
Common Distribution Families - II

Continuous Distributions



Continuous Probability Models

There are other types of random variables besides the discrete ones

you studied in the previous chapter. This chapter covers another

major class: continuous random variables. These are central in

statistics and are extensively used in applied probability. Calculus is

essential to understand this topic.
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Running Example: a Random Dart

Imagine that we throw a dart at random at the interval (0,1). Let

D denote the spot we hit. By “at random”, we mean that all

subintervals of equal length are equally likely to get hit, such as

(0.7,0.8) and (0.2,0.3).

Randomness

P(u ≤ D ≤ v) = v − u

For any 0 ≤ u < v ≤ 1.

D is termed a continuous random variable because its support is a

continuum of points in the interval (0,1).
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Individual Values Now Have Probability Zero

The key point:

P(D = c) = 0 (1)

For any individual point c .

How to make sense of it?

� Take c = 0.3 as an example:

P(D = 0.3) ≤ P(0.29 ≤ D ≤ 0.31) = 0.02

But using smaller intervals, we can deduce P(D = 0.3) must

be smaller than any positive number, hence it’s 0.

� Given infinite points, if all had some nonzero probability w ,

the probabilities would sum to infinity, not 1. Thus, they must

have a probability of 0.

This observation holds true for any continuous random variable.

While D = c can occur, its long-term frequency of occurrence is

zero.
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But Now We Have a Problem

Equation (1) presents a problem. In the case of discrete random

variables M, their distribution was defined using the probability

mass function, pM . In the continuous case, however, all the

probabilities of individual values are 0. We need an alternative

approach.

Our Way Out of the Problem: Cumulative Distribution

Functions:

For any random variable W , its cumulative distribution function

(cdf), FW , is defined by:

FW (t) = P(W ≤ t),−∞ < t < ∞ (2)

(Note: It is customary to use capital F for a cdf, with a subscript

denoting the random variable’s name.)
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Example: Random Dart cdf

Using the ”random dart” example:

FD(0.23) = P(D ≤ 0.23) = P(0 ≤ D ≤ 0.23) = 0.23

Additionally,

FD(−10.23) = 0 and FD(10.23) = 1

The general cdf for our dart is:

FD(t) =


0, if t ≤ 0

t, if 0 < t < 1

1, if t ≥ 1
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Visualizing the cdf

Here is the graph of FD :
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cdf of a Discrete Random Variable

For a discrete variable, say Z (number of heads from two coin

tosses):

FZ (t) =


0, if t < 0

0.25, if 0 ≤ t < 1

0.75, if 1 ≤ t < 2

1, if t ≥ 2

For example:

FZ (1.2) = P(Z = 0 or Z = 1) = 0.25 + 0.50 = 0.75
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Visualizing the cdf of Z

Here’s the graph of FZ :
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FD is continuous, while FZ has jumps, hence the term continuous

random variables.
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What’s Next?

In our study, random variables are either discrete or continuous.

However, some exist that are neither (although rare).

With cdfs in hand, our goal is to find a counterpart for continuous

random variables that mirrors the probability mass functions for

discrete ones.

Intuitive Understanding

Intuition is key here. Make SURE you develop a good intuitive

understanding of density functions, as it is vital in being able

to apply probability well. We will use it a lot in our course.
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From pmfs to Densities (pdfs)

� From Equation (2), for a discrete variable, its cdf is calculated

by summing its pmf.

� In continuous cases, we integrate, not sum.

� Hence, the analog of pmf for continuous case should be

something that integrates to the cdf.

� This is the derivative of the cdf, termed as density.

Density (pdf) Definition Consider a continuous random variable

W . Define

fW (t) =
d

dt
FW (t),−∞ < t < ∞ (3)

wherever the derivative exists. The function fW is called the

probability density function (pdf), or just the density of W .
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Properties of Densities

Equation (3) implies:

Property A

P(a < W ≤ b) = FW (b)− FW (a) (4)

=

∫ b

a
fW (t) dt (5)

� (4) arises from the difference in probabilities accumulated

from −∞ to b and a.

� (5) is from the Fundamental Theorem of Calculus.
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More Properties

Property B

P(a < W ≤ b) = P(a ≤ W ≤ b) = P(a ≤ W < b) =

P(a < W < b) =

∫ b

a
fW (t) dt

Property C ∫ ∞

−∞
fW (t) dt = 1 (6)

� Note: fW (t) will be 0 for ranges of t where W cannot take on

values.
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Characteristics of a Density (pdf)

� Any nonnegative function integrating to 1 is a density.

