)^2] \\ &= \dots \\ &= E(U^2) - (EU)^2 \end{aligned}$$

Property G

An important behavior of variance is:

$$\text{Var}(cU) = c^2 \text{Var}(U) \quad (6)$$

This means: If we multiply a random variable by c , its variance multiplies by c^2 .

Proof of Property G

Defining $V = cU$:

$$\text{Var}(V) = E[(V - EV)^2] \text{ (definition)}$$

$$= \dots$$

$$= c^2 \text{Var}(U) \text{ (definition)}$$

Property H

Shifting data over by a constant does not change the amount of variation in them:

$$\text{Var}(U + d) = \text{Var}(U) \quad (7)$$

for any constant d .

Variance of a Constant

Intuitively, the variance of a constant is 0—after all, it never varies!

Formally:

$$\text{Var}(c) = E(c^2) - [E(c)]^2 = c^2 - c^2 = 0 \quad (8)$$

Standard Deviation

The square root of the variance is called the **standard deviation**.

Alternative Measure of Dispersion

Variance is used historically and mathematically, not because it's the most meaningful measure.

- Squaring exaggerates larger differences.
- A more natural measure: **mean absolute deviation** (MAD), $E(|U - EU|)$.
- MAD is less mathematically tractable.

The choice of variance allows for powerful mathematical derivations (e.g., Pythagorean Theorem in abstract vector spaces).

Importance of Variance Properties

- The properties of variance are crucial for understanding the rest of the content.
- Recognize settings where they are applicable.
- Example: Seeing variance of sum of two random variables?
Think of a property like $(??)$ and check for independence.

More Practice with the Properties of Variance

Suppose X and Y are independent random variables with given expectations and variances. Let's find $\text{Var}(XY)$:

$$\begin{aligned}\text{Var}(XY) &= E(X^2Y^2) - [E(XY)]^2 \\&= E(X^2) \cdot E(Y^2) - (EX \cdot EY)^2 \\&= [\text{Var}(X) + (EX)^2] \cdot [\text{Var}(Y) + (EY)^2] - (EX \cdot EY)^2 \\&= 28\end{aligned}$$

Central Importance of the Concept of Variance

- The mean is a fundamental descriptor of a random variable.
- Variance is of central importance.
- Used constantly throughout subsequent discussions.
- Next: A quantitative look at variance as a measure of dispersion.

Intuition Regarding the Size of $\text{Var}(X)$

The variance of a random variable X is a measure of dispersion.
But how do we quantify its significance?

Quote:

“A billion here, a billion there, pretty soon, you’re talking real money” - Senator Everitt Dirksen

Chebychev's Inequality

This inequality provides concrete meaning to the concept of variance/standard deviation:

$$P(|X - \mu| \geq c\sigma) \leq \frac{1}{c^2} \quad (9)$$

- For instance, X strays more than 3 standard deviations from its mean at most only $1/9$ of the time.
- Used in grading schemes: “An A grade is 1.5 standard deviations above the mean” (here $c = 1.5$).
- Proof of the inequality provided later.

More Practice with the Properties of Variance

Suppose X and Y are independent random variables with given expectations and variances. Let's find $\text{Var}(XY)$:

$$\begin{aligned}\text{Var}(XY) &= E(X^2Y^2) - [E(XY)]^2 \\ &= E(X^2) \cdot E(Y^2) - (EX \cdot EY)^2 \\ &= [\text{Var}(X) + (EX)^2] \cdot [\text{Var}(Y) + (EY)^2] - (EX \cdot EY)^2 \\ &= 28\end{aligned}$$

Central Importance of the Concept of Variance

- The mean is a fundamental descriptor of a random variable.
- Variance is of central importance.
- Used constantly throughout subsequent discussions.
- Next: A quantitative look at variance as a measure of dispersion.

Intuition Regarding the Size of $\text{Var}(X)$

The variance of a random variable X is a measure of dispersion.
But how do we quantify its significance?

