
Introduction to Model Building -

Fitting Continuous Models



All Models are Wrong, But Some are Useful

All models are wrong, but some are useful.—George Box1

[Mathematical models] should be made as simple as pos-

sible, but not simpler.—Albert Einstein2

Beware of geeks bearing formulas.—Warren Buffett, 2009,

on the role of “quants” in the 2008 financial collapse.

1George Box (1919-2013) is a famous statistician, with several statistical

procedures named after him.
2The reader is undoubtedly aware of Einstein’s (1879-1955) famous theories of

relativity, but may not know his connections to probability theory. His work on

Brownian motion, which describes the path of a molecule as it is bombarded

by others, is probabilistic in nature, and later developed into a major branch of

probability theory. Einstein was also a pioneer in quantum mechanics, which is

probabilistic as well. At one point, he doubted the validity of quantum theory,

and made his famous remark, “God does not play dice with the universe.”
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Modeling in Probability and Statistics

The above quote by Box says it all. Consider for example the

family of normal distributions. In real life, random variables are

bounded—no person’s height is negative or greater than 500

inches—and are inherently discrete, due to the finite precision of

our measuring instruments. Thus, technically, no random variable

in practice can have an exact normal distribution. Yet the

assumption of normality pervades statistics and has been

enormously successful, provided one understands its approximate

nature.

The Essence of Modeling: So, the field of probability and

statistics is fundamentally about modeling. The field is extremely

useful, provided the user understands the modeling issues well. For

this reason, the book contains this separate chapter on modeling

issues. 2



Introduction

One often models one’s data using a parametric family, as in

Chapters 5 and 6. This chapter introduces this approach, involving

core ideas of statistics, closely related to each other:

� Why might we want to fit a parametric model to our sample

data?

� How do we fit such a model, i.e., how do we estimate the

population parameters from our sample data?

� What constitutes a good fit?
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Focus on Parametric Density Models

Our focus here will be on fitting parametric density models, thus

on continuous random variables. However, the main methods

introduced, the Method of Moments and Maximum Likelihood

Estimation, do apply to discrete random variables as well.

Why Fit a Parametric Model?

Denote our data by X1, . . . ,Xn. It is often useful to fit a

parametric density model to the data. One might ask, though, why

bother with a model?

� Isn’t, say a histogram (see below) enough to describe the

data?

� There are a couple of answers to this:
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Reasons for Why Histogram are not Enough

� In our first example below, we will fit the gamma distribution.

The gamma is a two-parameter family, and it’s a lot easier to

summarize the data with just two numbers, rather than the 20

bin heights in the histogram.

� In many applications, we are working with large systems

consisting of dozens of variables. In order to limit the

complexity of our model, it is desirable to have simple models

of each component. For example, in models of queuing

systems, if things like service times and job interarrival times

can be well modeled by an exponential distribution, the

analysis may simplify tremendously, and quantities such as

mean job waiting times can be easily derived.
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Model-Free Estimation of a Density



Model-Free Estimation of a Density

Before we start with parametric models, let’s see how we can

estimate a density function without them. This will introduce

central issues that will arise again in regression models and

machine learning, Chapter 15.

How can we estimate a population density from our sample

data?

It turns out that the common histogram, so familiar from your

instructors’ summaries of the ”distribution” of exam scores, is

actually a density estimator!

Although densities themselves are not probabilities, they do tell us

which regions will occur often or rarely. That is exactly what a

histogram tells us. 6



A Closer Look

Let X1,X2, . . . ,Xn denote our data, a random sample from a

population with density fX . Say bin i in a histogram covers the

interval (c, c + w). Let Ni denote the number of data points

falling into the bin. This quantity has a binomial distribution with

n trials and success probability

p = P(c < X < c + w) = area under fX from c to c + w .

If w is small, then this implies p ≈ w · fX (c).

Let p̂ and f̂X (c) be estimators of p and fX (c), respectively. But

since p is the probability of an observation falling into this bin, we

can estimate it by p̂ = Ni
n and p̂ = w · f̂X (c).

So, we have an estimate of fX : f̂X (c) =
p̂
w = Ni

wn .

So, other than a constant factor 1
wn , our histogram, which plots

the Ni , is an estimate of the density fX .
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Example: BMI Data

Consider the Pima Indians diabetes study from Ch7 of the book.

