Introduction to Model Building -
Fitting Continuous Models



All Models are Wrong, But Some are Useful

All models are wrong, but some are useful.—George Box*
[Mathematical models| should be made as simple as pos-
sible, but not simpler.—Albert Einstein?®

Beware of geeks bearing formulas.—Warren Buffett, 2009,
on the role of “quants” in the 2008 financial collapse.

!George Box (1919-2013) is a famous statistician, with several statistical
procedures named after him.

*The reader is undoubtedly aware of Einstein’s (1879-1955) famous theories of
relativity, but may not know his connections to probability theory. His work on
Brownian motion, which describes the path of a molecule as it is bombarded
by others, is probabilistic in nature, and later developed into a major branch of
probability theory. Einstein was also a pioneer in quantum mechanics, which is
probabilistic as well. At one point, he doubted the validity of quantum theory,
and made his famous remark, “God does not play dice with the universe.”



Modeling in Probability and Statistics

The above quote by Box says it all. Consider for example the
family of normal distributions. In real life, random variables are
bounded—no person’s height is negative or greater than 500
inches—and are inherently discrete, due to the finite precision of
our measuring instruments. Thus, technically, no random variable
in practice can have an exact normal distribution. Yet the
assumption of normality pervades statistics and has been
enormously successful, provided one understands its approximate
nature.

The Essence of Modeling: So, the field of probability and
statistics is fundamentally about modeling. The field is extremely
useful, provided the user understands the modeling issues well. For
this reason, the book contains this separate chapter on modeling

issues. 2



Introduction

One often models one's data using a parametric family, as in
Chapters 5 and 6. This chapter introduces this approach, involving
core ideas of statistics, closely related to each other:

e Why might we want to fit a parametric model to our sample
data?

e How do we fit such a model, i.e., how do we estimate the
population parameters from our sample data?

e What constitutes a good fit?



Focus on Parametric Density Models

Our focus here will be on fitting parametric density models, thus
on continuous random variables. However, the main methods
introduced, the Method of Moments and Maximum Likelihood
Estimation, do apply to discrete random variables as well.

Why Fit a Parametric Model?

Denote our data by Xi,..., X,. It is often useful to fit a
parametric density model to the data. One might ask, though, why
bother with a model?

e Isn't, say a histogram (see below) enough to describe the
data?

e There are a couple of answers to this:



Reasons for Why Histogram are not Enough

e In our first example below, we will fit the gamma distribution.
The gamma is a two-parameter family, and it's a lot easier to
summarize the data with just two numbers, rather than the 20
bin heights in the histogram.

¢ In many applications, we are working with large systems
consisting of dozens of variables. In order to limit the
complexity of our model, it is desirable to have simple models
of each component. For example, in models of queuing
systems, if things like service times and job interarrival times
can be well modeled by an exponential distribution, the
analysis may simplify tremendously, and quantities such as

mean job waiting times can be easily derived.



Model-Free Estimation of a Density



Model-Free Estimation of a Density

Before we start with parametric models, let's see how we can
estimate a density function without them. This will introduce
central issues that will arise again in regression models and

machine learning, Chapter 15.

How can we estimate a population density from our sample
data?

It turns out that the common histogram, so familiar from your
instructors’ summaries of the "distribution” of exam scores, is

actually a density estimator!

Although densities themselves are not probabilities, they do tell us
which regions will occur often or rarely. That is exactly what a

histogram tells us. 6



A Closer Look

Let X1, X5, ..., X, denote our data, a random sample from a
population with density fx. Say bin i in a histogram covers the
interval (¢, c + w). Let N; denote the number of data points
falling into the bin. This quantity has a binomial distribution with
n trials and success probability

p = P(c < X < c+ w) = area under fx from c to ¢ + w.

If w is small, then this implies p ~ w - fx(c).

Let p and fx(c) be estimators of p and fx(c), respectively. But
since p is the probability of an observation falling into this bin, we
can estimate it by p = % and p = w - fx(c).

So, we have an estimate of fx: fx(c) = % = %

So, other than a constant factor # our histogram, which plots
the N;, is an estimate of the density fx.



