
The Normal Distributions



Introduction to Normal Distributions

� Normal distributions are often referred to as “bell-shaped

curves.”

� They are characterized by their symmetric, bell-shaped density

functions.

Density and Properties

� The density of a normal distribution is given by the equation:

fW (t) =
1√
2πσ

e−
1
2(

t−µ
σ )

2

,−∞ < t < ∞ (1)

� It’s a two-parameter family, indexed by µ (mean) and σ

(standard deviation).

� The notation N(µ, σ2) is used, where σ2 is the variance.
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Notation and Implications

� The notation X ∼ N(µ, σ2) indicates that the random

variable X follows the normal distribution N(µ, σ2).

� Important Note:

� Saying “X has a N(µ, σ2) distribution” implies more than just

the mean and variance.

� It also indicates that X has a bell-shaped density within the

normal distribution family.
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Closure Under Affine Transformation



Affine Transformation of Normal Distributions

� The normal distribution family is closed under affine

transformations.

� This means that if X ∼ N(µ, σ2), and Y = cX + d , then Y

also follows a normal distribution.

Mathematical Formulation:

If

X ∼ N(µ, σ2) (2)

and we set

Y = cX + d (3)

then

Y ∼ N(cµ+ d , c2σ2) (4)
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Practical Example

� Consider X as the height of a AU student in inches.

� If Y is the height in centimeters, then c = 2.54 and d = 0.

� This implies that the histogram of Y will also be bell-shaped.

Deeper Understanding

� It’s more than just Y having mean cµ+ d and variance c2σ2.

� The key point is that Y remains a member of the normal

family with its density still defined by the normal distribution

formula.
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Derivation

� Assume c > 0. Then the derivation follows several steps

involving the distribution functions FX and FY , and their

derivatives.

� The final expression confirms that Y has a N(cµ+ d , c2σ2)

distribution.

By definition:

FY (y) = P(Y ≤ y)

Substituting Y = cX + d into the inequality:

P(cX + d ≤ y) = P

(
X ≤ y − d

c

)
= FX

(
y − d

c

)
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Derivation

Substitute the expression for FX (x) into the equation:

FY (y) = Φ

(
y−d
c − µ

σ

)
= Φ

(
y − d − cµ

cσ

)
Then, the pdf of Y is

fY (y) =
d

dy
Φ

(
y − d − cµ

cσ

)
=

1

cσ
ϕ

(
y − d − cµ

cσ

)
where ϕ is the pdf of N(µ, σ2. Thus,

fY (y) =
1√
2πcσ

e
− 1

2

(
y−(cµ+d)

cσ

)2

which is the pdf of N(cµ+ d , c2σ2).
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Closure Under Independent

Summation in Normal Distributions



Independent Summation

� If X and Y are independent random variables, each normally

distributed, then their sum S = X + Y is also normally

distributed.

� This property is unique to the normal distribution and not

observed in most other distributions.

Comparative Example

� For contrast, if X and Y each have a uniform distribution

U(0,1), the distribution of their sum S is triangular, not

uniform.

� This difference highlights the unique nature of the normal

distribution.
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General Case

� For any constants c and d , if X and Y are independent and

normally distributed, then cX + dY will also have a normal

distribution.

� More generally, for constants a1, . . . , ak and independent

normal random variables X1, . . . ,Xk :

Y = a1X1+. . .+akXk =⇒ Y ∼ N

(
k∑

i=1

aiµi ,

k∑
i=1

a2i σ
2
i

)
(5)

Lack of Intuition

� The property that X + Y is normally distributed when X and

Y are independent and normally distributed is

counterintuitive.

� There’s no straightforward intuitive explanation for why the

sum of two normal distributions remains normally distributed. 8



R Functions for Normal Distributions

dnorm ( x , mean = 0 , sd = 1)

pnorm (q , mean = 0 , sd = 1)

qnorm (p , mean = 0 , sd = 1)

rnorm (n , mean = 0 , sd = 1)

� These functions are used for different purposes related to the

normal distribution in R.

