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Statistics: Prologue

Consider the following problems:

� Suppose you buy a ticket for a raffle, and get ticket number 68.

Two of your friends bought tickets too, getting numbers 46 and 79.

Let c be the total number of tickets sold. You don’t know the value

of c , but hope it’s small, so you have a better chance of winning.

How can you estimate the value of c , from the data, 68, 46, and 79?

� It’s presidential election time. A poll says that 56% of the voters

polled support candidate X, with a margin of error of 2%. The poll

was based on a sample of 1200 people. How can a sample of 1200

people out of more than 100 million voters have a margin of error

that small? And what does the term ”margin of error” really mean,

anyway?

� A satellite detects a bright spot in a forest. Is it a fire? How can we

design the software on the satellite to estimate the probability that

this is a fire?
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The Essence of Statistics: Statistical Inference and Prediction

Statistics extends beyond numerical calculations to include the

application of probability theory for data analysis, known as

statistical inference. This approach allows us to make educated

guesses about the population based on sample data.

The crux of modern statistics, particularly in the context of

machine learning, is prediction—using statistical models to forecast

future data trends.

Parametric Inference: In parametric inference, we assume a

population fits a parametric family with an unknown true

parameter θ. Analyzing different values of θ lets us predict

behaviors for diverse populations, based on a random sample’s

joint pdf or pmf.

2



Random Samples



Sampling Distributions

We first will set up some infrastructure, which will be used heavily

throughout the next few chapters.

Definition
(i.i.d.) Random variables X1,X2,X3, . . . are said to be i.i.d. if they

are independent and identically distributed. The latter term means

that pXi
or fXi

is the same for all i .

For i.i.d. X1,X2,X3, . . ., we often use X to represent a generic

random variable having the common distribution of the Xi .

Definition
(Random Sample) We say that X1,X2,X3, . . . ,Xn is a random

sample of size n from a population if the Xi are i.i.d. and their

common distribution is that of the population.

Please note: Those numbers X1,X2,X3, . . . ,Xn collectively form

one sample; you should not say anything like “we have n samples.” 3



Sampling Methods

If the sampled population is finite, a random sample must be

drawn as follows:

(a) The sampling is done with replacement.

(b) Each Xi is drawn from v1, . . . , vk , with each vj having

probability 1
k of being drawn.

This leads to Xi being independent and identically distributed.

If sampling is without replacement, it’s called a simple random

sample, which does not imply independence.

Important: We usually assume true random sampling (with

replacement) unless stated otherwise.
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Key Points on Random Sampling

Keep in mind:
Each Xi has the same distribution as the population. For

example, if a third of the population is less than 28, then

P(Xi < 28) will be 1
3 .

If the population mean is 51.4, then E [X ] will be 51.4, etc.

These points are fundamental and will recur frequently.
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Basic Concepts of Random Samples

� Experiment collects observations of a variable of interest.

� Model: random sampling describes data collection.

� Random variables X1, . . . ,Xn form a random sample from the

population if they are independent and identically distributed

(i.i.d) with common cumulative distribution function (cdf)

F (x).

Joint pdf of Random Sample

� Joint pdf of sample: f (x1, . . . , xn) =
∏n

i=1 f (xi ).

� If pdf is a member of a parametric family (f (x |θ)), joint pdf is

f (x1, . . . , xn|θ) =
n∏

i=1

f (xi |θ).

� This allows studying sample behavior for different population

parameters.
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Ex: Joint pdf of a Sample from Exponential Distribution

Let X1, . . . ,Xn be iid random variables from Exponential(λ)

population (or distribution). Specifically, X1, . . . ,Xn might

correspond to the lifetimes (i.e., times until failure) in years of n

identical circuit boards.

(a) The joint pdf of the sample is

f (x1, . . . , xn|λ) =
n∏

i=1

f (xi |λ) =
∏n

i=1
λe(−λ xi )

= λne(−λ
∑n

i=1 xi), for xi > 0, i = 1, . . . , n.

(b) The probability that all the boards last more than 2 years is

P(X1 > 2, . . . ,Xn > 2)

=
∏n

i=1 P(Xi > 2) =
∏n

i=1 e
−2λ = e−2λn.

One could also find this by successively integrating the joint pdf of the sample,

(but the above approach is much more convenient for random samples). 7



Some Commonly-Used Statistics

and Important Results about Them



Definition of a Statistic

Definition
A statistic is a function T (X1, . . . ,Xn) of a random sample that

does not depend on any unknown parameters. The distribution of

this function is called the sampling distribution.