Quote:

“A billion here, a billion there, pretty soon, you’re talking real money” - Senator Everitt Dirksen

Chebychev's Inequality

This inequality provides concrete meaning to the concept of variance/standard deviation:

$$P(|X - \mu| \geq c\sigma) \leq \frac{1}{c^2} \quad (10)$$

- For instance, X strays more than 3 standard deviations from its mean at most only $1/9$ of the time.
- Used in grading schemes: “An A grade is 1.5 standard deviations above the mean” (here $c = 1.5$).
- Proof of the inequality provided later.

The Coefficient of Variation

- Reflect on the magnitude of variance.
- Relate size of $Var(X)$ to $E(X)$ for context.
- Define the coefficient of variation:

$$\text{coef. of var.} = \frac{\sqrt{Var(X)}}{EX}$$

- A scale-free measure to judge the size of variance.

A Useful Fact

For a random variable X :

$$g(c) = E[(X - c)^2] \quad (11)$$

The function $g(c)$ maps a real number c to a real output. What value of c minimizes $g(c)$?

Using the properties of expected value:

$$g(c) = E(X^2) - 2cEX + c^2 \quad (12)$$

Optimal Guessing

- Consider guessing people's weights without any prior information.
- Initial inclination: guess the mean weight.
- Error measure using mean squared error:

$$E[(X - c)^2]$$

- Differentiate with respect to c and set to 0 to find:

$$c = EX$$

- This confirms that the optimal guess is the mean weight.

Conclusion and Alternate Consideration

- Plugging $c = EX$ into $g(c)$ shows the minimum value is $E(X - EX)^2$, i.e., $Var(X)$.
- Think of this in terms of long-run average squared error.
- Alternative: minimize average absolute error:

$$E(|X - c|)$$

- The optimal c for this is the median weight.

Covariance

- Covariance measures the degree to which two variables U and V vary together.
- Defined as:

$$\text{Cov}(U, V) = E[(U - EU)(V - EV)]$$

- Indicates if two variables are positively or negatively related.

Understanding Covariance

- If both variables are usually large or small together, covariance is positive.
- E.g. Height and weight: Taller people tend to be heavier and vice-versa, indicating a positive covariance.

Properties of Covariance

- Covariance can be rewritten as:

$$\text{Cov}(U, V) = E(UV) - EU \cdot EV$$

- Variance relation:

$$\text{Var}(U + V) = \text{Var}(U) + \text{Var}(V) + 2\text{Cov}(U, V)$$

- And more generally:

$$\text{Var}(aU + bV) = a^2 \text{Var}(U) + b^2 \text{Var}(V) + 2ab\text{Cov}(U, V)$$

Special Cases and Generalizations

- If $\text{Cov}(U, V) = 0$, $\text{Var}(U + V) = \text{Var}(U) + \text{Var}(V)$.
- This relation is analogous to the Pythagorean Theorem in a special mathematical context.
- General formula:

$$\text{Var}(a_1X_1 + \dots + a_kX_k) = \sum_{i=1}^k a_i^2 \text{Var}(X_i) + 2 \sum_{1 \leq i < j \leq k} a_i a_j \text{Cov}(X_i, X_j)$$

- If X_i are independent:

$$\text{Var}(a_1X_1 + \dots + a_kX_k) = \sum_{i=1}^k a_i^2 \text{Var}(X_i)$$

Indicator Random Variables, and Their Means and Variances

Definition: Indicator Random Variable

Definition

A random variable that has the value 1 or 0, depending on whether a specified event occurs or not, is called an **indicator random variable** for that event.

Handy Facts

- If X is an indicator random variable for event A and $p = P(A)$, then:

$$E(X) = p \tag{13}$$

$$\text{Var}(X) = p(1 - p) \tag{14}$$

- For example: $EX = P(X = 1) = P(A) = p$.

Application Example

Consider three coins:

- Coin A has $P(\text{heads}) = 0.6$
- Coin B (fair) has $P(\text{heads}) = 0.5$
- Coin C has $P(\text{heads}) = 0.2$

Toss each once, recording heads as X , Y , and Z respectively.
 $W = X + Y + Z$ is the total number of heads.