One of the columns is Body Mass Index (BMI). Let’s plot a

histogram:

pima <- read.csv(’diabetes.csv’, header = FALSE )

bmi <- pima [,6]

bmi <- bmi[bmi > 0]

hist(bmi, breaks =19, freq = FALSE )

The plot is shown below:
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Figure 1: BMI, 20 bins

9



The Number of Bins

Why is there an issue with the number of bins?

� If we use too many bins, the graph will be quite choppy. Next

figure shows a histogram for the BMI data with 100 bins.

Presumably, the true population density is pretty smooth, so

the choppiness is a problem.

� On the other hand, if we use too few bins, each bin will be

very wide, so we won’t get a very detailed estimate of the

underlying density. In the extreme, with just one bin, the

graph becomes completely uninformative.

It’s instructive to think of the issue of choosing the number of bins

in terms of variance and bias, the famous bias-variance tradeoff.

This is a fundamental issue in statistics. We’ll discuss it here in the

context of density estimation (more on this in Chapter 15).
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Figure 2: BMI, 100 bins
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Figure 3: BMI, 3 bins
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The Mean Squared Error (MSE)

Suppose we wish to estimate some population quantity θ, using an

estimator θ̂ computed from our sample data. Then we hope to

keep the mean squared error,

MSE = E [(θ̂ − θ)2],

as small as possible. Let’s expand that quantity. Write

θ̂ − θ = (θ̂ − E [θ̂]) + (E [θ̂]− θ) = deviation + bias.

So, we need to find

E [(deviation+bias)2] = E (deviation2)+E (bias2)+2E (deviation×bias).

But bias and hence bias2 are both constant; since bias = E [θ̂]− θ

and E [θ̂] and θ are both constants. So, E (bias2) = bias2 and

2E (deviation× bias) = 2× bias× E (deviation)
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The Mean Squared Error (MSE) - cont’d

Also, E (deviation = E [θ̂ − E [θ̂]] = 0 since E [θ̂] is constant and

E [θ̂ − E [θ̂]] = E [θ̂]− E [E [θ̂]] = E [θ̂]− E [θ̂] = 0 So,

2E (deviation× bias) = 2× bias× E (deviation) = 0.

Finally, E (deviation2) = E [(θ̂ − E [θ̂])2] = Var(θ̂) by definition of

variance.

Thus, we get the famous formula:

MSE = Variance + Bias2.
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The Bias-Variance Tradeoff - e.g. for the Two Variance Esti-

mators

It is called a tradeoff because those two terms are often at odds

with each other. For instance, in estimating population variance

σ2:

� The classic estimator s2 has zero bias, whereas bias of s2m is

nonzero. So, the classic estimator is better in that its second

term in the MSE formula is smaller.

� On the other hand, since 1
(n−1) >

1
n , the classic estimator has

a larger variance, by a factor of (n/(n − 1)) larger. Thus, s2m
has a smaller first term in the MSE formula.

The overall “winner” will depend on n and the size of variances of

s2 and s2m. Calculating the latter would be too much of a

digression here, but the point is that there IS a tradeoff.
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The Bias-Variance Tradeoff in the Histogram Case

Let’s look at the bin width issue in the context of variance and

bias.

� If the bins are too narrow, then for a given bin size, there will

be a lot of variation in height of that bin from one sample to

another. In other words, the variance of the height will be

large.

� On the other hand, making the bins too wide produces a bias

problem. Suppose, for instance, the true density fX (t) is

increasing in t. Then within a bin, our estimate f̂X (t) will

tend to be too low near the left end of the bin and too high

on the right end. If the number of bins is small, then the bin

widths will be large, and bias may be a serious issue.

16



A General Issue: Choosing the Degree of Smoothing

Recall the quote in the Preface of this book, from the ancient

Chinese philosopher Confucius:

[In spite of ] innumerable twists and turns, the Yellow River

flows east.

Confucius’ point was basically that one should, as we might put it

today, “Look at the big picture,” focusing on the general eastward

trend of the river, rather than the local kinks. We should visually

“smooth” our image of the river.

In a histogram, the fewer the number of bins, the more smoothing

is done. So, choosing the number of bins can be described as

choosing the amount of smoothing. This is a central issue in

statistics and machine learning, and will play a big role in Chapter

15 as well as here.
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Automatic Selection of the Number of Bins

There are various methods for automatic selection of the number

of bins. They are too complex to discuss here, but the R package

histogram offers several such methods. Here is the package in

action on the BMI data:

hist(bmi, freq=FALSE)

The default in R is that all bin widths are equal. The ’freq’

argument set to ’FALSE’ indicates that the histogram will display

the density of the data rather than counts. This means each bar

height will represent the density of observations within each bin,

showing the distribution shape of the ‘bmi’ variable.