Example: BMI Data

Consider the Pima Indians diabetes study from Ch7 of the book.
One of the columns is Body Mass Index (BMI). Let's plot a

histogram:

pima <- read.csv(’diabetes.csv’, header = FALSE )
bmi <- pima [,6]

bmi <- bmi[bmi > 0]

hist(bmi, breaks =19, freq = FALSE )

The plot is shown below:
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The Number of Bins

Why is there an issue with the number of bins?

e If we use too many bins, the graph will be quite choppy. Next
figure shows a histogram for the BMI data with 100 bins.
Presumably, the true population density is pretty smooth, so
the choppiness is a problem.

e On the other hand, if we use too few bins, each bin will be
very wide, so we won't get a very detailed estimate of the
underlying density. In the extreme, with just one bin, the

graph becomes completely uninformative.

It's instructive to think of the issue of choosing the number of bins
in terms of variance and bias, the famous bias-variance tradeoff.
This is a fundamental issue in statistics. We'll discuss it here in the

context of density estimation (more on this in Chapter 15).
10
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The Mean Squared Error (MSE)

Suppose we wish to estimate some population quantity 6, using an
estimator 6 computed from our sample data. Then we hope to
keep the mean squared error,

MSE = E[(A — 0)3],
as small as possible. Let's expand that quantity. Write

0 — 0= (0 — E[A]) + (E[A] — 0) = deviation + bias.

So, we need to find
E[(deviation-+bias)?] = E(deviation?)+ E(bias®)+2E (deviation x bias).

But bias and hence bias? are both constant; since bias = E[é] —0

and E[f] and 6 are both constants. So, E(bias?) = bias? and
2E(deviation x bias) = 2 X bias x E(deviation)

13



The Mean Squared Error (MSE) - cont’d

Also, E(deviation = E[) — E[A]] = 0 since E[f)] is constant and
E[0 — E[0]] = E[A] — E[E[A]] = E[0] — E[A] = 0 So,
2E(deviation x bias) = 2 x bias x E(deviation) = 0.

Finally, E(deviation®) = E[(0 — E[A])?] = Var(0) by definition of
variance.

Thus, we get the famous formula:

MSE = Variance + Bias?.

14



The Bias-Variance Tradeoff - e.g. for the Two Variance Esti-

mators

It is called a tradeoff because those two terms are often at odds
with each other. For instance, in estimating population variance

0’2:

e The classic estimator s has zero bias, whereas bias of s2, is
nonzero. So, the classic estimator is better in that its second
term in the MSE formula is smaller.

e On the other hand, since (nil) > % the classic estimator has
a larger variance, by a factor of (n/(n — 1)) larger. Thus, s2

m
has a smaller first term in the MSE formula.

The overall “winner” will depend on n and the size of variances of
s? and s2,. Calculating the latter would be too much of a
digression here, but the point is that there IS a tradeoff.
15



The Bias-Variance Tradeoff in the Histogram Case

Let's look at the bin width issue in the context of variance and

bias.

e If the bins are too narrow, then for a given bin size, there will
be a lot of variation in height of that bin from one sample to
another. In other words, the variance of the height will be
large.

e On the other hand, making the bins too wide produces a bias
problem. Suppose, for instance, the true density fx(t) is
increasing in t. Then within a bin, our estimate x(t) will
tend to be too low near the left end of the bin and too high
on the right end. If the number of bins is small, then the bin
widths will be large, and bias may be a serious issue.

16



A General Issue: Choosing the Degree of Smoothing

Recall the quote in the Preface of this book, from the ancient

Chinese philosopher Confucius:
[In spite of | innumerable twists and turns, the Yellow River

flows east.

Confucius’ point was basically that one should, as we might put it
today, “Look at the big picture,” focusing on the general eastward
trend of the river, rather than the local kinks. We should visually

“smooth” our image of the river.

