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Assessing Bayesian Model Adequacy

� Key steps in evaluating the adequacy of a Bayesian model
include:

1. Assessing the sensitivity of the posterior distribution to the

choice of prior and likelihood.

2. Ensuring that the observed data aligns with predictions based

on the posterior distribution.

3. Evaluating the model’s robustness to outliers and individual

data points.
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Sensitivity Analysis

� Regular sensitivity checks on the data model/likelihood are

recommended but seldom performed.

� One approach is to evaluate how the posterior changes when

selecting alternative models for the data (e.g., Poisson vs.

negative binomial for count data).

� More frequently, we focus on assessing the sensitivity of the

posterior to the prior specification.
� Key questions include:

1. How does the posterior change when we modify the functional

form of the prior?

2. What is the impact when we retain the prior form but alter its

parameters?

� If the posterior remains robust under these variations, we gain

confidence in the reliability of our inferences.
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Sensitivity Analysis: Example 1(a)

� Consider Y1, . . . ,Yn
iid∼ N(µ, σ2) with σ2 known.

� Different prior choices for µ:

� Conjugate prior: µ ∼ N(δ, τ 2)

� Noninformative prior: p(µ) = 1

� Another prior: µ ∼ t-distribution centered at δ

� Key Question: How does the posterior change under these 3

priors?

� Methods for comparison:

1. Plot the posterior distributions for each prior.

2. Examine several posterior quantiles for each prior.
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Local Sensitivity Analysis

� Evaluating a broad class of prior specifications can be

challenging, particularly for multidimensional parameters θ.

� Local sensitivity analysis focuses on the effect of small changes

in the hyperparameter values on the posterior distribution.

� Example 1(a): Y1, . . . ,Yn
iid∼ N(µ, σ2), with σ2 known.

� Conjugate prior for µ: µ ∼ N(δ, τ2)

� Compare the resulting posterior (using plots or quantiles) with
these alternative priors:

� µ ∼ N(δ − τ, τ 2)

� µ ∼ N(δ + τ, τ 2)

� µ ∼ N(δ, 0.5τ 2)

� µ ∼ N(δ, 2τ 2)

� See R example for implementation.
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Local Sensitivity Analysis: Example 1(b)

� Consider Y1, . . . ,Y200 as annual deaths from horse kicks for

10 Prussian cavalry corps over 20 years.

� Model: Yi
iid∼ Poisson(λ), with prior λ ∼ Gamma(α, β).

� Compare posterior distributions for λ under the following
priors:

� λ ∼ Gamma(2, 4)

� λ ∼ Gamma(4, 8)

� λ ∼ Gamma(1, 2)

� λ ∼ Gamma(0.1× 2,
√
0.1× 4)

� λ ∼ Gamma(3× 2,
√
3× 4)

� See the R example with Prussian horse kick data for detailed

analysis.

� Recommendation: If the posterior is highly sensitive to the

prior specification, consider using a more “objective” prior or

be ready to justify your choice of prior.
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Prior Predictive Distribution

� Recall that for a fixed value of θ, the data Y follow the

distribution p(Y |θ).
� Since the true value of θ is uncertain, we should average over

all possible values of θ to obtain a more accurate

representation of the distribution of Y .

� Prior to observing data, the uncertainty in θ is captured by

the prior distribution p(θ).

� For a new data point ynew, the prior predictive distribution

is given by:

p(ynew) =

∫
Θ
p(ynew, θ)dθ =

∫
Θ
p(ynew|θ)p(θ)dθ
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Posterior Predictive Distribution (Post-Sample)

� After observing the data, the uncertainty in θ is updated using

the posterior p(θ|y).
� The posterior predictive distribution for a new data point

ynew is given by:

p(ynew|y) =
∫
Θ
p(ynew|θ, y)p(θ|y)dθ =

∫
Θ
p(ynew|θ)p(θ|y)dθ

(since given θ, ynew is independent of the sample data y)

� This distribution describes how we expect new data to behave.

