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1 Introduction

Markov chains were first introduced in 1906 by Andrey Markov, with the goal of
showing that the Law of Large Numbers does not necessarily require the random
variables to be independent. Since then, they have become extremely important
in a huge number of fields such as biology, game theory, finance, machine learning,
and statistical physics. They are also very widely used for simulations of complex
distributions, via algorithms known as MCMC (Markov Chain Monte Carlo).

To see where the Markov model comes from, consider first an i.i.d. sequence of
random variables X0, X1, . . . , Xn, . . . where we think of n as time. Independence is
a very strong assumption: it means that the Xj’s provide no information about each
other. At the other extreme, allowing general interactions between the Xj’s makes
it very difficult to compute even basic things. Markov chains are a happy medium
between complete independence and complete dependence.

The space on which a Markov process “lives” can be either discrete or continuous,
and time can be either discrete or continuous. In Stat 110, we will focus on Markov
chains X0, X1, X2, . . . in discrete space and time (continuous time would be a process
Xt defined for all real t ≥ 0). Most of the ideas can be extended to the other cases.
Specifically, we will assume that Xn takes values in a finite set (the state space),
which we usually take to be {1, 2, . . . ,M} (or {0, 1, . . . ,M} if it is more convenient).
In Stat 110, we will always assume that our Markov chains are on finite state spaces.

Definition 1. A sequence of random variables X0, X1, X2, . . . taking values in the
state space {1, . . . ,M} is called a Markov chain if there is an M by M matrix
Q = (qij) such that for any n ≥ 0,

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i) = qij.

The matrix Q is called the transition matrix of the chain, and qij is the transition
probability from i to j.

This says that given the history X0, X1, X2, . . . , Xn, only the most recent term,
Xn, matters for predicting Xn+1. If we think of time n as the present, times before
n as the past, and times after n as the future, the Markov property says that given
the present, the past and future are conditionally independent.
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The Markov assumption greatly simplifies computations of conditional probabil-
ity: instead of having to condition on the entire past, we only need to condition on
the most recent value.

2 Transition Matrix

The transition probability qij specifies the probability of going from state i to state
j in one step. The transition matrix of the chain is the M ×M matrix Q = (qij).
Note that Q is a nonnegative matrix in which each row sums to 1.

Definition 2. Let q
(n)
ij be the n-step transition probability, i.e., the probability of

being at j exactly n steps after being at i:

q
(n)
ij = P (Xn = j|X0 = i).

Note that
q
(2)
ij =

∑
k

qikqkj

since to get from i to j in two steps, the chain must go from i to some intermediary
state k, and then from k to j (these transitions are independent because of the Markov
property). So the matrix Q2 gives the 2-step transition probabilities. Similarly (by
induction), powers of the transition matrix give the n-step transition probabilities:

q
(n)
ij is the (i, j) entry of Qn.

Example. Figure 1 shows an example of a Markov chain with 4 states. The chain
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Figure 1: A Markov Chain with 4 Recurrent States

can be visualized by thinking of a particle wandering around from state to state,
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randomly choosing which arrow to follow. Here we assume that if there are a arrows
originating at state i, then each is chosen with probability 1/a, but in general each
arrow could be given any probability, such that the sum of the probabilities on the
arrows leaving i is 1. The transition matrix of the chain shown above is

Q =


1/3 1/3 1/3 0
0 0 1/2 1/2
0 1 0 0

1/2 0 0 1/2

 .

To compute, say, the probability that the chain is in state 3 after 5 steps, starting
at state 1, we would look at the (3,1) entry of Q5. Here (using a computer to find
Q5),

Q5 =


853/3888 509/1944 52/243 395/1296
173/864 85/432 31/108 91/288
37/144 29/72 1/9 11/48

499/2592 395/1296 71/324 245/864

 ,

so q
(5)
13 = 52/243.

To fully specify the behavior of the chain X0, X1, . . . , we also need to give initial
conditions. This can be done by setting the initial state X0 to be a particular state
x0, or by randomly choosing X0 according to some distribution. Let (s1, s2, . . . , sM)
be a vector with si = P (X0 = i) (think of this as the PMF of X0, displayed as a
vector). Then the distribution of the chain at any time can be computed using the
transition matrix.

Proposition 3. Define s = (s1, s2, . . . , sM) by si = P (X0 = i), and view s as a
row vector. Then sQn is the vector which gives the distribution of Xn, i.e., the jth
component of sQn is P (Xn = j).

Proof. Conditioning on X0, the probability that the chain is in state j after n steps
is
∑

i siq
n
ij, which is the jth component of sQn.