The plot is shown below.

Note that 11 bins were chosen. The graph looks reasonable here,

but the reader should generally be a bit wary of automatic

methods to select a degree of smoothing, both here and generally.

There is no perfect method, and different methods will give

somewhat different results.
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Figure 4: BMI, with R defaults
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Advanced Methods for Model-Free Density Estimation

Even with a good choice for the number of bins, histograms are still

rather choppy in appearance. Kernel methods aim to remedy this.

To see how they work, consider again a bin [c − δ, c + δ] in a

histogram. Say we are interested in the value of the density at a

particular point t0 in the interval. Since the histogram has constant

height within the interval, that means that all data points Xi in the

interval are treated as equally relevant to estimating fX (t0).

By contrast, kernel methods put more weight on points closer to

t0. Even points outside the interval may be given some weight.

The mathematics gets a bit complex (see the Mathematical

Complements section at the end of the Chapter 8) and we just

show how to use this method in base R, via the density()

function. 20



Using the density() Function in R

As with many R functions, density() has many optional

arguments. We’ll stick the defaults here, but the bandwidth, bw,

controls the degree of smoothing, as the bin width does for

histograms.

The call then is simply:

plot(density(bmi))

Note that the output of density() is just the estimated density

values, and must be run through plot() to be displayed. By doing

things this way, it is easy to plot more than one density estimate

on the same graph.

The graph is shown below.
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Figure 5: Kernel density estimate, BMI data
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Parameter Estimation - Parametric

Estimation of a Density



Parameter Estimation

To fit a parametric model such as the Gamma distribution to our

data, the question then arises as to how to estimate the

parameters.

Earlier, we often referred to certain estimators as being “natural”.

For instance, estimating a population mean with a sample mean is

intuitive. However, in many cases, it’s less clear what a “natural”

estimate might be. This section introduces general methods for

estimation.

Two common methods for estimating the parameters of a density

are the Method of Moments (MM) and Maximum Likelihood

Estimation (MLE) (two other methods are Bayesian Estimation,

and EM Algorithm, not covered).

We’ll introduce these two via examples.
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Method of Moments

Method of Moments (MM) gets its name from the fact that

quantities like mean and variance are called moments. E (X k) is

the kth moment of X , with E [(X − EX )k ] being termed the kth

central moment. If we have an m-parameter family, we “match” m

moments.

� Oldest method of point estimation dating back to Karl

Pearson in the late 1800’s.

� Idea is simple, and usually, the resulting estimators need to be

improved.
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Method of Moments

In general, let X1,X2, . . . ,Xn be iid from pmf or pdf

f (x |θ1, . . . , θk), we have

sample moments population moments

1st moment m1 =
1

n

n∑
i=1

Xi = X µ1 = µ1 (θ1, . . . , θk) = EX

2nd moment m2 =
1

n

n∑
i=1

X 2
i µ2 = µ2 (θ1, . . . , θk) = EX 2

...
...

...

kth moment mk =
1

n

n∑
i=1

X k
i µk = µk (θ1, . . . , θk) = EX k

To get the MoM estimators, “equate” the first k sample moments

to the corresponding k population moments and solve for

(θ1, . . . , θk) in terms of (m1, . . . ,mk). Usually, it may also help

using s2m = E [(X − EX )2] = Var(X ).
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Example: BMI Data

Let’s see how well the model fits, at least visually, with an

example. Recall that for a gamma-distributed X ∼ Gamma(α, β),

where α is the shape and β is the rate parameter,

E (X ) =
α

β
and Var(X ) =

α

β2

In MM, we simply replace population values by sample estimates

(i.e. moments) in the above equations,

X̄ =
α

β
and s2m =

α

β2

and solving for α and β, which yields:

β̂ =
X̄

s2m
and α̂ =

X̄ 2

s2m
Note that we put hats “ˆ” to indicate that these are estimators of

the corresponding unknown parameters.
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Visual Fit of the Model

Let’s see how well the model fits, at least visually:

� x̄ is the sample mean of BMI.

� s2m is the sample variance of BMI.

� α̂ is the estimate of the shape parameter.

� β̂ is the estimate of the rate parameter.