Finding $P(W = 1)$ and $Var(W)$

- To find $P(W = 1)$:

$$\begin{aligned}P(W = 1) &= P(X = 1, Y = 0, Z = 0) + \dots \\&= 0.6 \times 0.5 \times 0.8 + 0.4 \times 0.5 \times 0.8 + 0.4 \times 0.5 \times 0.2\end{aligned}$$

- To find $Var(W)$ using indicator random variables:

$$Var(W) = 0.6 \times 0.4 + 0.5 \times 0.5 + 0.2 \times 0.8$$

Example: Return Time for Library Books, Version I

Suppose at a public library:

- Patrons return books exactly 7 days after borrowing.
- Returning to a different branch adds 2 days delay.
- 50% return their books to a “foreign” library.

Find $Var(T)$, where T is the time (either 7 or 9 days) for a book to come back.

Solution

$$T = 7 + 2I$$

where I indicates if the book is returned to a “foreign” branch.

$$\text{Var}(T) = \text{Var}(7 + 2I) = 4\text{Var}(I) = 4 \times 0.5 \times (1 - 0.5)$$

Example: Return Time for Library Books, Version II

- Borrowers return books after 4, 5, 6 or 7 days with probabilities 0.1, 0.2, 0.3, 0.4.
- 50% return their books to a “foreign” branch (2-day delay).
- Library open 7 days a week.
- Borrow a book on Monday; checked out previous Thursday.
Find the probability of waiting until Wednesday evening.

Solution

Let B be return time, I indicate “foreign” branch.

$$\begin{aligned} P(B = 6 \mid B > 4) &= \frac{0.5 \times 0.3 + 0.5 \times 0.1}{1 - 0.5 \times 0.1} \\ &= \frac{4}{19} \end{aligned}$$

Simulation Check

```
libsim <- function(nreps) {  
  prt <- sample(c(4,5,6,7), nreps, replace=T, prob=c(  
  i <- sample(c(0,1), nreps, replace=T)  
  b <- prt + 2*i  
  x <- cbind(prt, i, b)  
  bgt4 <- x[b > 4,]  
  mean(bgt4[,3] == 6)  
}
```

Use R's vector operations for easier coding and faster running.

Introduction

Introduction

- The concepts and properties of variance are fundamental in probability and statistics.
- Applicable to both discrete and continuous random variables.

Definition of Variance

- Variance measures the variability or dispersion of a random variable.
- It's defined as the mean squared difference between a random variable and its mean.
- For a random variable U : $Var(U) = E[(U - E[U])^2]$

Example: Variance of a Die Roll

- Calculate the variance of a die roll, X .
- Variance: $Var(X) = E[(X - 3.5)^2]$
- Interpretation: Measure of dispersion for X .

Variance Calculation

- Calculate $\text{Var}(X)$ using the formula.
- Use the expected value properties to simplify.

Properties of Variance

Property F: Variance Formula

- Property F: $Var(U) = E(U^2) - (E[U])^2$
- Formula for variance in terms of the second moment.

Property G: Scaling Variance

- Property G: $\text{Var}(cU) = c^2 \text{Var}(U)$
- Variance scales with the square of a constant factor.

Property H: Shifting Variance

- Property H: $\text{Var}(U + d) = \text{Var}(U)$
- Shifting data by a constant doesn't change the variance.

Standard Deviation

- The square root of the variance is the standard deviation.

Conclusion

Conclusion

- Variance is a key measure of dispersion in probability and statistics.
- Understanding variance properties is crucial for future topics.

Introduction

Introduction

- Practice with the properties of variance.
- Independent random variables X and Y .
- Given: $EX = 1$, $EY = 2$, $Var(X) = 3$, and $Var(Y) = 4$.

Variance of XY

- Calculate $\text{Var}(XY)$ using properties of variance.
- $\text{Var}(XY) = E(X^2Y^2) - [E(XY)]^2$

Central Importance of Variance

- Variance is a fundamental concept in statistics.
- It measures dispersion and variability.