Remarks:

1. A statistic cannot be a function of an unknown parameter.

2. It is computed from the sample data.

3. It is itself a random variable.

4. Typically denoted by capital Latin letters, in contrast to Greek

letters for parameters.
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Commonly-Used Statistics

Definition
The sample mean X̄ and sample variance S2 are defined as:

X̄ =
1

n

n∑
i=1

Xi ,

S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2.

The sample standard deviation S is the square root of the sample

variance.

The sample mean and variance are measures of central tendency

and variability, respectively, related to their population

counterparts.
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Sample Mean: A Random Variable



The Sample Mean as a Random Variable

A large part of this chapter will concern the sample mean,

X =
X1 + X2 + X3 + . . .+ Xn

n
(1)

It is crucial to understand that X is a random variable, just as

X1,X2,X3, . . . ,Xn are random variables.

Make sure to distinguish between the sample mean X and the

population mean.

10



Toy Population Example

Consider a population of three people, with heights 69, 72, and 70

inches. We draw a random sample of size 2, making X a discrete

random variable with the following support:

69 + 69

2
= 69, . . . ,

72 + 72

2
= 72 (2)

The probability mass function (pmf) of X is:

pX (69) =
1

9
, . . . , pX (72) =

1

9
(3)

This illustrates that X , like any random variable, has a cumulative

distribution function (cdf) as well.
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Example Notebook

In notebook terms, the first three lines might be:

notebook line X1 X2 X

1 70 70 70

2 69 70 69.5

3 72 70 71

Note that X1, X2, and X are all random variables.
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Expected Value and Variance of X



Expected Value and Variance of X

Consider a general sample X1, . . . ,Xn from a population with mean

µ and variance σ2:

Expected Value of X : The expected value of X is:

E (X ) = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

EXi = µ

Each Xi has an expected value EXi = µ, the population mean.

Variance of X : The variance of X relates to the population

variance σ2 by:

Var(X ) = Var

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

Var(Xi ) =
1

n
σ2

The derivation highlights the importance of the independence of

the Xi ’s, hence the usual assumption of sampling with replacement.
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Verifying the Sample Mean and Variance

Let’s verify the sample mean and variance for the toy population

discussed earlier. The population mean µ is calculated as:

µ = (69 + 70 + 72)/3 = 211/3 (4)

For the expected value of X , using the pmf of X , we get:

EX = 69 · 1
9
+ 69.5 · 2

9
+ . . .+ 72 · 1

9
= 211/3 (5)

Thus, confirming the equation for the expected value of the sample

mean X .
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Population Variance and Variance of X

The population variance σ2 is:

σ2 =
1

3
· (692 + 702 + 722)−

(
211

3

)2

=
14

9
(6)

For the variance of X , we calculate:

Var(X ) = E (X
2
)−

(
EX

)2
(7)

With the given pmf, one can confirm that this variance computes

to 7
9 , as expected (left as exercise).
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Interpretation of Findings

The significance of our findings is twofold:

(a) The equation for X implies that, although individual samples

may over- or underestimate µ, the average X is correct.

(b) The variance equation indicates that larger samples lead to

less variation in X from sample to sample.

Together, these points suggest that for large samples, X is likely to

be a good approximation of the population mean µ. This brings us

to a core question in statistics: ”Is the variance of our estimator

sufficiently small?”
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Simple Random Sample Case

What if we sample without replacement? The expectation of the

sample mean X remains unchanged, as additivity of expectation

E () holds regardless of independence. The distribution of the Xi

still represents the population distribution.

However, since the Xi are no longer independent in this case, the

derivation of the variance of X changes, requiring the inclusion of

covariance terms. Despite the more complex derivation, simple

random sampling usually results in a smaller variance for X .
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Distribution of the Sample Mean — Normal Case

Example
For a random sample from a N(µ, σ2) population, the sample

mean X̄n is normally distributed as N(µ, σ2/n).

Note: The moment-generating function (MGF) technique

simplifies the derivation of the sampling distribution for

independent and identically distributed samples.
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Sample Means Are Approximately

Normal — No Matter What the

Population Distribution Is



Central Limit Theorem (CLT)

The Central Limit Theorem (CLT) assures us that the distribution

of the sample mean X will be approximately normal, regardless of

the population distribution. The theorem states that the

standardized quantity Z :

Z =
X − µ

σ/
√
n

(8)

has an approximately N(0, 1) distribution, where σ2 is the

population variance.