In a histogram, the fewer the number of bins, the more smoothing
is done. So, choosing the number of bins can be described as
choosing the amount of smoothing. This is a central issue in
statistics and machine learning, and will play a big role in Chapter

15 as well as here.
17



Automatic Selection of the Number of Bins

There are various methods for automatic selection of the number
of bins. They are too complex to discuss here, but the R package
histogram offers several such methods. Here is the package in
action on the BMI data:

hist(bmi, freq=FALSE)

The default in R is that all bin widths are equal. The 'freq’
argument set to 'FALSE' indicates that the histogram will display
the density of the data rather than counts. This means each bar
height will represent the density of observations within each bin,
showing the distribution shape of the ‘bmi’ variable.

The plot is shown below.

Note that 11 bins were chosen. The graph looks reasonable here,
but the reader should generally be a bit wary of automatic 18
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Advanced Methods for Model-Free Density Estimation

Even with a good choice for the number of bins, histograms are still
rather choppy in appearance. Kernel methods aim to remedy this.

To see how they work, consider again a bin [c — J,c + d] in a
histogram. Say we are interested in the value of the density at a
particular point ty in the interval. Since the histogram has constant
height within the interval, that means that all data points X; in the

interval are treated as equally relevant to estimating fx(tp).

By contrast, kernel methods put more weight on points closer to
tp. Even points outside the interval may be given some weight.

The mathematics gets a bit complex (see the Mathematical
Complements section at the end of the Chapter 8) and we just
show how to use this method in base R, via the density ()

function. 20



Using the density() Function in R

As with many R functions, density () has many optional
arguments. We'll stick the defaults here, but the bandwidth, bw,
controls the degree of smoothing, as the bin width does for

histograms.

The call then is simply:
plot (density(bmi))

Note that the output of density () is just the estimated density
values, and must be run through plot () to be displayed. By doing
things this way, it is easy to plot more than one density estimate
on the same graph.

The graph is shown below.
21
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Parameter Estimation - Parametric
Estimation of a Density




Parameter Estimation

To fit a parametric model such as the Gamma distribution to our
data, the question then arises as to how to estimate the
parameters.

Earlier, we often referred to certain estimators as being “natural”.
For instance, estimating a population mean with a sample mean is
intuitive. However, in many cases, it's less clear what a “natural”
estimate might be. This section introduces general methods for
estimation.

Two common methods for estimating the parameters of a density
are the Method of Moments (MM) and Maximum Likelihood
Estimation (MLE) (two other methods are Bayesian Estimation,
and EM Algorithm, not covered).

We'll introduce these two via examples. -



Method of Moments

Method of Moments (MM) gets its name from the fact that
quantities like mean and variance are called moments. E(XX) is
the kth moment of X, with E[(X — EX)X] being termed the kth
central moment. If we have an m-parameter family, we “"match” m

moments.

e QOldest method of point estimation dating back to Karl
Pearson in the late 1800's.
e |dea is simple, and usually, the resulting estimators need to be

improved.

24



Method of Moments

In general, let X1, Xz, ..., X, be iid from pmf or pdf
f(X‘Hl,... ,9/(), we have

sample moments population moments

15t moment ZX p1 = p1(01,...,0k) = EX

27 moment my = — ZXZ H2 = [12 (917 . '70k) = EX?

1
k" moment my = ;ZX,- ik = pik (61, .., 0k) = EX*

To get the MoM estimators, “equate” the first k sample moments

to the corresponding k population moments and solve for

(01,...,0k) in terms of (my,..., mg). Usually, it may also help

using s2, = E[(X — EX)?] = Var(X). 2



Example: BMI Data

Let's see how well the model fits, at least visually, with an
example. Recall that for a gamma-distributed X ~ Gamma(a, f3),
where « is the shape and (3 is the rate parameter,
Q Q@
E(X)=- and Var(X)=—
B B2
In MM, we simply replace population values by sample estimates

(i.e. moments) in the above equations,

-« o
X = 3 and s2 = 7
and solving for o and /3, which yields:
X . X?
= > and & = 5
m Sm

AN

Note that we put hats to indicate that these are estimators of

the corresponding unknown parameters.
26



Visual Fit of the Model

Let's see how well the model fits, at least visually:

e X is the sample mean of BMI.
e 52 is the sample variance of BMI.
e (v is the estimate of the shape parameter.

° ﬁA is the estimate of the rate parameter.

The plot is shown below.