� If the observed data align well with this pattern, it suggests

that our model and prior are well-chosen.
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Posterior Predictive Distribution: Example 2

� Recall the model: Y1, . . . ,Yn
iid∼ Poisson(λ), with

λ ∼ Gamma(α, β).

� The posterior distribution for λ given y is

λ|y ∼ Gamma (
∑

yi + α, n + β).

� The posterior predictive distribution for a new data point ynew

is:

p(ynew|y) =
∫ ∞

0
p(ynew|λ)p(λ|y)dλ

� Substituting the Poisson pmf and Gamma posterior:

p(ynew|y) =
∫ ∞

0

λynewe−λ

ynew!
×(n + β)

∑
yi+α

Γ (
∑

yi + α)
λ
∑

yi+α−1e−(n+β)λdλ
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Posterior Predictive Distribution: Example 2 (continued)

The posterior predictive distribution for ynew simplifies to:

p(ynew|y) =
(n + β)

∑
yi+α

Γ (
∑

yi + α) Γ(ynew + 1)

∫ ∞

0

λynew+
∑

yi+α−1e−(n+β+1)λ dλ

=
(n + β)

∑
yi+α

Γ (
∑

yi + α) Γ(ynew + 1)

Γ (ynew +
∑

yi + α)

(n + β + 1)ynew+
∑

yi+α

=
Γ (ynew +

∑
yi + α)

Γ (
∑

yi + α) Γ(ynew + 1)

(
n + β

n + β + 1

)∑
yi+α(

1

n + β + 1

)ynew

This is a (generalized) negative binomial distribution, NB(r , p),

with r =
∑

yi + α, p = 1
n+β+1 and has mean and variance as

Mean =

∑
yi + α

n + β

Variance =

∑
yi + α

(n + β)2(n + β + 1)
.
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Posterior Predictive Distribution: Key Insight

� The posterior predictive distribution retains the same mean as

the posterior distribution.

� However, the variance is greater due to additional sampling

uncertainty when predicting a new data point.

� This reflects the variability introduced by drawing a new

value, in addition to the uncertainty in the parameter λ.

� See the R example using the Prussian cavalry data for an

illustration of this concept.
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Posterior Predictive Distribution: Example 1(a)

Model Setup:

� Let Y1,Y2, . . . ,Yn be i.i.d. from N(µ, σ2
0), where σ2

0 is known,

but µ is unknown.

� Place a normal prior on µ, i.e., µ ∼ N(δ, τ2).

p(µ|y) ∝ exp

−1

2

(
1

τ2
+

n

σ2
0

)(
µ−

(
δ

τ2
+

nȳ

σ2
0

)(
1

τ2
+

n

σ2
0

)−1
)2


∝ exp

(
− 1

2σ2
1

(µ− µ1)
2

)
where posterior mean and variance are

µ1 =

(
δ

τ2
+

nȳ

σ2
0

)(
1

τ2
+

n

σ2
0

)−1

and σ2
1 =

(
1

τ2
+

n

σ2
0

)−1
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Posterior Predictive Distribution: Example 1(a)

Predictive Distribution for New Data:

p(ynew|y) ∝
∫ ∞

−∞
exp

(
−1

2

[
(ynew − µ)2

σ2
0

+
(µ− µ1)

2

σ2
1

])
dµ

Expected Value & Variance of the Posterior Predictive Distribution:

E[Ynew|y] = µ1 and Var[Ynew|y] = σ2
0 +

σ2
1

n

Final Form of the Predictive Distribution:

Ynew|y ∼ N

(
µ1, σ

2
0 +

1

n
σ2
1

)
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Posterior Predictive Distribution

Model Diagnostics:

� Simulated data from the posterior predictive distribution can

be used to assess model fit (Gelman et al., 2003).

� Poor fit occurs when replicated data differ significantly from

observed data.

� The posterior predictive distribution enables explicit model

comparison (Chen, Dey, Ibrahim, 2000).
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Posterior Predictive Distribution: Monte Carlo Sampling

� While the form of p(ynew|y) can sometimes be derived

analytically, it is often more practical to sample from

p(ynew|y) using Monte Carlo methods.

