Common Distribution Families



Parametric Distribution Families

The notion of a parametric family of distributions is a key concept
that will recur throughout the lectures.

Ex: Consider plotting the curves g, p(x) = (x — a)? + b. For each
a and b, we get a different parabola.




Parametric Function Families

This is a family of curves, thus a family of functions.

Numbers a and b are the parameters of the family.

x is not a parameter but an argument of each function.

The parameters a and b are indexing the curves.



Common Distribution Families - |
Discrete Distributions



Parametric Families of pmfs

Probability mass functions are still functions.

e The domains of these functions are typically the integers.
e They can come in parametric families, indexed by parameters.

e Some parametric families of pmfs have been named due to
their usefulness.

e They are famous because they fit real data well in various
settings.

e Note: Do not assume that we always “must” use pmfs from

some family.



Distribution Based on Independent
(Bernoulli) Trials



Bernoulli Distribution (with parameter p)

Definition: A random variable X has a Bernoulli(p) distribution,

denoted X ~ Bernoulli(p), if its pmf is of the form
pX(1—p)t=* for x=0or1,
0 otherwise,

fx(xlp) = {

or
fx(x|p) = p*(1 — P)lfx/{o,l}(x)
where the parameter p satisfies 0 < p < 1.

Representation of Bernoulli Distribution
This is sometimes written as

X — 1 with probability p,
~ ] 0 with probability 1 — p.



Notes on Bernoulli Distribution

1. A Bernoulli trial (named after James Bernoulli) is an
experiment with exactly two possible outcomes.

2. Bernoulli random variable X = 1 if “success” occurs and
X =0 if “failure” occurs where the probability of success is p
(and probability of failure is 1 — p).

Descriptive Measures for Bernoulli Distribution
Mean: E[X] = p,

Variance: Var(X) = p(1 — p),

MGF: Mx(t) = pe* + (1 — p).



The Geometric Family of Distributions

Coin Tossing Example: Recall our example of tossing a coin until
we get the first head, with N denoting the number of tosses
needed.

k—1
1 1
k)=11-= =, k=12,..
pN() < 2) 27 )=

Here, getting a head is a “success” and a tail is a “failure”.

Die Rolling Example: Define M to be the number of rolls of a
die needed until the number 5 shows up.

1\ 1

Here, getting a 5 is a "success" . 6



The Independent Bernoulli Trials

Here tosses of the coin and rolls of the die are Bernoulli trials.

B; is 1 for success on the it" trial, O for failure, with success
probability p. For instance, p is 1/2 for a coin, and 1/6 for a die.

Assumptions for Independent Bernoulli Trials Setting (or
Experiment)

1. The experiment consists of a sequence of independent
Bernoulli trials.

2. Each trial can result in either a success (S) or failure (F).

3. The probability of success, denoted as p, is constant from trial
to trial.



Geometric Distribution (with parameter p)

Consider a sequence of independent Bernoulli trials with probability
of success p on each trial (i.e., consider the setting of independent
Bernoulli trials).

Definition:

Let X represent the number of trials till the first success. Then X

has geometric distribution with parameter p, denoted

X ~ Geometric(p), and has pmf

fx(x|p) = P(X = x|p) = (1—p)* ' p for x=1,2,... and p € (0, 1).
It is often referred to as a discrete “waiting time” random variable.

It represents how long (in terms of the number of trials) one has to
wait for one success to occur.



Descriptive Measures

1
Mean: E[X] = —,
p
. 1—p
Variance: Var(X) = 2
cdf: F(x)=P(X <x)=1—-(1-p)*
t
MGF: Mx(t) = —F¢

1—(1—p)et’



For X ~ Geometric(p), show that probability of observing n
failures already is (1 — p)” for n=1,2,.... ﬂ( X 7 *’\) -

Solution “Observing n failures already (i.e., n failures already
occurred)” is equivalent to “observing first success at n+ 1)st tyial
or at a later trial": Thatis, X > n (i.e., X > n). So,

=n+2)+...
(= p) X pt (=P X pt
L PO oy pl 4 (- g+ (- P

=(1-p)"xp) (1-p)F
k=0

Using the formula for the sum of an infinite geometric series:
S=>0rk =1L, we get:
P(X>n)=(1-p)"xpx g =1-p)"xpx5=(1-p)" 10



Memoryless Property of Geometric Distribution

This distribution has an interesting property, known as the

“memoryless property”. For integers s, t > 1,
P(X >t+s|X>t)=P(X>s).