Remember, while we do not know µ or σ, their values do exist,

making Z a meaningful quantity. This result is central to many

statistical procedures.
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Significance of the CLT

Understand that the ”N” in the normal distribution is what is

approximate. Regardless of whether the population distribution is

skewed or multimodal, X will have an approximate normal

distribution. This is why the theorem is pivotal in statistics,

earning its title as the ”Central” Limit Theorem.
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The Sample Variance—Another

Random Variable



The Sample Variance

Just as we use the sample mean X to estimate the population

mean µ, we need a function of the Xi to estimate the population

variance σ2. We denote X as a generic random variable with the

population distribution, leading to:

Var(X ) = σ2 (9)

By definition:

Var(X ) = E [(X − EX )2] (10)
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Estimating Population Variance

To estimate Var(X ) = σ2, we consider the sample analogs:

Population Entity Sample Entity

EX X

X Xi

E[] 1
n

∑n
i=1

Table 1: Population and Sample Analogs

Thus, the sample analog of the variance is given by:

s2 =
1

n − 1

n∑
i=1

(Xi − X )2 (11)

We estimate Var(X ) by the average squared distance of X from its

sample mean among our sample values Xi . 22



Computing Sample Variance

The formula for s2 can be simplified for computational purposes to:

s2 =
1

n − 1

n∑
i=1

X 2
i − X

2
(12)

Though this form is prone to more rounding errors, it is an efficient

way to calculate the sample variance, being the sample analog of

another variance formula.
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Important Results

Theorem
For any numbers x1, . . . , xn and their mean x̄, the following hold:

a. mina
∑

(xi − a)2 =
∑

(xi − x̄)2,

b. (n − 1)s2n =
∑

(xi − x̄)2 =
∑

x2i − nx̄2.

Theorem
For a random sample from a population with mean µ and finite

variance σ2, the sample mean X̄n has:

a. E [X̄n] = µ,

b. Var(X̄n) = σ2/n,

c. E [S2
n ] = σ2.

(a) holds even if the sample is not independent.
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To Divide by n or n-1?

Matloff defines the variance with n in the denominator as

s2m =
1

n

n∑
i=1

(Xi − X )2

When calculating the sample variance, there’s a choice between

dividing by n or n − 1. Although the difference is negligible for

large n, this decision carries conceptual significance:

� Dividing by n − 1 makes the estimator unbiased, as the

expected value of s2 would be σ2.

� Dividing by n is consistent with the concept of sample analogs

and is more straightforward for students to understand.
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Unbiased Estimator and Bias

Definition (Unbiased Estimator)
An estimator θ̂ is said to be an unbiased estimator of a parameter

θ if the expected value of θ̂ is equal to θ for all values of θ in the

parameter space, that is:

E (θ̂) = θ.

Definition (Bias)
The bias of an estimator θ̂ is the difference between the expected

value of θ̂ and the true value of θ, given by:

Bias(θ̂) = E (θ̂)− θ.

Remark: An estimator is unbiased if and only if its bias is zero for

all θ in the parameter space.
26



Bias in Sample Variance

The sample variance defined by:

s2m =
1

n

n∑
i=1

(Xi − X )2 (13)

is biased downwards, meaning its expected value is n−1
n σ2, not σ2.

To correct this, statisticians historically have used:

s2 =
1

n − 1

n∑
i=1

(Xi − X )2 (14)

which makes s2 an unbiased estimator of σ2.
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Matloff’s Reasoning for Dividing by n

The reasoning for dividing by n instead of n − 1 includes:

� Emphasizing the understanding of sample analogs.

� Maintaining consistency with the concept of unbiased

estimators, as the estimator s for standard deviation would

still be biased.

It’s a methodological choice that aligns with the pedagogical goals

of teaching statistics and maintaining conceptual clarity.
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Observational Studies

Observational studies are scenarios where data is passively

observed rather than being obtained by active sampling. This is

common in real-life situations where a well-defined population and

equal likelihood of sampling each unit may not exist.

� The data is treated as though it is a random sample from a

population.

� It assumes nothing special about the data’s time period.

� Analysts must ensure data is representative and not biased.
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Example: Major League Baseball Players

� Data from a specific year is analyzed as if it were a random

sample from all major league players, past, present, and future.

� Implicit assumption: A player in the data year represents all

players over the years, e.g., a player in the data year is as likely

to weigh more than 220 pounds as players in other years.

� Caution: Population should perhaps be limited to recent years

due to changes over time, such as player size.
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Challenges in Observational Studies

� Defining the population clearly can be challenging.

� There may be biases if the data does not adequately represent

the population.

� The assumption that the data set acts like a random sample

may not hold, necessitating careful analysis.
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