� The procedure is:

1. For j = 1, . . . , J, sample µ[j] from p(µ|y).
2. Then, sample y

[j]
new from p(ynew|µ[j]).

� The resulting y
[1]
new, . . . , y

[J]
new form an independent and

identically distributed (iid) sample from p(ynew|y).
� See the R example using the lead data for an implementation.
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Hypothesis Testing: Classical Approach

� Classical hypothesis testing focuses on the p-value: the

probability (under H0) that a test statistic would take a value

as extreme as, or more favorable to, Ha than the observed

value.

� Consider iid data y = y1, . . . , yn from f (y |θ), where
−∞ < θ < ∞.

� We test H0 : θ ≤ 0 vs. Ha : θ > 0 using a test statistic T (Y),

a function of the data.

� If the observed test statistic is T (y) = T ∗, the p-value is:

p-value = P(T (Y) ≥ T ∗|θ = 0) =

∫ ∞

T∗
fT (t|θ = 0)dt

where fT (t|θ) is the density function of T (Y).

21



Issues with Classical Hypothesis Testing

� The p-value averages over possible values of T (and thus

sample values) that did not occur and are unlikely to occur.

� This approach violates the Likelihood Principle, as it relies

on hypothetical data rather than solely the observed data.

� The concept of repeated testing, which motivates the

probabilities of Type I and Type II errors, becomes

questionable in contexts where the study cannot be replicated.

22



Outline

Model Quality/Adequacy

Sensitivity Analysis

Posterior Predictive Distribution

Hypothesis Testing

Classical (Frequentist) Hypothesis Testing

Bayesian Hypothesis Testing

Bayes Factor

BIC

23



The Bayesian Approach to Hypothesis Testing

� In Bayesian hypothesis testing, we compute the posterior

probabilities that θ falls within the null or alternative regions.

� Consider a one-sided hypothesis test of the form:

H0 : θ ≤ c vs. Ha : θ > c

for some constant c , where −∞ < θ < ∞.

� We can assign prior probabilities to θ, such that:

p0 = P(−∞ < θ ≤ c) = P(θ ∈ Θ0)

and

p1 = 1− p0 = P(c < θ < ∞) = P(θ /∈ Θ0)

where Θ0 represents the set of θ-values for which H0 holds.
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The Bayesian Approach (continued)

� The posterior probability that H0 is true is given by:

P(θ ∈ Θ0|y) =
∫ c

−∞
p(θ|y)dθ

� Using Bayes’ Law, this can be expressed as:

P(θ ∈ Θ0|y) =
∫ c
−∞ p(y|θ)p0dθ∫ c

−∞ p(y|θ)p0dθ +
∫∞
c p(y|θ)p1dθ

� The denominator is the marginal likelihood of Y, which

normalizes the posterior distribution.
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The Bayesian Approach: Simplified with Uninformative Priors

� Often, we use an uninformative prior where p0 = p1 =
1
2 .

� In this case, the posterior probability P(θ ∈ Θ0|y) simplifies

to:

P(θ ∈ Θ0|y) =
∫ c
−∞ p(y|θ)dθ∫∞
−∞ p(y|θ)dθ

� This simplifies the calculation, focusing on the ratio of the

integral over the null region to the total likelihood of the data.
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Hypothesis Testing Example: Coal Mining Strike Data

� Example 1: Coal mining strike data

� Let Y represent the number of strikes in a sequence before

cessation.

� We have data y1, . . . , y11 for 11 such sequences in France.

� While a Poisson model is natural, the variance in these data

greatly exceeds the mean.

� Thus, we select a geometric model Geometric(θ), where:

f (y |θ) = θ(1− θ)y

� Here, θ is the probability of cessation of the strike sequence,

and yi represents the number of strikes before cessation.

