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In Bayesian statistics and parametric inference, Fisher information and Jeffreys prior are two
closely related concepts that play an essential role in parameter estimation and model formulation. Below
is an explanation of these topics, incorporating examples to clarify their applications.

1 Fisher Information

The Fisher information is a key concept in both frequentist and Bayesian statistics. It quantifies how
much information an observable random variable X provides about an unknown parameter θ. Fisher
information is fundamental to understanding the behavior of estimators and establishing the lower bound
for their variance.

1.1 Definition

Fisher information I(θ) for a parameter θ is defined as:

I(θ) = E

[(
∂

∂θ
log fX(X; θ)

)2
]

Alternatively, under certain regularity conditions, it can also be written as:

I(θ) = −E
[
∂2

∂θ2
log fX(X; θ)

]
where fX(X; θ) is the likelihood function for the observed data X.

1.2 Intuition

Fisher information measures the sensitivity of the likelihood function to changes in the parameter θ.
If small changes in θ lead to large changes in the likelihood, the parameter is well-identified, and the
Fisher information is large. Conversely, if the likelihood is relatively flat with respect to θ, the Fisher
information is small, meaning the data provides little information about the parameter.

1.3 Cramér-Rao Bound

Fisher information plays a critical role in the Cramér-Rao inequality, which establishes a lower bound
on the variance of any unbiased estimator θ̂ for θ:

Var(θ̂) ≥ 1

I(θ)

This inequality implies that the Fisher information sets a limit on the efficiency of estimators: the
more information the data contains about θ, the lower the variance of an unbiased estimator.

1.4 Example: Fisher Information for a Normal Distribution

Let X1, X2, . . . , Xn be an i.i.d. sample from a normal distribution X ∼ N(µ, σ2). We will compute the
Fisher information for both the mean µ and the variance σ2.
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1.5 Example 1: Normal Distribution (Mean Estimation)

Consider a normal distribution X ∼ N(µ, σ2), where µ is the unknown mean, and the variance σ2 is
known. We are interested in estimating the mean µ using Jeffreys prior, which is derived from the Fisher
information.

1.5.1 Likelihood Function and Log-Likelihood

For a single observation X, the probability density function (PDF) is:

fX(x;µ) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
The log-likelihood function for n independent and identically distributed (i.i.d.) observationsX1, X2, . . . , Xn

is:

logL(µ) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(Xi − µ)2

1.5.2 First Derivative: The Score Function

The score function is the derivative of the log-likelihood function with respect to µ. It measures the
sensitivity of the log-likelihood to changes in µ:

∂

∂µ
logL(µ) =

1

σ2

n∑
i=1

(Xi − µ)

The score function indicates how changes in µ affect the likelihood. For example, when µ is close to
the sample mean, the score will be close to zero, indicating that the likelihood function is maximized
near this point.

1.5.3 Second Derivative: Information About µ

To calculate the Fisher information, we take the second derivative of the log-likelihood function with
respect to µ. The second derivative of the log-likelihood is:

∂2

∂µ2
logL(µ) = − n

σ2

This derivative is constant with respect to µ, meaning that the curvature of the log-likelihood function
is the same for all values of µ. This uniform curvature implies that the amount of information about µ
is independent of its specific value.

1.5.4 Fisher Information

The Fisher information is the negative expected value of the second derivative of the log-likelihood:

I(µ) = −E
[
∂2

∂µ2
logL(µ)

]
In this case, since the second derivative is constant and does not depend on the data, the Fisher

information simplifies to:

I(µ) =
n

σ2

For a single observation (i.e., n = 1), the Fisher information is:

I(µ) =
1

σ2

This shows that the Fisher information depends inversely on the known variance σ2: the smaller σ2

is, the more information the data provides about µ, and vice versa. A larger variance indicates greater
uncertainty in the data, reducing the amount of information about the mean.
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1.5.5 Fisher Information for σ2

We are interested in estimating the variance σ2 of a normal distribution X ∼ N(µ, σ2), where µ is known,
and n i.i.d. observations X1, X2, . . . , Xn are available.

Log-Likelihood Function for σ2: The likelihood function for n independent and identically dis-
tributed (i.i.d.) observations is:

L(σ2) =

n∏
i=1

1√
2πσ2

exp

(
− (Xi − µ)2

2σ2

)
The log-likelihood function simplifies to:

logL(σ2) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(Xi − µ)2

The first term, −n
2 log(2πσ2), accounts for the normalization of the normal distribution, while the

second term represents the contribution of the data to the likelihood function.

First Derivative with Respect to σ2: Taking the first derivative of the log-likelihood function with
respect to σ2, we get the score function, which measures how sensitive the log-likelihood is to changes in
σ2:

∂

∂σ2
logL(σ2) = − n

2σ2
+

1

2σ4

n∑
i=1

(Xi − µ)2

The first term, − n
2σ2 , comes from differentiating the logarithmic normalization term, and the second

term, 1
2σ4

∑
(Xi − µ)2, comes from differentiating the quadratic term involving the data.