3 Recurrence and Transience

In the Markov chain shown in Figure 1, a particle moving around between states will
continue to spend time in all 4 states in the long run. In contrast, consider the chain
shown in Figure 2, and let the particle start at state 1. For a while, the chain may
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linger in the triangle formed by states 1, 2, and 3, but eventually it will reach state
4, and from there it can never return to states 1, 2, or 3. It will then wander around
between states 4, 5, and 6 forever. In this example, states 1, 2, and 3 are transient
and states 4, 5, and 6 are recurrent. In general, these concepts are defined as follows.
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Figure 2: A Markov Chain with States 1, 2, and 3 Transient

Definition 4. State i is recurrent if the probability is 1 that the chain will return
to i (eventually) if it starts at i. Otherwise, the state is transient, which means that
if the chain starts out at i, there is a positive probability of never returning to i.

Classifying the states as recurrent or transient is important in understanding the
long-run behavior of the chain. Early on in the history, the chain may spend time
in transient states. Eventually though, the chain will spend all its time in recurrent
states. But what fraction of the time will it spend in each of the recurrent state? To
answer this question, we need the concept of a stationary distribution.

4 Stationary Distribution

The stationary distribution of a Markov chain, also known as the steady state distri-
bution, describes the long-run behavior of the chain. Such a distribution is defined
as follows.
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Definition 5. A row vector s = (s1, . . . , sM) such that si ≥ 0 and
∑

i si = 1 is a
stationary distribution for a Markov chain with transition matrix Q if∑

i

siqij = sj

or equivalently,
sQ = s.

Often π is used to denote a stationary distribution, but some prefer to reserve
the letter π for some other obscure purpose. The equation sQ = s means that if
X0 has distribution given by s, then X1 also has distribution s. But then X2 also
has distribution s, etc. That is, a Markov chain which starts out with a stationary
distribution will stay in the stationary distribution forever.

In terms of linear algebra, the equation sQ = s says that s is a left eigenvector of
Q with eigenvalue 1. To get the usual kind of eigenvector (a right eigenvector), take
transposes. Writing A′ for the transpose of any matrix A, we have Q′s′ = s′.

For example, if Q =

(
1/3 2/3
1/2 1/2

)
, then (3/7, 4/7) is a stationary distribution since

(
3/7 4/7

)(1/3 2/3
1/2 1/2

)
=
(
3/7 4/7

)
.

This was obtained by finding the eigenvector of Q′ with eigenvalue 1, and then
normalizing (by dividing by the sum of the components).

But does a stationary distribution always exist? Is it unique? It turns out
that a stationary distribution always exists. (Recall that we are assuming a finite
state space; there may be no stationary distribution if the state space is infinite.
For example, it can be shown that if Xn is a random walk on the integers, with
Xn = Y1 + Y2 + · · · + Yn where Yj are i.i.d. with P (Yj = −1) = P (Yj = 1) = 1/2,
then the random walk X1, X2, . . . does not have a stationary distribution.)

There are in fact examples where there is not a unique stationary distribution,
e.g., in the Gambler’s Ruin problem. But under the reasonable assumption that
it is possible to get from any state to any other state, then there will be a unique
stationary distribution.

Definition 6. A Markov chain with transition matrix Q is irreducible if for any two
states i and j, it is possible to go from i to j with positive probability (in some
number of steps). That is, the (i, j) entry of Qn is positive for some n. The chain is
reducible if it is not irreducible.
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The chain in Figure 1 is irreducible (in terms of the picture, check that it’s possible
to go from anywhere to anywhere following the arrows; in terms of the transition
matrix, note that all the entries of Q5 are positive). The chain in Figure 2 is reducible
since it is never possible to go from state 4 back to state 3 in any number of steps.

Theorem 7. Any irreducible Markov chain has a unique stationary distribution. In
this distribution, every state has positive probability.

Definition 8. The period of a state i in a Markov chain is the greatest common
divisor of the possible numbers of steps it can take to return to i when starting at
i. That is, it is the greatest common divisor of numbers n such that the (i, i) entry
of Qn is positive. A state is called aperiodic if its period is 1, and the chain itself is
called aperiodic if all its states are aperiodic, and periodic otherwise.

For example, the “clockwork” behavior of states 1, 2, 3 in Figure 2 makes them
periodic with period 3. In contrast, all the states in Figure 1 are aperiodic, so that
chain is aperiodic.

Theorem 9. Let X0, X1, . . . be an irreducible, aperiodic Markov chain with station-
ary distribution s and transition matrix Q. Then P (Xn = i) converges to si as
n→∞. In other words, Qn converges to a matrix in which each row is s.