� A density can be increasing, decreasing, or mixed.

� Densities can have values greater than 1 at points but must

integrate to 1.

Considering a Continuous Random Variable X:

Suppose we have some continuous random variable X, with density

fX , graphed in Figure 1.

Consider probabilities of the form:

P(s − 0.1 < X < s + 0.1) (7)
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Visual Representation
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An Illustrative Case: s = 1.3

The rectangular strip in the figure reminds us of early calculus.

The area under fX from 1.2 to 1.4 is approximately:

2(0.1)fX (1.3) ≈
∫ 1.4

1.2
fX (t) dt (8)

From the properties we’ve discussed:

P(1.2 < X < 1.4) ≈ 2(0.1)fX (1.3) (9)

Another Case: s = 0.4

Similarly, for s = 0.4,

P(0.3 < X < 0.5) ≈ 2(0.1)fX (0.4) (10)

And, in general:

P(s − 0.1 < X < s + 0.1) ≈ 2(0.1)fX (s) (11)
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A Key Insight

Regions in the number line (X-axis in the picture) with

low density have low probabilities, while regions with high

density have high probabilities.

Although densities are not probabilities, they indicate which

regions are likely or unlikely.
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Expected Values - Understanding

the Nature of Expected Values in

Continuous Cases



Expected Value for Continuous RVs

Recall expectation for Discrete rv W:

For a discrete variable W:

E (W ) =
∑
c

c pW (c) (12)

For instance, if W is the number of dots in rolling two dice, c

ranges over values 2, 3, ..., 12.

Continuous Analog: Expected Value

The analog for a continuous W: Property D:

E (W ) =

∫
t
t fW (t) dt (13)

Where t ranges over possible values of W. Alternatively:

E (W ) =

∫ ∞

−∞
t fW (t) dt (14)
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Calculating E (W 2) and More

For the square of W:

E (W 2) =

∫
t
t2 fW (t) dt (15)

In general: Property E:

E [g(W )] =

∫
t
g(t) fW (t) dt (16)
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Properties of Expected Value and Variance

Many properties of expected value and variance for discrete

random variables also apply to continuous ones:

Property F: The following properties of discrete variables remain

valid in the continuous scenario.

� E (U + V ) = E (U) + E (V )

� E (aX + bY ) = aEX + bEY

� If U and V are independent, then E (UV ) = EU · EV
� Var(U) = E (U2)− (EU)2

� Var(cU) = c2Var(U)
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A First Example: Density Function: 2t/15

Consider the density function:

f (t) =

2t/15 for t ∈ (1, 4)

0 elsewhere

Say X has this density.

Computations

E (X ) =

∫ 4

1
t · 2t

15
dt = 2.8 (17)

P(X > 2.5) =

∫ 4

2.5

2t

15
dt = 0.65 (18)

FX (s) =

∫ s

1

2t

15
dt =

s2 − 1

15
for s ∈ (1, 4) (19)

Var(X ) = E (X 2)− (E (X ))2 =

∫ 4

1
t2 · 2t

15
dt − 2.82 = 0.66
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Lifetime of a Light Bulb

Suppose L is the lifetime of a light bulb (say in years), with the

above density. Let’s find some quantities in that context:

Proportion of bulbs with lifetime less than the mean lifetime:

P(L < 2.8) =

∫ 2.8

1
2t/15 dt = (2.82 − 1)/15 = 0.456 (20)

Mean of 1/L:

E (1/L) =

∫ 4

1

1

t
· 2t/15 dt =

2

5
(21)
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Concept of Support

The support of a discrete distribution is its domain, i.e., where pmf

is positive.

It is similar for a continuous random variable: The support

represents the range where the density is non-zero.

For the density in the slides before, the support is (1,4).
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Common Parametric Families of

Continuous Distributions



The Uniform Distribution



Uniform Distribution

Consider the example of throwing a dart at an interval (a,b).

For a uniform distribution with all points being “equally likely”, the

density must be constant in this interval and integrate to 1.