� mean and sd represent the mean and standard deviation of

the distribution.
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The Standard Normal Distribution



Definition of Standard Normal Distribution

Definition
If Z ∼ N(0, 1), then the random variable Z has a standard normal

distribution.

� This is a special case where the mean (µ) is 0 and the

standard deviation (σ) is 1.

Transforming to Standard Normal

� For any normal random variable X with X ∼ N(µ, σ2):

Z =
X − µ

σ
(6)

� This transformation results in:

Z ∼ N(0, 1) (7)
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Derivation and Properties

� Start with Z = X−µ
σ and rewrite it as Z = 1

σ · X +
(−µ

σ

)
.

� For any random variable U and constants c and d ,

E (cU + d) = cEU + d .

� Thus, EZ = 1
σEX − µ

σ = 0.

� Using the properties of variance, we find that Z has variance

1.

� Due to the closure under affine transformations, Z retains a

normal distribution.

Cumulative Distribution Function (CDF)

� The cumulative distribution function (CDF) of the standard

normal distribution is traditionally denoted by Φ.
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Evaluating Normal cdfs

� The normal distribution function does not have a closed-form

definite integral.

� Traditionally, cdf values for the standard normal distribution

(N(0,1)) are used for approximating probabilities.

� A table for the N(0,1) cdf is often included in statistics

textbooks.
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One Table for the Entire Normal Family

� Though there are infinitely many distributions in the normal

family, one table for N(0,1) suffices.

� Example: For X ∼ N(10, 2.52) and calculating P(X < 12):

P(X < 12) = P

(
X − 10

2.5
<

12− 10

2.5

)
= P(Z < 0.8) ≈ .79

(8)

� Here, Z is the standard normal variable, and its probability

can be found using the N(0,1) table.
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Using R for Normal Distributions

� The R statistical package provides functions for working with

normal distributions.

� pnorm() for the normal cdf:

pnorm(q, mean = 0, sd = 1)

� rnorm() for simulating normal random variables:

rnorm(n, mean = 0, sd = 1)

� dnorm() and qnorm() for density and quantile functions.
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Network Intrusion: The Scenario

� Jill’s remote logins involve reading/writing disk sectors.

� The number of sectors (X) is approximately normally

distributed with mean 500 and standard deviation 15.

� Modeling note: The number of sectors is discrete, but can be

approximated as a continuous normal distribution.

Analyzing Suspicious Activity

� Scenario: A login (possibly Jill’s) reads/writes 535 sectors.

� Question: Should this be considered suspicious?

� Approach: Calculate P(X ≥ 535).
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Probability Calculation

To find P(X ≥ 535):

� Transform to standard normal: Z = X−500
15 .

� Calculate:

P(X ≥ 535) = P

(
X − 500

15
≥ 535− 500

15

)
=

P

(
Z ≥ 35

15

)
= 1− Φ(2.33)

Using R for Probability Calculation:

In R, use pnorm() to compute this probability.

> 1 - pnorm(535, 500, 15)

[1] 0.009815329

� Probability of ≈ 0.01 makes the activity suspicious.

� Further investigation recommended based on this probability. 16



Analyzing Two Suspicious Logins

� Scenario: Two logins to Jill’s account, with X + Y = 1088

sectors accessed.

� Assumption: X and Y are independent.

� S = X + Y is normally distributed with mean 1000 and

variance 2× 152.

� Calculate P(X + Y > 1088).

Probability Calculation for Two Logins:

> 1 = pnorm (1088 , 1000 , s q r t ( 450 ) )

[ 1 ] 1 .674329 e=05

� This returns a very small probability, indicating high suspicion.

� Such rare events warrant further investigation.
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The Central Limit Theorem



Introduction to the Central Limit Theorem

� The Central Limit Theorem (CLT) states that a random

variable, which is a sum of many components, will have an

approximate normal distribution.

� Examples include human weights and raw SAT test scores.