Probability of getting s more failures, having already observed t
failures, is the same as the probability of observing s failures from
the start.

That is, this distribution “forgets” what has occurred before.

11



Fors, t > 1

P(X >t dX >t
PX>tts|X>t) X >tksand X > )

P(X > t)
_P(X>t+s) (1-p)tts
~ P(X>t)  (1-p)

=(1—-p)°=P(X >5).

Note: In fact, geometric r.v. is the only positive discrete r.v. that

is memoryless.
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Example: Failure Times

The geometric distribution is sometimes used to model “lifetimes”
or “time until failure” of components (in industry). If the
probability is .001 that a light bulb will fail on any given day, then
find the probability that it will last at least 30 days from now.

Solution:

Let X = # of days till the light bulb fails for the first time. So,
here “success” is the failure of light bulb. Then

X ~ Geometric(p = .001) and the probability is:

P(X > 30) = (.999)*° = 0.970.

13



Example: Aging of People

Suppose X is the number of years one lives. Then

P(s/he lives two more years) =

P(X > current age + 2| X > current age) = P(X > 2).

Clearly, this model is not realistic for humans. The remaining life

time changes as people get older.

Caveat: Geometric distribution is not applicable to modeling
lifetimes for which the probability of failure is expected to increase
over time. There are other distributions for modeling aging

problems.
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R Functions for Geometric Distribution

You can simulate geometrically distributed random variables in R.

R Functions: The R functions for a geometrically distributed
random variable X with success probability p:

e dgeom(i,p): P(X =)

e pgeom(i,p): P(X <)

e ggeom(q,p): find ¢ such that P(X < c¢)=gq
e rgeom(n,p): generate n variates

Important Note on R’s Definition:
R and some other software define geometric distributions as the
number of failures before the first success.

> dgeom(2,0.4)

[1] 0.144
ii5)



The Binomial Family of Distributions

A geometric distribution arises when we have independent
Bernoulli trials with parameter p, with a variable number of trials
(N) but a fixed number of successes (which is 1).

The binomial distribution arises when we have the opposite — a
fixed number of independent Bernoulli trials (n) but a variable
number of successes (say X).

Example: For example, say we toss a coin five times, and let X be
the number of heads we get. We say that X is binomially
distributed with parameters n =5 and p = 1/2. The probability
P(X = 2) can be calculated as:

P(X =2) = (Z>0.52(1 —~05)3 = @) /32 =15/16

16



Binomial Distribution

Definition: A random variable X has a Binomial(n, p)
distribution, denoted X ~ Binomial(n, p), if its pmf is of the form

n X n—x
tx(xinp) = (7)o@ - 7,
forx=0,1,...,n, withn>0, and 0 < p <1,

or
n —X
P(X = x|n,p) = (x) P = P)"lo,...m}(x):

So, again we have a parametric family of distributions, in this case
a family having two parameters, n and p.

17



Representation using Bernoulli Variables

Let's write X as a sum of those 0-1 Bernoulli variables:

X = ZH:B,-
i=1

where B; is 1 or 0, depending on whether there is success on the

it" trial or not, more precisely, By, ..., B, are independent identical
Bernoulli r.v.’s.

Descriptive Measures for Binomial Distribution:
Using properties of E() and Var():

Mean: E[X] = np,

Variance: Var(X) = np(1 — p),

MGF: Mx(t) = (pet + (1 — p))".
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Example: Sampling with Replacement

Consider sampling with replacement from an urn containing n
items, m of which are defective. Let X represent the number of
defective items in a sample of size k. The probability that a

sample of size k contains x defectives is:

o= = s k=) = () (2 (- 2)"

forx=0,1,..., k.

19



Example: Defective Screws (Ross, 1988)

The screws produced by a certain company are defective with
probability 0.01 independently. The company sells screws in
packages of 10 and offers a money-back guarantee for packages
with 2 or more defective screws. What proportion of packages sold
will the company replace?

Solution: The question is equivalent to “What is the probability
that a package has to be replaced.” Notice that a package has to
be replaced if 2 or more are defective in it. Let X be the number
of defective screws in a package, then we want to find P(X > 2).
Also, X ~ Binomial(10,.01).