Second Derivative with Respect to σ2: Next, we calculate the second derivative of the log-
likelihood function, which will allow us to compute the Fisher information:

∂2

∂(σ2)2
logL(σ2) =

n

2σ4
− 1

σ6

n∑
i=1

(Xi − µ)2

This second derivative captures the curvature of the log-likelihood function with respect to σ2. A large
curvature implies that small changes in σ2 significantly affect the likelihood, providing more information
about the parameter.

Fisher Information for σ2: The Fisher information is the negative of the expected value of the
second derivative of the log-likelihood function. Since the expectation of

∑n
i=1(Xi−µ)2 is nσ2 (the sum

of squared deviations for normal random variables), we can simplify the expression for Fisher information:

I(σ2) = −E
[

∂2

∂(σ2)2
logL(σ2)

]
Substituting the expected value of the sum of squared deviations, we get:

I(σ2) =
n

2σ4

This shows that the Fisher information for σ2 is inversely proportional to σ4, which means that as the
variance σ2 increases, the amount of information provided by the data about σ2 decreases. Conversely,
smaller variances provide more information, as the curvature of the likelihood function becomes sharper.

Interpretation: The Fisher information for σ2 quantifies how much the observed data contributes to
estimating the variance parameter. Since the Fisher information decreases as σ2 increases, this indicates
that the parameter becomes harder to estimate accurately as the variance grows larger. Intuitively, if
the data are spread out more (higher variance), it becomes more challenging to pinpoint the true value
of σ2.
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2 Jeffreys Prior

Jeffreys prior is a commonly used non-informative prior in Bayesian statistics, designed to be invariant
under reparameterization. This means that if you change the parameterization of your model, Jeffreys
prior remains consistent with the transformed parameter. It is particularly useful when there is little
prior knowledge about the parameter, and you wish to adopt a neutral, objective prior.

2.1 Definition

Jeffreys prior for a parameter θ is defined as:

πJ(θ) ∝
√

I(θ)

where I(θ) is the Fisher information for the parameter θ.
Because the Fisher information measures how much information the data provides about θ, Jeffreys

prior guarantees that the prior is proportional to the square root of this information, resulting in a prior
that reflects the structure of the problem but avoids imposing subjective biases.

2.2 Invariance under Reparameterization

One of the most appealing properties of Jeffreys prior is its invariance under transformations of the
parameter. If θ′ = g(θ), the Jeffreys prior in the new parameterization remains proportional to the
Fisher information:

πJ(θ
′) = πJ(θ)

∣∣∣∣ dθdθ′
∣∣∣∣

This guarantees that the prior does not depend on how the parameter is expressed, making it a robust
choice for non-informative priors.

2.2.1 Jeffreys Prior for µ

Consider a normal distribution X ∼ N(µ, σ2), where µ is the unknown mean, and the variance σ2 is
known. Recall in this case, the Fisher information is:

I(µ) =
n

σ2

Jeffreys prior is derived from the Fisher information and is proportional to the square root of the
Fisher information:

πJ(µ) ∝
√

I(µ)

Since the Fisher information is constant with respect to µ, Jeffreys prior for µ simplifies to:

πJ(µ) ∝
√

1

σ2
=

1

σ

This is a constant prior with respect to µ (since σ2 is known), meaning:

πJ(µ) ∝ 1

Thus, Jeffreys prior is flat or non-informative, reflecting that all values of µ are equally likely before
observing any data. This is appropriate when we have no prior information about µ. The prior is
uninformative because µ is a location parameter, meaning that the data’s location (or central tendency)
shifts without affecting its spread or variability.
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2.2.2 Interpretation

This flat prior expresses complete ignorance about the parameter µ, treating every value as equally
plausible before any data is observed. After data is collected, the posterior distribution for µ will be
driven entirely by the likelihood. The fact that the prior is flat for µ makes Jeffreys prior an attractive
choice when performing Bayesian inference for location parameters, as it avoids introducing subjective
biases into the analysis.

Moreover, the fact that Jeffreys prior is proportional to the square root of the Fisher information
ensures that it is invariant under reparameterization. This invariance property makes Jeffreys prior a
natural and robust choice for non-informative priors in Bayesian analysis.

2.3 Example 2: Normal Distribution (Variance Estimation)

Now, suppose we want to estimate the variance σ2 in the normal distribution X ∼ N(µ, σ2), where the
mean µ is known. Recall that the Fisher information for σ2 is:

I(σ2) =
1

2σ4

Thus, Jeffreys prior for σ2 is:

πJ(σ
2) ∝

√
I(σ2) =

1

σ2

This prior is an improper prior because it does not integrate to 1 over the entire domain, but it is
still commonly used in practice, especially when combined with data through the likelihood in Bayesian
inference.

3 Summary

� Fisher Information: Measures the amount of information that an observable random variable
provides about a parameter. It is used to establish the Cramér-Rao bound, providing a lower
bound on the variance of unbiased estimators.

� Jeffreys Prior: A non-informative prior proportional to the square root of the Fisher information,
which is invariant under reparameterization and useful in Bayesian inference.

These concepts are foundational in Bayesian and frequentist inference, with Fisher information quan-
tifying the precision of parameter estimates, and Jeffreys prior ensuring objectivity in Bayesian analysis.
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