27
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Figure 6: BMI, histogram and MoM Gamma fit

Visually, the fit looks fairly good, but keep in mind possible sources
of discrepancy between the fitted model and the histogram.
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Normal MoM Estimator

Suppose X1, X, ..., X, are iid from a N(u, o?) distribution. Find
the MM estimators of 1 and o2.

Solution:

We can get:

29



Binomial MoM Estimator

Suppose Xi, Xa, ..., X, are iid from a Bin(k, p) distribution where
both x and p are unknown. Find the MM estimators of s and p.

Solution: Recall that for X ~ Bin(x, p),
EX=rp and Var(X)=rp(l—p).

Then from X = kp and s2, = r p(1 — p), we have

| X

== and p=
X —s2 P

30



Method of Maximum Likelihood

Preferred Method:

e The Maximum Likelihood Estimation (MLE) is widely used

due to its strong theoretical properties.

General Procedure for MLE
Maximizing Likelihood:

e Given a sample Xi,..., X, and parameters 01, ..., 0, we find
the values that maximize the likelihood function.

e For differentiable problems, we maximize the log likelihood by
setting its derivatives with respect to ¢; to 0 and solving for

the estimators.

31



MLE - More Formally

Let Xy, X2, ..., X, be iid from pdf or pmf f (x|01,...,0k). The
likelihood function is defined as

L(OX) = L(O1, ..., 0k|x1s .., x0) =
n

f(Xl,...7Xn’01,...,9k) = Hf(X,“@l,...,ek).
i=1
Definition: For each sample point x, let @\(x) be a parameter value
at which L(6|x) attains its maximum as a function of 6, with x
held fixed. A maximum likelihood estimator (MLE) of the

~

parameter 6 based on a sample X is 6(X).

32



Log Likelihood Function

In most cases, especially when differentiation can be used, it is
easier to work with the (natural) logarithm of likelihood, log L(6|x)
(also known as the log likelihood function).

Why is this okay?

e The logarithm is a strictly increasing function, so the log
likelihood attains its maximum at the same point as the
likelihood itself.

e Logarithms transform products into sums, which are easier to
differentiate.

33



Example (Bernoulli MLE)

Let X1, X, ..., X, be iid Ber(p). Find the MLE of p for 0 < p < 1.

Solution:
Given that X1, Xa, ..., X, are iid Ber(p), the likelihood function for
p is given by

n

L(p) =[] po(1 = p)' = = pXiaxi(1 — p)- i,

i=1

Taking the logarithm log L(p) = log (p27:1 Xi(1 — p)"—2in X") =
(2oiy xi) log(p) + (n — 327y xi) log(1 — p).

Taking the derivative of log L(p) with respect to p and setting it to

di|ogL (Zx,)—(n—Zx,)l_ . "

Zero:



Example (Bernoulli MLE) cont’d

Solving for p, we get

PN 27:1Xi _
p=——"""=X,
n

which is the sample mean.
Therefore, the MLE of pis p = X. O

In finding MLEs, maximization takes place only over the range of
the parameter space. If L(0|x) cannot be maximized analytically, it
may be possible to maximize it numerically.

85



Example (Normal(6, 1))

Let X1, Xa, . .., X, be iid N(6,1), find the MLE of 6.

Solution:
Given that Xy, Xa, ..., X, are iid N(6,1), the likelihood function

for 6 is given by
1 2)
exp| —=(xi— 0 =
,Hl e (~500-0)

(27) "/ exp < ) :
i=1

Taking the logarithm of the likelihood function yields

og L(0) =~ (;(x,- - 0)2) ~ 7 log(2m).

i=1

N \

36



Example (Normal(6,1)) - cont’d

To find the MLE of 6, we need to maximize the log-likelihood
function with respect to . We do this by taking the derivative of
log L(6) with respect to 6 and setting it to zero:

% log L(6) = (x; —0) =0.

i=1

Solving for 6, we get the MLE as 9= # = X.

37



Maximization Over Parameter Space

Example (Binomial MLE, Number of Trials Unknown) Let
X1, X2, ..., X, be iid Bin(k, p). Find the MLE of k where p is

known and k is unknown.

Solution: The likelihood function is:

L(klp,x) =TT, (i) pri(1—p)" .