PX>2)=1-P(X<1)=1-P(X=0)—P(X=1)
1 1
=1- <00> 0.01°90.9910 — ( 10> 0.01' 0.99°

~1—0.9044 — 0.0914 ~ .004. 20



R Functions for Binomial Distribution

Relevant functions for a binomially distributed random variable X
for k trials and with success probability p are:

e dbinom(i,k,p): P(X =)

e pbinom(i,k,p): P(X <)

e gbinom(q,k,p): smallest ¢ such that P(X < c¢) > q

e rbinom(n,k,p): generate n independent values of X

21



The Negative Binomial Family of Distributions

Recall the geometric distribution arises as N, the number of tosses
of a coin needed to get the first head. Now generalize to N being
the number of tosses needed to get the rth head, where r is fixed.

Understanding the “Prob. of N = k” for the case r = 3,
k=5: {N=5}=

{2 heads in the first 4 tosses and head on the 5t toss} The
event 2 heads in the first 4 tosses is a binomial probability:

4\ (1\*
P(2 heads in the first 4 tosses) = <2> <2>

So, by independence,
P(N = 5) = P(2 heads in the first 4 tosses)x P(head on the 5% toss)

- (OG-0 .



Probability of N = k

The negative binomial distribution family, indexed by parameters r
and p, counts the number of independent trials with success
probability p needed until we get r successes.

Probability Mass Function
k—1 -
nt) = PV =) = (€7 1) =)0 k= rurt e (1)
This can be expressed as:

.
N = Gl—‘r...—i-Gr:ZG;
i=1
where each G; is the number of tosses between the successes
numbers /i — 1 and /. Note that G;'s are independent and
G; ~ Geo(p).

23



Descriptive Measures:

For X ~ NB(p, r), we have
Mean: E[X] = é

1—
Variance: Var(X) = r 5 P)

cdf: F(x) has no closed form.

mer )= (=) = (==tr=7)

24



R Functions for Negative Binomial Distribution

Relevant functions for a negative binomially distributed random
variable X with success parameter p are:

e dnbinom(i,size=r,prob=p): P(X =)
e pnbinom(i,size=r,prob=p): P(X < /)

e gnbinom(q,size=r,prob=p): smallest ¢ such that

P(X<c)=q
¢ rnbinom(n,size=r,prob=p): generate n independent values
of X

25



Example: Backup Batteries

A machine contains one active battery and two spares. Each
battery has a 0.1 chance of failure each month. Let L denote the
lifetime of the machine, i.e. the time in months until the third
battery failure. Find P(L = 12).

Solution:

The number of months until the third failure has a negative
binomial distribution, with r = 3 and p = 0.1. Thus the answer is
obtained by Equation (1), with k = 12:

P(E="12)= (121> (1-0.1)°.1% = 0.0213

26



Sample Histograms

Discrete Distributions

Distribution Plot Distribution Plot
Binomial n=25 Binomial, n=100

Distribution Plot. Distribution Plot
Geometric Negative Sinomial, p=05

omm

= ol umber of i X ot e o s

Figure 1: Sample histograms of the pmfs for various discrete
distributions. 27



The Poisson Family of Distributions




The Poisson Distribution

The Poisson Distributions differ from the geometric, binomial,
and negative binomial families, which have clear qualitative
descriptions of their origins. Instead, the Poisson distribution is
primarily used to model random events where count of some
quantity over a period of time, space, region, length, volume, etc.
is the variable of interest.

Some Examples:

e the number of typos on a page of a book,

the number of incoming 911 calls at a police switchboard in
one day,

the number of a-particles discharged in a fixed period of time
from some radio active material,

the # of customers entering a credit union on a given day,

the number of defects per square yard of a certain fabric, etc. 28



Notes on Poisson Distribution

1. A Poisson distribution is typically used to model the
probability distribution of the number of occurrences per unit
time or per unit area (with A being the intensity rate).

2. The basic assumption: the probability of an event occurring is
proportional to the length of the time interval.

3. A useful result (for verifying the descriptive meastres below):
By Taylor series expansion, we have e¥ = "2 ;¥

The pmf for the Poisson distribution is:

e ANk
P(X = k)= R k=0,1,2,..
Descriptive Measures:
e Mean: E[X] =
e Variance: Var(X) =
o MGF: Mx(t) = eMe'~ ) 29



Example: # of Calls

If there are 6 calls in 3 minutes on average at a call center, what is
the probability that:

(a) there will be no calls in the next minute?
(b) at least two calls in the next minute?

Solution: Let X = number of calls in a minute, then X has a
Poisson distribution with E[X] = A =6/3 = 2, thus

672(2)0

(a) P(X =0) = T 0.135,
(b) P(X >2)=1—P(X<1)=1-P(X =0)— P(X = 1)
_ 10135 @

1!
=1-0.189 — 0.271 =~ 0.54.