The Basic Central Limit Theorem:

Theorem
Suppose X1,X2, . . . are independent random variables, all having

the same distribution with mean m and variance v2. Form the new

random variable T = X1 + . . .+ Xn. Then for large n, the

distribution of T is approximately normal with mean nm and

variance nv2.
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Requirements and Approximation

� Requirements for the CLT:

� Summands must be independent and identically distributed.

� Distribution of each summand should have a finite mean and

variance.

� The larger n is, the better the approximation.

� Typically, n = 20 or even n = 10 is sufficient for a good

approximation.

Implications of the CLT

� The CLT explains why many real-world phenomena follow a

normal distribution.

� It is a fundamental concept in statistics and probability,

underlying many statistical methods and analyses.
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Example 1: Sum of Uniform Distributions

� Consider W = U1 + . . .+ U50 with Ui being i.i.d. and

uniformly distributed on (0,1).

� Goal: Approximate P(W < 23.4).

� W has an approximate normal distribution with mean 50× 0.5

and variance 50× 1
12 .

� R Evaluation:

> pnorm (23 . 4 , 25 , s q r t (50/12) )

[ 1 ] 0 .216568
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Example 2: Bug Counts

� Bugs per 1,000 lines of code follow a Poisson distribution with

mean 5.2 where 1000 lines of code constitutes a section.

� Find the probability of more than 106 bugs in 20 sections.

� Assumption: Sections act independently.

� R Evaluation:

> 1 - pnorm(106, 20*5.2, sqrt(20*5.2))

[1] 0.4222596
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Example 3: Coin Tosses

� Binomial distributions with large n are approximately normally

distributed (CLT).

� Example: Approximate probability of more than 12 heads in

20 tosses.

� R Evaluation:

> 1 - pnorm(12, 10, sqrt(5))

[1] 0.1855467

� Exact answer: 0.132, but approximation gives 0.186.

� Improved accuracy with correction for continuity:

> 1 - pnorm(12.5, 10, sqrt(5))

[1] 0.1317762

� This correction brings the approximation closer to the exact

answer.
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The Importance of Normal

Distribution in Statistical Modeling



Real World and Normal Distribution

� No real-world random variables are exactly normally

distributed.

� Real-world variables don’t have continuous distributions and

are bounded, unlike normal distributions which extend from

−∞ to ∞.

Approximate Normal Distributions in Nature:

� Many natural phenomena have approximate normal

distributions.

� This approximation plays a key role in statistical methods and

analysis.

� Classical statistical procedures often assume sampling from

approximately normal populations.
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The Central Limit Theorem and Normal Distribution

� The Central Limit Theorem (CLT) implies that quantities

used for statistical estimation are approximately normal, even

if the underlying data are not.

� This is significant in cases where the data itself might not be

normally distributed.

� Example: The gamma distribution, or Erlang distribution,

becomes approximately normal for large values due to the

CLT.
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Conclusion

� The normal distribution model is a useful approximation for

real-world data analysis.

� While simplistic, this example illustrates the fundamental

concepts in intrusion detection analysis.

� Despite theoretical limitations, the normal distribution is a

powerful and versatile tool in statistics.

� Its significance is enhanced by the CLT, making it relevant in

a wide range of practical applications.
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The Chi-Squared Family of

Distributions



Chi-Squared Distribution: Definition

� Defined as the distribution of Y = Z 2
1 + . . .+ Z 2

k , where

Z1,Z2, . . . ,Zk are independent N(0,1) random variables.

� Noted as χ2
k and called chi-squared with k degrees of freedom.

� A one-parameter family of distributions frequently used in

statistical applications.

Mean and Variance of Chi-Squared Distribution

� The mean EY of chi-squared distribution is k .

� Derived as EY = E (Z 2
1 + . . .+ Z 2

k ) = kE (Z 2
1 ) and

E (Z 2
1 ) = Var(Z1) + [E (Z1)]

2 = 1. Hence

EY = (1 + . . .+ 1)︸ ︷︷ ︸
k many

= k

� The variance Var(Y ) is 2k.
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Relation to Gamma Family

� Chi-squared is a special case of the gamma family.