Therefore, after a large number of steps, the probability that the chain is in state
i is close to the stationary probability si. We can also use the stationary distribution
to find the average time between visits to a state i, and vice versa.

Theorem 10. Let X0, X1, . . . be an irreducible Markov chain with stationary distri-
bution s. Let ri be the expected time it takes the chain to return to i, given that it
starts at i. Then si = 1/ri.

In the 2 × 2 example on the previous page, this says that in the long run, the
chain will spend 3/7 of its time in state 1 and 4/7 of its time in state 2. Starting at
state 1, it will take an average of 7/3 steps to return to state 1. The powers of the
transition matrix converge to a matrix where each row is the stationary distribution:(

1/3 2/3
1/2 1/2

)n

→
(

3/7 4/7
3/7 4/7

)
as n→∞.

In general, it may be computationally difficult to find the stationary distribution
when the state space is large. Here are two important cases where working with
eigenvalue equations for large matrices can be avoided.
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Proposition 11. If each column of the transition matrix Q sums to 1, then the uni-
form distribution over all states, (1/M, 1/M, . . . , 1/M), is a stationary distribution.

Proof. Assuming each column sums to 1, the row vector v = (1, 1, . . . , 1) satisfies
vQ = v. It then follows that (1/M, 1/M, . . . , 1/M) is stationary.

For example, ifQ is a symmetric matrix (i.e., qij = qji), then (1/M, 1/M, . . . , 1/M)
is stationary. We now define reversible Markov chains, which intuitively have the
property that they “look the same” if time is reversed (if the chain starts at the
stationary distribution), and which are much nicer to work with than general chains.

Definition 12. Let Q = (qij) be the transition matrix of a Markov chain, and that
there is s = (s1, . . . , sM) with si ≥ 0,

∑
i si = 1, such that

siqij = sjqji

for all states i, j. This equation is called the reversibility or detailed balance condition,
and we say that the chain is reversible with respect to s if it holds.

Proposition 13. Suppose that Q = (qij) is a transition matrix which is reversible
with respect to s = (s1, . . . , sM). Then s is a stationary distribution for the chain
with transition matrix Q.

Proof. We have ∑
i

siqij =
∑
i

sjqji = sj
∑
i

qji = sj,

where the last equality is because each row sum of Q is 1. Thus, s is stationary.

Example 14. Consider a random walk on an undirected network, where a wanderer
randomly traverses edges. From a node i, the wanderer randomly picks any of the
edges at i, with equal probabilities, and then traverses the chosen edge. For example,
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in the network shown above, from node 3 the wanderer goes to node 1 or node 2,
with probability 1/2 each.

The degree of a node is the number of edges attached to it, and the degree sequence
of a network with nodes 1, 2, . . . , n is the vector (d1, . . . , dn) listing all the degrees,
where dj is the degree of node j. For example, the network above has degree sequence
d = (4, 3, 2, 3, 2). Note that

diqij = djqji

for all i, j, since qij is 1/di if {i, j} is an edge and 0 otherwise, for i 6= j. By
Proposition 13, we have that the stationary distribution is proportional to the degree
sequence. In the example above, this says that s = ( 4

14
, 3
14
, 2
14
, 3
14
, 2
14

) is the stationary
distribution for the random walk.

Example 15. A birth-death chain on the state space {1, 2, . . . ,M} is a Markov chain
with transition matrixQ = (qij) such that qij > 0 if |i−j| = 1 and qij = 0 if |i−j| ≥ 2.
Intuitively, this says it’s possible to go “one step to the left” and possible to go “one
step to the right” (except at boundaries) but it’s impossible to jump further in one
step. For example, the chain below is a birth-death chain if the labeled transitions
have positive probabilities (except for the “loops” from a state to itself, which are
allowed to have 0 probability). We will now show that any birth-death chain is

1

q(1,1)

2q(1,2)
q(2,1)

q(2,2)

3q(2,3)
q(3,2)

q(3,3)

4q(3,4)
q(4,3)

q(4,4)

5q(4,5)
q(5,4)

q(5,5)

reversible, and construct the stationary distribution. Let s1 be a positive number (to
be specified later). Since we want s1q12 = s2q21, let s2 = s1q12/q21. Then since we
want s2q23 = s3q32, let s3 = s2q23/q32 = s1q12q23/(q32q21). Continuing in this way, let

sj =
s1q12q23 . . . qj−1,j
qj,j−1qj−1,j−2 . . . q21

,

for all states j with 2 ≤ j ≤M . Choose s1 so that the sj’s sum to 1. Then the chain
is reversible with respect to s, since qij = qji = 0 if |i − j| ≥ 2 and by construction
siqij = sjqji if |i− j| = 1. Thus, s is the stationary distribution.
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