� We use a prior for θ such that:

p(θ) ∝ θ−1(1− θ)−1/2
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Hypothesis Testing Example: Coal Mining Strike Data (contin-

ued)

� The posterior distribution for θ is:

p(θ|y) ∝ p(θ)L(θ|y) = θn−1(1− θ)
∑

yi−1/2

� This is kernel of the Beta(n,
∑

yi + 1/2) distribution.

� We test the hypothesis:

H0 : θ ≤ 0.05 vs. Ha : θ > 0.05

� The posterior probability P(θ ≤ 0.05|y) is:

P(θ ≤ 0.05|y) =
∫ 0.05

0
p(θ|y)dθ

� This is the area to the left of 0.05 in the Beta(n,
∑

yi + 1/2)

density, and can be computed directly or via Monte Carlo

methods.

� See the R example with coal mining strike data. 28



Two-Sided Hypothesis Tests

� Two-sided hypothesis tests take the form:

H0 : θ = c vs. Ha : θ ̸= c

for some constant c .

� A continuous prior on θ is not suitable for this test because it

would lead to:

P(θ ∈ Θ0) = 0 and P(θ ∈ Θ0|y) = 0

for any observed data set y.

� Solution 1: One solution is to place a prior probability mass

on the point θ = c , but many Bayesians find this approach

problematic.

� The difficulty lies in assigning an appropriate value to the

point mass, which can significantly influence the posterior

results.
29



Two-Sided Tests: Solutions

� Solution 2: Define a small ε > 0 such that if θ is within ε of

c , it is considered “practically indistinguishable” from c .

� Set Θ0 = [c − ε, c + ε] and compute the posterior probability

that θ ∈ Θ0.

� Example 1: Testing H0 : θ = 0.10 vs. Ha : θ ̸= 0.10 with

ε = 0.003. Here, Θ0 = [0.097, 0.103] and:

P(θ ∈ Θ0|y) =
∫ 0.103

0.097
p(θ|y)dθ = 0.033

(calculated using R ).

� Solution 3 (mimicking the classical approach): Derive a

100(1 - α)% highest posterior density (HPD) credible interval

for θ. Reject H0 : θ = c at level α if and only if c lies outside

the credible interval.
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Two-Sided Tests: Bayesian Decision Theory

� In Bayesian decision theory, we incorporate the cost of making

incorrect decisions regarding H0 or Ha using a loss function.

� The goal is to evaluate the Bayes risk of a decision rule,

which is the expected loss based on the posterior distribution

of θ.

� This approach provides a framework for making decisions that

account for both the uncertainty in θ and the consequences of

incorrect conclusions.
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The Bayes Factor

� The Bayes Factor provides a way to formally compare two

competing models, say M1 and M2.

� It is similar to testing a “full model” vs. “reduced model”

(e.g., with a likelihood ratio test) in classical statistics.

� However, with the Bayes Factor, one model does not have to

be nested within the other.

� Given a data set y, we compare models:

M1 : f1(y|θ1) and M2 : f2(y|θ2)

� We may specify prior distributions p1(θ1) and p2(θ2), which

lead to prior probabilities for each model p(M1) and p(M2).
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The Bayes Factor (continued)

� By Bayes’ Law, the posterior odds in favor of Model 1 versus

Model 2 is:

p(M1|y)
p(M2|y)

=

∫
Θ1

p(M1)f1(y|θ1)p1(θ1)dθ1
p(y)∫

Θ2
p(M2)f2(y|θ2)p2(θ2)dθ2

p(y)

� Simplifying this, we get:

p(M1|y)
p(M2|y)

=
p(M1)

p(M2)
·
∫
Θ1

f1(y|θ1)p1(θ1)dθ1∫
Θ2

f2(y|θ2)p2(θ2)dθ2

� This gives us:

[posterior odds] = [prior odds]× [Bayes Factor BF (y)]

34



The Bayes Factor (continued)

� Rearranging, the Bayes Factor is:

BF (y) =
p(M1|y)
p(M2|y)

× p(M2)

p(M1)

� This simplifies to:

BF (y) =
p(M1|y)/p(M2|y)
p(M1)/p(M2)

� The Bayes Factor is the ratio of the posterior odds for M1 to

the prior odds for M1.
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The Bayes Factor (continued)

� Note: If the prior model probabilities are equal, i.e.,

p(M1) = p(M2), then the Bayes Factor equals the posterior

odds for M1.