� Corresponds to gamma distribution with r = k/2 and λ = 0.5.

R Functions for Chi-Squared Distribution

� dchisq(), pchisq(), qchisq(), rchisq() for density, CDF,

quantile function, and random number generation.

� Example: To get the density value fX (5.2) for a chi-squared

random variable with 3 degrees of freedom:

> dch i s q ( 5 . 2 , 3)

[ 1 ] 0 .06756878
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Chi-Squared Distribution: Pin Placement Error Example

� Machine places a pin in the middle of a disk-shaped object.

� X and Y : placement errors in horizontal and vertical

directions, respectively.

� X and Y are independent, normally distributed with mean 0

and variance 0.04.

� Goal: Find P(W > 0.6) where W is the distance from true

center to pin placement.
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Transforming the Problem

� Distance W is the square root of a sum of squares:

W 2 = X 2 + Y 2.

� Transform the problem: P(W > 0.6) = P(W 2 > 0.36).

� Convert to a chi-squared problem:

P[(X/0.2)2 + (Y /0.2)2 > 0.36/0.22] = P[χ2
2 > 9].

R Evaluation:

� The problem now fits the chi-squared distribution with 2

degrees of freedom.

� R code to evaluate P(W > 0.6):

> 1 = pch i s q ( 0 . 3 6/0 . 0 4 , 2)

[ 1 ] 0 .01110900

� This gives the probability of the pin placement error being

greater than 0.6. 29



Generating Normal Random Numbers

� Normal random number generators like rnorm() use the

relationship between normal and exponential distributions.

� Define W = Z 2
1 + Z 2

2 with Z1 and Z2 as independent N(0,1)

random variables.

� W follows a chi-squared distribution with 2 degrees of

freedom, equivalent to an exponential distribution with

λ = 0.5.
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Generating N(0,1) Random Variates

� Using the transformation θ = tan−1(Z2/Z1), where θ is

uniformly distributed on (0, 2π).

� Express Z1 and Z2 in terms of W and θ:

Z1 =
√
W cos(θ), Z2 =

√
W sin(θ).

� R code to generate a pair of independent N(0,1) random

variates:

genn01 <= f u n c t i o n ( ) {
t h e t a <= r u n i f (1 ,0 ,2* p i )

w <= r exp (1 , 0 . 5 )

sw <= s q r t (w)

c ( sw* cos ( t h e t a ) , sw* s i n ( t h e t a ) )

}
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Importance of Chi-Squared in Modeling

� Chi-squared distribution is widely used in statistical methods.

� It often arises in sums of squared normal random variables.

� The term ”degrees of freedom” in this context will be

explained in later chapters on statistics.

Relation to Gamma Family

� The chi-square distribution with d degrees of freedom is a

gamma distribution.

� Corresponds to a gamma distribution with r = d/2 and

λ = 0.5.
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The Multivariate Normal Family



Introduction to Multivariate Normal Family

� Generalization of the normal family to multiple dimensions.

� Parameterized by a vector mean and a covariance matrix.

Bivariate Normal Distribution:

� Bivariate normal distribution for joint distribution of X1 and

X2.

� Parameters: means (µ1, µ2), standard deviations (σ1, σ2), and

correlation (ρ).

� Density function is complex, but important for conceptual

understanding.

f (x1, x2) =
1

2πσ1σ2
√
1− ρ2

×

exp

(
− 1

2(1− ρ2)

[
(x1 − µ1)

2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

])
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Density of Multivariate Normal Distribution

� For a random vector X = (X1, . . . ,Xk)
′ with a k-variate

normal distribution:

� Density function:

fX (t) = ce−
1
2
(t−µ)′Σ−1(t−µ) (9)

� Here c is a constant and Σ is the covariance matrix.

Multivariate Central Limit Theorem

� Sums of random vectors have approximately multivariate

normal distributions.

R Functions for Multivariate Normal Distribution

� Density, CDF, and quantiles: dmvnorm(), pmvnorm(),

qmvnorm() from the mvtnorm library.

� Simulation: mvrnorm() from the MASS library.
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