Intuition Regarding $\text{Var}(X)$

- Understanding the magnitude of variance.
- Relating variance to standard deviation.
- Chebychev's Inequality and coefficient of variation.

Chebychev's Inequality

- $P(|X - \mu| \geq c\sigma) \leq \frac{1}{c^2}$
- Provides bounds on the probability of deviation from the mean.

The Coefficient of Variation

- Coefficient of Variation: $\frac{\sqrt{Var(X)}}{EX}$
- A scale-free measure of variability.

A Useful Fact

Minimizing $E[(X - c)^2]$

- Find the value of c that minimizes $E[(X - c)^2]$.
- Minimizing squared error for random variable X .

Covariance

Covariance

- Introduction to covariance.
- Measure of how two variables vary together.
- $\text{Cov}(U, V) = E[(U - EU)(V - EV)]$

Properties of Covariance

- Covariance and correlation.
- The formula for calculating covariance.

Covariance Calculation

- Understanding covariance through an example.
- Interpretation of positive and negative covariance.

The Coefficient of Variation

- Coefficient of Variation: $\frac{\sqrt{Var(X)}}{EX}$
- A scale-free measure for judging variance.

Conclusion

Conclusion

- Variance is a vital concept in statistics.
- Covariance measures the relationship between two variables.
- Coefficient of Variation helps judge the magnitude of variance.

Introduction

Definition

A random variable that takes values 1 or 0, based on the occurrence of a specific event, is known as an **indicator random variable** for that event.

Properties of Indicator Random Variables

Handy facts: Suppose X is an indicator random variable for the event A . Let p denote $P(A)$.

$$E(X) = p \tag{1}$$

$$\text{Var}(X) = p(1 - p) \tag{2}$$

These properties are essential and can be easily derived.

Example

Example: Tossing Coins

- Coin A: $P(\text{Heads}) = 0.6$
- Coin B: Fair
- Coin C: $P(\text{Heads}) = 0.2$
- Toss A, B, and C once to get X, Y, and Z.
- Let $W = X + Y + Z$ (total heads).

Calculating $P(W = 1)$

- Find $P(W = 1)$ using indicator random variables.

Calculating $Var(W)$

- Calculate $Var(W)$ using properties of indicator random variables.

Conclusion

Conclusion

- Indicator random variables are valuable tools in probability and statistics.
- They help simplify complex calculations.
- Understanding their mean and variance properties is essential.

Introduction

Introduction

- Probability and statistics play a crucial role in understanding randomness and uncertainty.
- This presentation will cover various topics related to distributions, examples, and models.

Distributions

Distributions

Definition

The **distribution** of a discrete random variable is the set of possible values along with their associated probabilities.

Example: Roll a fair six-sided die.

Distribution of $X = \{(1, 1/6), (2, 1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6)\}$
(3)

Probability Mass Function (PMF)

Definition

The **probability mass function (PMF)** of a discrete random variable V , denoted p_V , is defined as:

$$p_V(k) = P(V = k) \quad (4)$$

for any value k in the support of V .

Example: Toss a coin until the first head.

$$p_N(k) = \frac{1}{2^k}, \quad k = 1, 2, \dots \quad (5)$$

Examples of Distributions

Example: Sum of two fair six-sided dice.

$$p_S(k) = \begin{cases} \frac{1}{36}, & k = 2 \\ \frac{2}{36}, & k = 3 \\ \frac{3}{36}, & k = 4 \\ \dots \\ \frac{1}{36}, & k = 12 \end{cases} \quad (6)$$

Example: Watts-Strogatz Random Graph Model (Degree Distribution).

$$p_M(r) = \frac{\binom{n-3}{r-2} \binom{n^2/2 - 3n/2 - (n-3)}{k - (r-2)}}{\binom{n^2/2 - 3n/2}{k}} \quad (7)$$

Conclusion

Conclusion

- Probability and statistics provide tools to understand randomness and uncertainty.
- Distributions and probability mass functions help describe the behavior of random variables.
- Examples and models demonstrate how these concepts are applied in various scenarios.