� Note: If p(M1) = p(M2) and the parameter spaces Θ1 and

Θ2 are the same, the Bayes Factor reduces to a likelihood

ratio.

� Note also that in general:

BF (y) =
p(M1|y)
p(M2|y)

× p(M2)

p(M1)
=

p(M1,y)
p(y)p(M1)

p(M2,y)
p(y)p(M2)

=
p(M1, y)

p(M1)

/
p(M2, y)

p(M2)
=

p(y|M1)

p(y|M2)
.

� This shows that the Bayes Factor is the ratio of the

likelihoods under each model.
36



Computing the Bayes Factor with Multiple Parameters

� When models M1 and M2 specify parameter spaces Θ1 and

Θ2 (instead of single values for the parameters θ1 and θ2), the

Bayes Factor BF (y) compares the marginal likelihoods of

each model:

BF (y) =

∫
Θ1

f1(y|θ1)p1(θ1) dθ1∫
Θ2

f2(y|θ2)p2(θ2) dθ2
where

� f1(y|θ1) and f2(y|θ2) are likelihoods under each model

� p1(θ1) and p2(θ2) are priors over parameter spaces

� This integration accounts for all possible parameter values,

weighted by their priors.
� Approximations: For complex models, use methods like:

� Monte Carlo integration

� Importance sampling

� Laplace approximations

� Markov Chain Monte Carlo (MCMC) 37



The Bayes Factor (continued)

� A Bayes Factor much greater than 1 supports Model 1 over

Model 2.

� Jeffreys’ Rules for interpreting the Bayes Factor when Model
1 represents the null model:

� BF (y) ≥ 1: Model 1 supported

� 0.316 ≤ BF (y) < 1: Minimal evidence against Model 1 (Note:

0.316 = 10−1/2)

� 0.1 ≤ BF (y) < 0.316: Substantial evidence against Model 1

� 0.01 ≤ BF (y) < 0.1: Strong evidence against Model 1

� BF (y) < 0.01: Decisive evidence against Model 1

� Clearly, these labels are somewhat arbitrary.
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The Bayes Factor and Posterior Probability of Model 1

� When comparing two models, M1 and M2, the posterior

probability of Model 1 can be expressed i.t.o. the Bayes

Factor BF (y).

� By Bayes’ Rule, P(M1|y) =
P(y|M1)P(M1)

P(y)
.

� Since P(y) = P(y|M1)P(M1) + P(y|M2)P(M2), we can

express P(M1|y) as:

P(M1|y) =
P(y|M1)P(M1)

P(y|M1)P(M1) + P(y|M2)P(M2)

� Using the definition of the Bayes Factor, BF (y) = P(y|M1)
P(y|M2)

, we

can rewrite this as: P(M1|y) =
BF (y) · P(M1)

BF (y) · P(M1) + P(M2)
� Therefore, the posterior probability of Model 1 is:

P(M1|y) =
1

1 + 1
BF (y) ·

P(M2)
P(M1) 39



Example 2(a): Comparing Two Means (Bayes Factor Ap-

proach)

� Data: Blood pressure reduction was measured for 11 patients

who took calcium supplements and 10 patients who took a

placebo.

� The data are modeled as normally distributed with a common
variance:

� Calcium group: Y1j
iid∼ N(µ1, σ

2), j = 1, . . . , 11

� Placebo group: Y2j
iid∼ N(µ2, σ

2), j = 1, . . . , 10

� Consider the two-sided test for whether the mean blood

pressure reduction differs between the two groups:

H0 : µ1 = µ2 vs. Ha : µ1 ̸= µ2

40



Example: Comparing Two Means (continued)

� We will place a prior on the difference of standardized means:

∆ =
µ1 − µ2

σ

with mean µ∆ and variance σ2
∆.