Then consider the ratio: L(k|p,x)/L(k — 1|p,x).

38



Invariance Property of MLEs

Theorem (Invariance Property of MLEs) If 0 is the MLE of 6,

~

then g(0) is the MLE of g (0) for any function g (6).
Example:

o Let Xi,Xo,..., X, beiid N(A,1), what is the MLE of 62?7
e Let Xi,Xa,..., X, beiid Ber(p), find the MLE of the variance
and standard deviation of X;.

Solution:

39



(Normal MLEs - ; and 02 Unknown)

Let X1, X2, ..., X, be iid from a N(u,c?) where both y and o2 are
unknown. Then show that the MLE of y is 7 = X and the MLE of

o 1 -
0?is 6% = nz;(Xi—X)2 = s,
=
Solution:

Given X1, Xa, ..., X, iid from a N(u,0?), the likelihood function is

i=1
n

Xj — j)?
= (2#)_”/20_” exp (— Z 7( 205) ) .

i=1
Taking the natural logarithm of the likelihood function,
(xi — p)?

n n
log L(p,0) = =5 log(27) — nlog(o) — Z} Tog2 40



(Normal MLEs - 1 and 02 Unknown) - cont’d

To maximize the log-likelihood, we take partial derivatives with

respect to p and o and set them to zero:

For w:
O \og L1, ixi_u 0
a ,0) = = U,
o — o2
which yields the MLE 7 = X.
For o: s 2
0 n D (i —
——log L = —— =1 =0
55 8L, o) =——+ 3 :

which yields the MLE 52 =137 (X; — X)* = s2.

41



Estimation of Parameters of a Gamma Distribution

Problem Statement:

e Given a random sample Xi, Xp, ..., X, from a Gamma(c, \)
distribution with parameters ¢ (shape) and A (rate). Estimate

the parameters.

Method of Moments
Two Parameters:
e We have two parameters to estimate: ¢ (shape) and A (rate).
o Use the first two moments of X, which can conveniently be
the expected value EX and variance Var(X).

Moment Equations:

e EX = 5 and Var(X) = .

e From the sample, we estimate =X andc=

X

42



MLEs for Gamma Distribution Parameters

Given a random sample X1, Xp, ..., X, from a Gamma distribution
with shape parameter ¢ and rate parameter A, the likelihood
function is:
N AEXELa=AX A"(TT7 X e AX i X
ey = T XIS ey X e B
r(c) (F(c))

i=1
where '(c) is the gamma function.

The log-likelihood function is given by:

log L(c,\) = nclog A+ (c —1) > log X; =AY X; — n(log I(c))
i=1 i=1

43



MLEs for Gamma Distribution Parameters

To find the MLE of ¢ and A\, we need to maximize the
log-likelihood function with respect to both ¢ and A. This is done
by solving the following system of equations obtained by setting
the partial derivatives of log L with respect to ¢ and \ to zero:

0 log L(c,\) = 0.

g log L(c,\) =0, N

dc
The solutions to these equations give the MLEs for ¢ and A.
However, these equations do not generally have closed-form

solutions (why?) and numerical methods are usually required to
find the MLEs.
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MLEs for Gamma Distribution Parameters

e The likelihood is the product of the densities for the X;.

e We generally maximize the log likelihood for convenience.
Maximizing the Log Likelihood:

e The log likelihood for the gamma distribution involves the
gamma function and its derivatives, which complicates the

solution.

e Numerical methods are required to find the MLEs of ¢ and \.

45



R’s mle() Function

Finding MLEs Numerically:

e R provides the mle () function (in stats4 package) for
finding MLEs numerically.

e The user defines a function for the negative log likelihood,
and mle () handles the rest.

e Initial parameter guesses are required, and standard errors of

estimates can be obtained.

46



MLE Example in R

Using mle() to Estimate Parameters:

11 <- function(c, lambda) {
-sum(dgamma(x, shape=c, rate=lambda, log=TRUE))
}
summary (mle (minuslogl=11, start=list(c=1.5, lambda=2)))

Output:

Coefficients:

Estimate Std. Error
C 2.147605 0.08958823
lambda 1.095344 0.05144393
-2 log L: 3072.181

47



Assessing “Goodness of Fit” of a
Model




Introduction to Goodness of Fit

Our example above concerned how to estimate the parameters of a
gamma distribution, given a sample from the distribution. But
before estimating parameters, we need to decide if the gamma
model, or any model, is appropriate. How do we assess the
“Goodness of Fit" of a model?