A random variable X has the uniform distribution on (a, b) with

a < b, denoted X ∼ Uniform(a, b), if its pdf has the form

fX (x |a, b) =

{
1

b−a for x ∈ (a, b),

0 otherwise.

That is, the (continuous) uniform distribution is defined by

spreading density uniformly over the interval (a, b).
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Uniform Distribution (with parameters (a, b)

Figure 2: Plot of the Uniform(a, b) pdf.
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Uniform Distribution (with parameters (a, b)

Descriptive Measures:

Mean: E [X ] =
a+ b

2
,

Variance: Var(X ) =
(b − a)2

12
,

cdf: FX (x) =
x − a

b − a
for a < x < b,

MGF: MX (t) =
etb − eta

t(b − a)
.

Application (Probability Integral Transform) If X is a

continuous random variable and has cdf FX (x). Then Y = FX (X )

has the uniform distribution on (0, 1). It is very important in

random number generation and hence simulation studies. Many

other applications including order statistics will be illustrated later.
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R Functions for Uniform Distribution

For a uniformly distributed random variable X on (a, b):

� dunif(x,a,b): to find fX (x)

� punif(q,a,b): to find P(X ≤ q)

� qunif(q,a,b): to find c such that P(X ≤ c) = q

� runif(n,a,b): to generate n independent values of X

For many of these functions in R, both x and q can be vectors.
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Modeling of Denial-of-Service Attack

A uniform distribution can indicate a possible denial-of-service

attack. In this scenario, an attacker aims to monopolize resources

by overwhelming them with requests.

Research by David Marchette suggests that attackers choose

uniformly distributed false IP addresses, a pattern not typically

observed at servers.1

1Statistical Methods for Network and Computer Security, David J. Marchette,

Naval Surface Warfare Center,

rion.math.iastate.edu/IA/2003/foils/marchette.pdf.
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The Normal (Gaussian) Family of

Continuous Distributions



Normal (Gaussian) Distribution

Bell-shaped Curves These are known as the famous “bell-shaped

curves” due to the shape of their densities.
“All that glitters is not gold” — Shakespeare

While other families like the Cauchy also have bell shapes, the

Central Limit Theorem makes the normal family especially

significant.
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Normal Distribution: Density and Properties

Density and Parameters:

The density for a normal distribution is given by:

fW (t) =
1√
2πσ

e−0.5( t−µ
σ )

2

,−∞ < t < ∞

This is a two-parameter family, indexed by:

� µ (mean or expected value)

� σ (standard deviation)

It’s denoted as N(µ, σ2), with the custom being to specify the

variance σ2 instead of the standard deviation.
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Normal Densities
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Importance of the Normal Family

The significance of the normal family cannot be overstated (see

also Chapter 9).

1. It is analytically simple; it has a bell shape.

2. Many real life phenomena appear to be approximately

normally distributed.
3. A large portion of statistical theory is built on the normal

distribution.
4. To compute probabilities associated with the normal distribution, we

can use standard normal tables (or software).

5. Normal distribution is often used to approximate other distributions

(based on CLT). For instance, when n is large enough,

5.1 Binomial(n, p) distribution may be approximated by a normal

distribution with µ = np and σ2 = np(1− p),

5.2 Poisson(λ) distribution may be approximated by a normal

distribution with µ = σ2 = λ.
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Normal Distribution

Because of CLT, most scientists in the late 19th and early 20th

centuries believed that almost all data sets were normal.

For example, the famous French mathematician Henri Poincaré said

“Everyone believes it: experimentalists believe it is a mathematical

theorem, and mathematicians believe that it is an empirical fact”.

Descriptive Measures:

Mean: E [X ] = µ,

Variance: Var(X ) = σ2,

MGF: MX (t) = eµt+σ2t2/2.
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The Exponential Distributions



Exponential Distribution

Clarification on the Term ”Exponential Family”:

We have been discussing parametric families of distributions. In

this context, we introduce the family of exponential distributions.

Important: This should not be confused with the term

exponential family in mathematical statistics, which encompasses

exponential distributions but is more extensive.
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Exponential Distribution: Density and Properties

The densities in this family are given by:

fW (t) = λe−λt , 0 < t < ∞

After integration, we find:

E (W ) =
1

λ

Var(W ) =
1

λ2

It’s intriguing why λ is preferred over 1/λ (mean) as the indexing

parameter.