� Consider the classical two-sample t-statistic:

T =
Ȳ1 − Ȳ2√

(n1−1)s21+(n2−1)s22
n1+n2−2

·
√
n∗

where n∗ =
(

1
n1

+ 1
n2

)−1
.

41



Example: Comparing Two Means (continued)

� H0 and Ha define two models for the distribution of the
t-statistic T :

� Under H0, T ∼ t (central) with n1+ n2− 2 degrees of freedom.

� Under Ha, T ∼ noncentral t-distribution with noncentrality

parameter µ∆

√
n∗.

� Using the prior, the Bayes Factor for H0 over Ha is:

BF (y) =
tn1+n2−2(t

∗ | 0, 1)
tn1+n2−2(t∗ | µ∆

√
n∗, 1 + n∗σ2

∆)

where:

� tn1+n2−2(x | µ, σ2): t-distribution density with n1 + n2 − 2

degrees of freedom, noncentrality µ, and variance σ2

� t∗: observed t-statistic

� See the R example to compute BF (y) and P(H0 | y).
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Example 2(a): Comparing Two Means (Gibbs Sampling Ap-

proach)

� We revisit the same data set, now testing whether calcium

yields a better BP reduction than the placebo:

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2

� We set up the following sampling model:

Y1j = µ+ τ + ε1j , j = 1, . . . , 11

Y2j = µ− τ + ε2j , j = 1, . . . , 10

where εij
iid∼ N(0, σ2).

� Hence, µ1 = µ+ τ and µ2 = µ− τ .

43



Example: Comparing Two Means (continued)

� We assume independent priors for µ, τ , and σ2:

µ ∼ N(µµ, σ
2
µ), τ ∼ N(µτ , σ

2
τ ), σ2 ∼ IG

(ν1
2
,
ν1ν2
2

)
� The Gibbs sampling process iteratively samples from the
following full conditional distributions:

� µ|y1, y2, τ, σ2 ∼ Normal

� τ |y1, y2, µ, σ2 ∼ Normal

� σ2|y1, y2, µ, τ ∼ Inverse Gamma (IG)

� Recall that each conditional distribution leverages the latest

sampled values for the other parameters, creating a Markov

chain that approximates the joint posterior distribution.

� The specific parameters for these distributions can be found in

the accompanying R code.
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Full Conditional Distributions in Gibbs Sampling

� Conditional distribution for σ2:

σ2 | y1, y2, µ, τ ∼ IG

(
ν1 + n1 + n2

2
,

ν1ν2 +
∑n1

j=1(y1j − µ− τ)2 +
∑n2

j=1(y2j − µ+ τ)2

2

)
� Conditional distribution for µ:

µ | y1, y2, τ, σ2 ∼ N

 µµ

σ2
µ
+

∑n1
j=1(y1j−τ)+

∑n2
j=1(y2j+τ)

σ2

1
σ2
µ
+ n1+n2

σ2

,
1

1
σ2
µ
+ n1+n2

σ2


� Conditional distribution for τ :

τ | y1, y2, µ, σ2 ∼ N

 µτ

σ2
τ
+

∑n1
j=1(y1j−µ)−

∑n2
j=1(y2j−µ)

σ2

1
σ2
τ
+ n1+n2

σ2

,
1

1
σ2
τ
+ n1+n2

σ2


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Derivation of the Posterior Conditionals (Sketch)

Model Setup:

� Two Groups with Measurements:

Y1j = µ+ τ + ε1j , j = 1, . . . , n1

Y2j = µ− τ + ε2j , j = 1, . . . , n2

where εij ∼ N(0, σ2).