The plot is shown below.
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Figure 6: BMI, histogram and MoM Gamma fit

Visually, the fit looks fairly good, but keep in mind possible sources

of discrepancy between the fitted model and the histogram.
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Normal MoM Estimator

Suppose X1,X2, . . . ,Xn are iid from a N(µ, σ2) distribution. Find

the MM estimators of µ and σ2.

Solution:

µ = X̄ , σ2 = s2m

We can get:

µ̂ = X̄ , σ̂2 = s2m =
n − 1

n
s2
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Binomial MoM Estimator

Suppose X1,X2, . . . ,Xn are iid from a Bin(κ, p) distribution where

both κ and p are unknown. Find the MM estimators of κ and p.

Solution: Recall that for X ∼ Bin(κ, p),

EX = κ p and Var(X ) = κ p (1− p).

Then from X = κp and s2m = κ p (1− p), we have

κ̂ =
X

2

X − s2m
and p̂ =

X

κ̂
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Method of Maximum Likelihood

Preferred Method:

� The Maximum Likelihood Estimation (MLE) is widely used

due to its strong theoretical properties.

General Procedure for MLE

Maximizing Likelihood:

� Given a sample X1, . . . ,Xn and parameters θ1, . . . , θk , we find

the values that maximize the likelihood function.

� For differentiable problems, we maximize the log likelihood by

setting its derivatives with respect to θj to 0 and solving for

the estimators.
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MLE - More Formally

Let X1,X2, . . . ,Xn be iid from pdf or pmf f (x |θ1, . . . , θk). The
likelihood function is defined as

L(θ|x) = L(θ1, . . . , θk |x1, . . . , xn) =

f (x1, . . . , xn|θ1, . . . , θk) =
n∏

i=1

f (xi |θ1, . . . , θk) .

Definition: For each sample point x, let θ̂(x) be a parameter value

at which L(θ|x) attains its maximum as a function of θ, with x

held fixed. A maximum likelihood estimator (MLE) of the

parameter θ based on a sample X is θ̂(X).
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Log Likelihood Function

In most cases, especially when differentiation can be used, it is

easier to work with the (natural) logarithm of likelihood, log L(θ|x)
(also known as the log likelihood function).

Why is this okay?

� The logarithm is a strictly increasing function, so the log

likelihood attains its maximum at the same point as the

likelihood itself.

� Logarithms transform products into sums, which are easier to

differentiate.
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Example (Bernoulli MLE)

Let X1,X2, . . . ,Xn be iid Ber(p). Find the MLE of p for 0 ≤ p ≤ 1.

Solution:

Given that X1,X2, . . . ,Xn are iid Ber(p), the likelihood function for

p is given by

L(p) =
n∏

i=1

pxi (1− p)1−xi = p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi .

Taking the logarithm log L(p) = log
(
p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi
)
=

(
∑n

i=1 xi ) log(p) + (n −
∑n

i=1 xi ) log(1− p).

Taking the derivative of log L(p) with respect to p and setting it to

zero:

d

dp
log L(p) =

(
n∑

i=1

xi

)
1

p
−

(
n −

n∑
i=1

xi

)
1

1− p
= 0.

34



Example (Bernoulli MLE) cont’d

Solving for p, we get

p̂ =

∑n
i=1 xi
n

= x ,

which is the sample mean.

Therefore, the MLE of p is p̂ = X . □

In finding MLEs, maximization takes place only over the range of

the parameter space. If L(θ|x) cannot be maximized analytically, it

may be possible to maximize it numerically.
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Example (Normal(θ, 1))

Let X1,X2, . . . ,Xn be iid N(θ, 1), find the MLE of θ.

Solution:

Given that X1,X2, . . . ,Xn are iid N(θ, 1), the likelihood function

for θ is given by

L(θ) =
n∏

i=1

1√
2π

exp

(
−1

2
(xi − θ)2

)
=

(2π)−n/2 exp

(
−

n∑
i=1

1

2
(xi − θ)2

)
.

Taking the logarithm of the likelihood function yields

log L(θ) = −
n∑

i=1

(
1

2
(xi − θ)2

)
− n

2
log(2π).
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Example (Normal(θ, 1)) - cont’d

To find the MLE of θ, we need to maximize the log-likelihood

function with respect to θ. We do this by taking the derivative of

log L(θ) with respect to θ and setting it to zero:

d

dθ
log L(θ) =

n∑
i=1

(xi − θ) = 0.