48



Less Formal Methods of Model Assessment

Less formal methods of assessing the fit of a model include
visualizing the data through histograms or empirical cumulative
distribution functions (ecdfs). These can be plotted against a
fitted model to assess suitability.

Plotting ecdfs:

To visﬁm fit of a model, one can plot the ecdf against a

fitted model. Here's an example using R code for BMI values:
#plotting ecdf’'s for bmi

ebmi <— ecdf (bmi)

plot (ebmi ,cex =.1, xlim=c(15,60))

curve (pgamma(x, ch, Ih), 15, 60, col=2,add = TRUE)

49



Sample ecdfs

ecdf(bmi)

Figure 7: Ecdf and fitted cdf
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Interpretation of the Plot

The plot compares the ecdf of the data (in black) to the cdf of a
fitted Gamma distribution (in red). Deviations between the curves
indicate areas where the Gamma model does not perfectly
represent the data distribution.

Limitations of Density Estimation

While we can also compare data to models using density
estimation, choosing parameters such as bin width or bandwidth is
problematic. There is no foolproof method for selecting these
parameters, despite the existence of theoretical guidelines aimed at
minimizing integrated mean squared error.

Bl



More Formal Assessment of Goodness of Fit

In our examples above, we can do a visual assessment of how well
our model fits the data, but it would be nice to have a quantitative
measure of goodness of fit.

The classic assessment tool is the Chi-Squared Goodness of Fit
Test, which is one of the oldest statistical methods (1900!) and
still in wide use. However, a more useful measure is the

Kolmogorov-Smirnov (KS) statistic.

Kolmogorov-Smirnov Statistic:

e The Kolmogorov-Smirnov (KS) statistic is a useful measure
for the discrepancy between a fitted model and the true
population distribution.

e It quantifies the maximum difference between the empirical
cumulative distribution function (CDF) of the sample data
and the CDF of the theoretical model.
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Application: Fitting a Gamma Model

e Example: Fitting a Gamma distribution to BMI data.
e The KS statistic can help assess how well the beta model
represents the actual data.

CDFs and the Gamma Model

e Cumulative Distribution Functions (CDFs) play a key role in
KS statistic calculation.

Gamma distribution.

Empirical CDF of the Data

e The empirical CDF, /I\—S‘X(t) = =i is the count of
observations less tha'n_'_oﬁl'?cqt -f— (L) = P (XX
e In R, the ecdf () function calculates the empirical CDF.
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Kolmogorov-Smirnov (KS) Statistic

To make matters concrete, say we are fitting a Gamma model, with the
BMI data. The KS statistic is based on cumulative distribution functions
(cdfs) and measures the maximum discrepancy between the empirical cdf
and the fitted cdf.

(The values of ch and /h had been previously computed.)

Now, to quantify the fit, we can calculate the K-S statistic, which
measures the maximum discrepancy:

> ks_result <- ks.test(bmi, "pgamma", ch, 1h)

" e——

> ks_result$statistic
D
0.02375358

Since cdf values range in [0, 1], a maximum discrepancy of 0.024 is

considered pretty good.
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Accounting for Sampling Variation

To account for sampling variation, we can use a K-S confidence
band.

The K-S statistic measures the fit in terms of the maximum
discrepancy, which is subject to sampling variation. A K-S
confidence band provides a way to quantify the confidence in the
goodness of fit assessment.

(The details of constructing a K-S confidence band can be found

in reference [20].)

In summary, the Kolmogorov-Smirnov (KS) statistic is a valuable
tool for quantitatively assessing the goodness of fit between a
fitted model and the true population distribution.

55



	Introduction to Model Building -   Fitting Continuous Models
	Model-Free Estimation of a Density
	Parameter Estimation - Parametric Estimation of a Density
	Assessing ``Goodness of Fit'' of a Model