� This implies:

Y1j ∼ N(µ+ τ, σ2) and Y2j ∼ N(µ− τ, σ2)

Prior Distributions:

� Independent priors for µ, τ , and σ2:

µ ∼ N(µµ, σ
2
µ), τ ∼ N(µτ , σ

2
τ ), σ2 ∼ IG

(ν1
2
,
ν1ν2
2

)
� Recall that IG denotes the Inverse Gamma distribution, which

is commonly used as a prior for variance parameters. 46



Derivation of the Posterior Conditionals (Sketch)

� The joint posterior distribution of µ, τ , and σ2 is

proportional to the likelihood times the prior:

p(µ, τ, σ2 | y1, y2) ∝ p(µ) · p(τ) · p(σ2) · p(y1, y2 | µ, τ, σ2)

� Conditional distribution for σ2 given µ, τ , and the data is

derived from combining the likelihood and the prior for σ2:

p(σ2 | µ, τ, y1, y2) ∝ p(y1, y2 | µ, τ, σ2) · p(σ2) and simplifying

further.

� Conditional distribution for µ given τ , σ2, and the data is

derived from combining the likelihood and the prior for µ.

p(µ | τ, σ2, y1, y2) ∝ p(y1, y2 | µ, τ, σ2) · p(µ) and simplifying.

� Conditional distribution for τ given µ, σ2, and the data is

derived from combining the likelihood and the prior for τ .

p(τ | µ, σ2, y1, y2) ∝ p(y1, y2 | µ, τ, σ2) · p(τ) and simplifying.
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Example: Comparing Two Means (continued)

� R Example: A Gibbs Sampler can be used to obtain

approximate posterior distributions for µ and, more

importantly, for τ .

� Note that:

P(µ1 > µ2|y) = P(τ > 0|y)

� Additionally, we can compute the posterior predictive

probability:

P(Y1 > Y2)

� These results provide insight into the effectiveness of calcium

in reducing blood pressure compared to the placebo.
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Advantages of Bayes Factor

� Bayesian hypothesis testing enables researchers to

discriminate evidence of absence from absence of evidence.

� Bayesian results are relatively straightforward to interpret and

communicate.

� Bayes factor hypothesis testing encourages researchers to

quantify evidence on a continuous scale.

� For most statistical scenarios, Bayes factor hypothesis testing

is now relatively easy.

� Bayesian inference allows researchers to monitor the results as

the data accumulate.

� Bayes factor hypothesis testing allows researchers to include

prior knowledge for a more diagnostic test.

� Models compared do not have to be nested.
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Issues with Bayes Factors

� Note: When an improper prior (one that does not integrate

to a finite number over its support) is used for θ, the Bayes

Factor is not well-defined.

� Recall that BF (y) = Posterior Odds for M1
Prior Odds for M1

, and the “prior odds”

is meaningless for an improper prior.

� Several methods exist to define types of Bayes Factors with

improper priors (e.g., Local Bayes Factors, Intrinsic Bayes

Factors, Partial Bayes Factors, Fractional Bayes Factors), but

none are ideal.

� One criticism of Bayes Factors is the (implicit) assumption

that one of the competing models (M1 or M2) is correct.

� Another criticism is that the Bayes Factor depends heavily on

the choice of prior.
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Outline

Model Quality/Adequacy

Sensitivity Analysis

Posterior Predictive Distribution

Hypothesis Testing

Classical (Frequentist) Hypothesis Testing

Bayesian Hypothesis Testing

Bayes Factor

BIC
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The Bayesian Information Criterion (BIC)

� The BIC can be used as a substitute for the Bayes factor to

compare two (or more) models.

� Conveniently, the BIC does not require specifying priors.

� For parameters θ and data y, the BIC is calculated as:

BIC = −2 log L(θ̂|y) + p log(n)

where p is the number of free parameters in the model, and

L(θ̂|y) is the maximized likelihood given the observed data y .

� Good models have relatively small BIC values:

� A small value of −2 log L(θ̂|y) indicates a good fit to the data.

� A small value of the “overfitting penalty” term p log(n)

indicates a simple, parsimonious model.
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The BIC: Comparing Two Models

� To compare two models M1 and M2, we calculate:

S = −1

2
(BICM1 − BICM2)

= log L(θ̂1|y)− log L(θ̂2|y)−
1

2
(p1 − p2) log(n)

� A small value of S would favor M2, while a large S would

favor M1.