Solving for θ, we get the MLE as θ̂ =
∑n

i=1 xi
n = X .
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Maximization Over Parameter Space

Example (Binomial MLE, Number of Trials Unknown) Let

X1,X2, . . . ,Xn be iid Bin(k, p). Find the MLE of k where p is

known and k is unknown.

Solution: The likelihood function is:

L(k |p, x) =
∏n

i=1

(
k

xi

)
pxi (1− p)n−xi .

Then consider the ratio: L(k|p, x)/L(k − 1|p, x).
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Invariance Property of MLEs

Theorem (Invariance Property of MLEs) If θ̂ is the MLE of θ,

then g(θ̂) is the MLE of g (θ) for any function g (θ).

Example:

� Let X1,X2, . . . ,Xn be iid N(θ, 1), what is the MLE of θ2?

� Let X1,X2, . . . ,Xn be iid Ber(p), find the MLE of the variance

and standard deviation of Xi .

Solution:
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(Normal MLEs - µ and σ2 Unknown)

Let X1,X2, . . . ,Xn be iid from a N(µ, σ2) where both µ and σ2 are

unknown. Then show that the MLE of µ is µ̂ = X and the MLE of

σ2 is σ̂2 =
1

n

n∑
i=1

(
Xi − X

)2
= s2m.

Solution:

Given X1,X2, . . . ,Xn iid from a N(µ, σ2), the likelihood function is

L(µ, σ) =
n∏

i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)

= (2π)−n/2σ−n exp

(
−

n∑
i=1

(xi − µ)2

2σ2

)
.

Taking the natural logarithm of the likelihood function,

log L(µ, σ) = −n

2
log(2π)− n log(σ)−

n∑
i=1

(xi − µ)2

2σ2
.
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(Normal MLEs - µ and σ2 Unknown) - cont’d

To maximize the log-likelihood, we take partial derivatives with

respect to µ and σ and set them to zero:

For µ:

∂

∂µ
log L(µ, σ) =

n∑
i=1

xi − µ

σ2
= 0,

which yields the MLE µ̂ = X .

For σ:
∂

∂σ
log L(µ, σ) = −n

σ
+

∑n
i=1(xi − µ)2

σ3
= 0,

which yields the MLE σ̂2 = 1
n

∑n
i=1

(
Xi − X

)2
= s2m.
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Estimation of Parameters of a Gamma Distribution

Problem Statement:

� Given a random sample X1,X2, . . . ,Xn from a Gamma(c , λ)

distribution with parameters c (shape) and λ (rate). Estimate

the parameters.

Method of Moments

Two Parameters:

� We have two parameters to estimate: c (shape) and λ (rate).

� Use the first two moments of X , which can conveniently be

the expected value EX and variance Var(X ).

Moment Equations:

� EX = c
λ and Var(X ) = c

λ2 .

� From the sample, we estimate λ̂ = X
s2m

and ĉ = X
2

s2m
.
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MLEs for Gamma Distribution Parameters

Given a random sample X1,X2, . . . ,Xn from a Gamma distribution

with shape parameter c and rate parameter λ, the likelihood

function is:

L(c , λ) =
n∏

i=1

λcX c−1
i e−λXi

Γ(c)
=

λnc(
∏n

i=1 X
c−1
i )e−λ

∑n
i=1 Xi

(Γ(c))n
,

where Γ(c) is the gamma function.

The log-likelihood function is given by:

log L(c, λ) = nc log λ+ (c − 1)
n∑

i=1

logXi − λ

n∑
i=1

Xi − n(log Γ(c))
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MLEs for Gamma Distribution Parameters

To find the MLE of c and λ, we need to maximize the

log-likelihood function with respect to both c and λ. This is done

by solving the following system of equations obtained by setting

the partial derivatives of log L with respect to c and λ to zero:

∂

∂c
log L(c , λ) = 0,

∂

∂λ
log L(c , λ) = 0.

The solutions to these equations give the MLEs for c and λ.

However, these equations do not generally have closed-form

solutions (why?) and numerical methods are usually required to

find the MLEs.
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MLEs for Gamma Distribution Parameters

� The likelihood is the product of the densities for the Xi .

� We generally maximize the log likelihood for convenience.

Maximizing the Log Likelihood:

� The log likelihood for the gamma distribution involves the

gamma function and its derivatives, which complicates the

solution.

� Numerical methods are required to find the MLEs of c and λ.
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R’s mle() Function

Finding MLEs Numerically:

� R provides the mle() function (in stats4 package) for

finding MLEs numerically.

� The user defines a function for the negative log likelihood,

and mle() handles the rest.