34



Exponential Densities
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Exponential Distribution

For X ∼ Exponential(λ), Descriptive Measures:

Mean: E [X ] = 1/λ,

Variance: Var(X ) = 1/λ2,

cdf: FX (x) = 1− e−λ x for x > 0 and λ > 0,

MGF: MX (t) =
λ

λ− t
for t < λ.

Memoryless Property of the Exponential Distribution: If

X ∼ Exponential(λ), for s, t > 0

P(X > t + s|X > t) = P(X > s).

Why? If X ∼ Exponential(λ), then for t > 0, we have

P(X > t) =

∫ ∞

t
λ e−λ xdx = e−λ t . Then

P(X > t + s|X > t) = P(X > t + s)/P(X > t)

= e−λ (t+s)/e−λ t = e−λ s = P(X > s). □
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Exponential Distribution

Ex 1: Suppose that the lifetime of a certain type of electric

component has an exponential distribution with a mean life of 500

hours (i.e., 1/λ = 500). If X denotes the lifetime of the

component, then X ∼ Exponential(1/500). Then

P(X > x) =

∫ ∞

x

1

500
e−t/500dt = e−x/500.

Ex 2: Under the setting of Ex 1 above, suppose that given that

the component has been operating for 300 hours, find that

probability that the component will last for another 600 hours.

Solution:

The “component has been operating for 300 hours” means that

“the lifetime of the component is larger than 300”, i.e., “X > 300”

is given.
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Solution (continued)

And “the component will last for another 600 hours (in addition to

300 hours” implies it will “last for 600+300=900 hours”, i.e., “the

lifetime of the component will be larger than 900”, i.e.,

“X > 900”. Thus,

P(X > 900 | X > 300) = P(X > 600) = e−600/500 = e−6/5 ≈ 0.30

This means that, for such components, an old component is as

good as new. □

The exponential distribution is the only continuous distribution

with support in (0,∞) that is memoryless (i.e. “If X is a positive

continuous random variable with the memoryless property, then

X ∼ Exponential(λ) for some λ > 0”).
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R Functions for Exponential Distributions

Relevant R functions for a uniformly distributed random variable X

with parameter λ include:

� dexp(x,lambda): Determine fX (x)

� pexp(q,lambda): Calculate P(X ≤ q)

� qexp(q,lambda): Find c such that P(X ≤ c) = q

� rexp(n,lambda): Generate n independent values of X
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Example: Refunds on Failed Components

Scenario: A manufacturer’s electronic component has an

exponentially distributed lifetime with mean 10000 hours. Refunds

are given for failures before 500 hours. Let L denote the lifetime of

a component and M denote the number of sold items up to the

first refund. We aim to find EM and Var(M).

Insight: M has a geometric distribution with success probability:

p = P(L < 500) =

∫ 500

0
0.0001e−0.0001t dt = 0.05

Using formulas for Geo(p = .05), we can determine EM and

Var(M).
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Importance in Modeling

The exponential family is crucial in modeling due to its unique

properties, making it applicable to various scenarios:

� Air conditioner lifetimes on airplanes

� Interarrival times (e.g., bank customers, network messages)

� Software reliability studies
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The Gamma Family of Distributions



Gamma Distribution

Motivation Ex:

Suppose at time 0 we install a light bulb in a lamp, which burns X1

amount of time. We immediately install a new bulb, which burns

for time X2, and so on. The Xi are independent random variables

having an exponential distribution with parameter λ.

� Tr =
∑r

i=1 Xi = X1 + ...+ Xr , r = 1, 2, 3, ...

� Tr is the time of the r th light bulb replacement.

� Its density is:

fTr (t) =
1

(r − 1)!
λr tr−1e−λt , t > 0 (22)

Note: This is Gamma distribution with parameters r and λ. If r is

an integer (as it is the case here), it is also called Erlang

Distribution.
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Gamma Distribution

Generalization: The function defined as

Γ(r) =

∫ ∞

0
x r−1e−x dx (23)

is called the gamma function. The gamma function leads to the

Gamma family of distributions with pdf:

fW (t) =
1

Γ(r)
λr tr−1e−λt , t > 0 (24)

Properties of the Gamma Distribution

� Mean: r/λ

� Variance: r/λ2

� MGF: MX (t) =

(
1

1− t/λ

)α

for t < λ.