30



R Functions for Poisson Distribution

Relevant R functions for a Poisson distributed variable X with
parameter \:

e dpois(i,lambda): P(X =)

e ppois(i,lambda): P(X < /)

e qpois(q,lambda): smallest ¢ such that P(X < c¢)=gq

e rpois(n,lambda): generate n independent values of X

31



Example: Broken Rod

Recalling the broken glass rod example, suppose now that the number of
breaks is random. A potential model is Poisson. We model the number of
pieces minus 1 (break points) as Poisson.

Suppose we wish to find the expected value of the shortest piece, via
simulation. The code is similar to that in Section 2.6, but we must first
generate the number of break points (see below code).

minpiecepois <— function(lambda) {
nbreaks <— rpois(1,lambda)
breakpts <— sort(runif(nbreaks))
lengths <— diff(c(0,breakpts 1))
min(lengths)
}
bkrodpois <— function(nreps,h lambda,q) {
minpieces <— replicate(nreps, minpiecepois(lambda))
mean( minpieces < q) }
> bkrodpois (10000,5,0.02)
[1] 0.4655 32



The Power Law Family of
Distributions




The Power Law Distribution

The Power Law family has gained attention recently due to its
application in random graph models.

The Model: The probability mass function is given by:
px(k)=ck™7, k=1,2,3,...

with the condition v > 1 to ensure the sum of probabilities isn't
infinite.

The value of c is set to ensure the sum is 1.0:

o)

1.0=) ck '~ c/ k™ dk = c/(y —1)

k=1 i
Thus, c =~ — 1.

33



Applications and Interests

The Power Law family is traditional, but has seen renewed interest.
Real-world social networks often exhibit power law behavior in
degree distributions.

A study of the Web found:

e Number of incoming links to a page: v =2.1

e Number of outgoing links from a page: v = 2.7

Interest also arises from the fat tails of power laws. Extreme
values, or black swans, are more probable under a power law than
a normal distribution with the same mean.

34



Power Law with Exponential Cutoff

A variant of the power law is combined with a geometric
distribution:

px(k) = ck™7q"
This is a two-parameter model, with parameters v and q. c is

chosen to ensure the pmf sums to 1.0.

This model fits some data better than the pure power law, but its
tail decays exponentially in k.

Real Data and Power Laws: Some real data sets fit well with
power laws, others do not.

Reference: Power-Law Distributions in Empirical Data by A.
Clauset, C. Shalizi, and M. Newman.

The paper also discusses methods to estimate 7.
35
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Recognizing Some Parametric Distributions When You See

Them

Three of the discrete distribution families considered arise in

specific settings involving independent trials.

Distributions from Independent (Bernoulli) Trials

e The binomial family: Distribution of the number of successes
in a fixed number of trials.

e The geometric family: Distribution of the number of trials
needed to obtain the first success.

e The negative binomial family: Distribution of the number of

kth

trials needed to obtain the success.

These scenarios are common, making these distribution families
particularly noteworthy.
36



Distributions Without Underlying Structure

The Poisson and power law distributions:

e lLack a specific underlying structure like the previous
distributions.

e Are renowned because they often fit well to many real data

sets.

For the binomial, geometric, and negative binomial distributions,
the fundamental nature of the setting implies the distribution.

Recognition is Key! You should make a strong effort to recognize

these settings automatically when you encounter them.

37



Example: Analysis of Social Networks

One of the simplest models of social networks was developed by
Erdos and Renyi. Consider:

e n people (or Web sites, etc.).

(5) potential links (undirected graph).

Each pair of people has a link with probability p.

Each pair of people does not have a link with probability 1 — p.

All pairs are independently having or not having links.

38



Degree Distribution

The degree distribution D; for a node i is binomial with parameters

n-1 and p.

Distribution of Links for k Nodes: Consider k nodes, 1 through
k, among n total nodes. Let T be the number of links involving
these nodes. The distribution of T is binomial. In particular, with
k=4 and n=09:

o (3) = 6 potential links among the special nodes.

e 4 special nodes, each with 9 — 4 = 5 potential links to the
outside.

e Total of 26 potential links.

39



Binomial Distribution of T

The distribution of T is binomial with:

k
k(n— k) + (2> (2)
trials and success probability p.

That is, T ~ Binomial(n;, p) where n; = k(n — k) + (g)

40
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