� Initial parameter guesses are required, and standard errors of

estimates can be obtained.
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MLE Example in R

Using mle() to Estimate Parameters:

ll <- function(c, lambda) {

-sum(dgamma(x, shape=c, rate=lambda, log=TRUE))

}

summary(mle(minuslogl=ll, start=list(c=1.5, lambda=2)))

Output:

Coefficients:

Estimate Std. Error

c 2.147605 0.08958823

lambda 1.095344 0.05144393

-2 log L: 3072.181
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Assessing “Goodness of Fit” of a

Model



Introduction to Goodness of Fit

Our example above concerned how to estimate the parameters of a

gamma distribution, given a sample from the distribution. But

before estimating parameters, we need to decide if the gamma

model, or any model, is appropriate. How do we assess the

“Goodness of Fit” of a model?
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Less Formal Methods of Model Assessment

Less formal methods of assessing the fit of a model include

visualizing the data through histograms or empirical cumulative

distribution functions (ecdfs). These can be plotted against a

fitted model to assess suitability.

Plotting ecdfs:

To visualize the fit of a model, one can plot the ecdf against a

fitted model. Here’s an example using R code for BMI values:

#p l o t t i n g ecdf ’ s f o r bmi

ebmi <= e cd f ( bmi )

p lot ( ebmi , cex =.1 , x l im=c ( 15 , 60 ) )

curve (pgamma( x , ch , l h ) , 15 , 60 , co l=2,add = TRUE)
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Sample ecdfs

Figure 7: Ecdf and fitted cdf
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Interpretation of the Plot

The plot compares the ecdf of the data (in black) to the cdf of a

fitted Gamma distribution (in red). Deviations between the curves

indicate areas where the Gamma model does not perfectly

represent the data distribution.

Limitations of Density Estimation

While we can also compare data to models using density

estimation, choosing parameters such as bin width or bandwidth is

problematic. There is no foolproof method for selecting these

parameters, despite the existence of theoretical guidelines aimed at

minimizing integrated mean squared error.
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More Formal Assessment of Goodness of Fit

In our examples above, we can do a visual assessment of how well

our model fits the data, but it would be nice to have a quantitative

measure of goodness of fit.

The classic assessment tool is the Chi-Squared Goodness of Fit

Test, which is one of the oldest statistical methods (1900!) and

still in wide use. However, a more useful measure is the

Kolmogorov-Smirnov (KS) statistic.

Kolmogorov-Smirnov Statistic:

� The Kolmogorov-Smirnov (KS) statistic is a useful measure

for the discrepancy between a fitted model and the true

population distribution.

� It quantifies the maximum difference between the empirical

cumulative distribution function (CDF) of the sample data

and the CDF of the theoretical model.
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Application: Fitting a Gamma Model

� Example: Fitting a Gamma distribution to BMI data.

� The KS statistic can help assess how well the beta model

represents the actual data.

CDFs and the Gamma Model

� Cumulative Distribution Functions (CDFs) play a key role in

KS statistic calculation.

� The pgamma() function in R provides the CDF for the

Gamma distribution.

Empirical CDF of the Data

� The empirical CDF, F̂X (t) =
M(t)
n , where M(t) is the count of

observations less than or equal to t.

� In R, the ecdf() function calculates the empirical CDF.
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Kolmogorov-Smirnov (KS) Statistic

To make matters concrete, say we are fitting a Gamma model, with the

BMI data. The KS statistic is based on cumulative distribution functions

(cdfs) and measures the maximum discrepancy between the empirical cdf

and the fitted cdf.

(The values of ch and lh had been previously computed.)

Now, to quantify the fit, we can calculate the K-S statistic, which

measures the maximum discrepancy:

> ks_result <- ks.test(bmi, "pgamma", ch, lh)

> ks_result$statistic

D

0.02375358

Since cdf values range in [0, 1], a maximum discrepancy of 0.024 is

considered pretty good.
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Accounting for Sampling Variation

To account for sampling variation, we can use a K-S confidence

band.

The K-S statistic measures the fit in terms of the maximum

discrepancy, which is subject to sampling variation. A K-S

confidence band provides a way to quantify the confidence in the

goodness of fit assessment.

(The details of constructing a K-S confidence band can be found

in reference [20].)

In summary, the Kolmogorov-Smirnov (KS) statistic is a valuable

tool for quantitatively assessing the goodness of fit between a

fitted model and the true population distribution.
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