� Reduces to exponential distribution when r = 1.
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Gamma Densities
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Figure 5: Various Gamma Densities
The figures are generated by running:

> cu r ve ( dbeta ( x , 0 . 2 , 0 . 2 ) )

> cu r ve ( dbeta ( x , 2 , 3 )
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Example: Network Buffer

Suppose in a network context (not the ALOHA example), a node

does not transmit until it has accumulated five messages in its

buffer. Suppose the times between message arrivals are

independent and exponentially distributed with mean 100

milliseconds. Let’s find the probability that more than 552 ms will

pass before a transmission is made, starting with an empty buffer.

Solution:

Let X1 be the time until the first message arrives, X2 the time

from then to the arrival of the second message, and so on. Then

the time until we accumulate five messages is Y = X1 + ...+ X5.

45



Example: Network Buffer (continued)

Then from the definition of the gamma family, we see that Y has a

gamma distribution with r = 5 and λ = 0.01. Then

P(Y > 552) =

∫ ∞

552

1

4!
0.015t4e−0.01t dt ≈ 0.3544101375 (25)

This integral could be evaluated via repeated integration by parts,

but let’s use R instead:

> 1 - pgamma(552,5,0.01)

[1] 0.3544101

Note that the parameter r is called shape in R, and λ is rate.
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R Functions for Gamma Distribution

Usage:

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)

pgamma(q, shape, rate = 1, scale = 1/rate,

lower.tail = TRUE, log.p = FALSE)

qgamma(p, shape, rate = 1, scale = 1/rate,

lower.tail = TRUE, log.p = FALSE)

rgamma(n, shape, rate = 1, scale = 1/rate)

47



Importance in Modeling

� Has applications associated with intervals between events:

Sums of exponentially distributed random variables often arise

in applications and such sums have gamma distributions.

� Gamma distributions useful for approximating certain data

sets.

� Specific applications include queuing models, the flow of items

through manufacturing and distribution processes, and the

load on web servers and the many and varied forms of

telephone exchanges.

� Also, owing to its moderately skewed pdf, it can be used as a

probability model in a range of disciplines, including

climatology, where it is a workable model for rainfall, and

financial services, where it has been used for modeling

insurance claims and the size of loan defaults.
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Beta Distribution

As seen in Figure 5, the gamma family is a good choice to consider

if our data are nonnegative, with the density having a peak near 0

and then gradually tapering off to the right. What about data in

the range (0,1)?

For instance, say a trucking company transports many things,

including furniture. Let X be the proportion of a truckload that

consists of furniture. For instance, if 15% of a given truckload is

furniture, then X = 0.15. So here we have a distribution with

support in (0,1). The beta family provides a very flexible model for

this kind of setting, allowing us to model many different concave

up or concave down curves.
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Density Etc.

The densities of the family have the following form:

Γ(α+ β)

Γ(α)Γ(β)
tα−1(1− t)β−1 for 0 < t < 1 (26)

There are two parameters, α and β.

For X ∼ Beta(α, β),

Descriptive Measures:

Mean: E [X ] =
α

α+ β
,

Variance: Var(X ) =
αβ

(α+ β)2 (α+ β + 1)
,

MGF: MX (t) is not in a nice closed form.
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Beta Densities - I
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Figure 6: Beta Density, α = 0.2, β = 0.2
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Beta Densities - II
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Figure 7: Beta Density, α = 2.0, β = 3.0
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Functions in R

Again, there are also dbeta(), qbeta() and rbeta(). From the R

man page:

Usage :

dbeta ( x , shape1 , shape2 , ncp = 0 , l o g = FALSE)

pbeta (q , shape1 , shape2 , ncp = 0 ,

l owe r . t a i l = TRUE, l o g . p = FALSE)

qbeta (p , shape1 , shape2 , ncp = 0 ,

l owe r . t a i l = TRUE, l o g . p = FALSE)

r b e t a (n , shape1 , shape2 , ncp = 0)
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Importance in Modeling

As mentioned, the beta family is a natural candidate for modeling

a variable having range the interval (0,1). This family is also

popular among Bayesian statisticians.

Applications:

1. It has been used as a statistical description of allele

frequencies in population genetics;

2. Time allocation in project management/control systems;

3. Variability of soil properties;

4. Proportions of the minerals in rocks in stratigraphy.
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