� As n → ∞:
S − log(BF (y))

log(BF (y))
→ 0

� For large n, we have the approximation:

BICM1 − BICM2 = −2S ≈ −2 log(BF (y))
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The BIC: Additional Notes

� Differences in BIC values can be used to compare several

non-nested models.

� The BIC should only be trusted as a substitute for Bayes
Factors when:

1. No reliable prior information is available.

2. The sample size is quite large.

� See R examples:

� (1) Calcium data example.

� (2) Regression example on the Oxygen Uptake data set.
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BIC vs AIC - Overview

� AIC (Akaike Information Criterion) and BIC (Bayesian

Information Criterion) are model selection tools balancing

model fit and complexity.
� AIC formula: AIC = −2 log(L) + 2k

� L is the likelihood of the model, k is the number of parameters.

� AIC penalizes complexity by 2k , aiming to balance fit and

simplicity.

� BIC formula: BIC = −2 log(L) + k log(n)
� n is the sample size.

� BIC uses k log(n), imposing a stronger penalty as n grows.

� AIC - Based on information theory, aims to minimize the

Kullback-Leibler (KL) divergence between the true model and

estimated model.

� BIC - Based on Bayesian principles, approximates the

posterior probability of a model, penalizing complexity more

strictly as n increases.
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Complexity Penalties

� AIC: Fixed penalty of 2k , regardless of sample size. Often

selects more complex models, especially with small samples.

� BIC: Penalty grows with sample size, k log(n), leading to

simpler models in large datasets.
� Comparison:

� AIC is generally more flexible, often better for prediction.

� BIC is more conservative, often better for finding the true

model structure.

When to Use AIC vs. BIC

� AIC - Preferred for prediction-focused applications; minimizes

out-of-sample error.

� BIC - Suitable for identifying the most likely true model,

particularly useful in scientific contexts.

� Sample Size - BIC’s penalty increases with n, making it more

conservative as sample size grows. 56



Consistency of AIC and BIC

� BIC is Consistent:

� As n → ∞, BIC will identify the true model with high

probability, assuming it’s among the candidates.

� Useful for accurate model selection when the goal is

interpretability.

� AIC is Not Consistent:

� AIC may not identify the true model, even as n grows, due to

its fixed penalty.

� However, AIC is asymptotically efficient, minimizing

prediction error.
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Neuroscientists would need to know and publish whether a 
manipulation does not have an effect as much as whether 
it does. One may use drugs to block a candidate pathway. 

If the drug has an effect, that pathway is involved; if it doesn’t, one 
would like to conclude the pathway is not involved. Or one may alter 
activity in a brain region X and measure behavior B. If de-activating 
X changes B, X is involved in B; if B remains unchanged, one would 
like to conclude that X is not involved in B.

Neuroscience research is characterized by advanced measure-
ment techniques and sophisticated experimental designs, but the 
data analyses almost always employ the standard framework of 
frequentist statistics, featuring P value null-hypothesis significance 
testing (NHST). NHST is arguably appropriate when one wants to 
quantify evidence against the null hypothesis (H0: there is no effect) 
and therefore for the presence of an effect (but see ref. 1); however, 
NHST is problematic when one wants to quantify evidence for 
the null hypothesis. It is notoriously difficult to establish whether 
non-significant results support the null hypothesis (i.e., yield evi-
dence for absence) or are simply not informative (i.e., show absence 
of evidence2–4). NHST biases us to emphasize positive effects, 
because those are the effects it equips us to quantify, and to ignore 
null findings. If we agree that the absence of an effect is important 
information, isn’t this bias unacceptable? Here we aim to highlight 
how an alternative statistical framework—Bayesian inference—can 
resolve this problem in neuroscience practice.

We will first illustrate why it is problematic to quantify evi-
dence for the null hypothesis based on the dominant frequen-
tist approaches. We will then show how Bayesian statistics 
provides a way out of this predicament through simple tutorial-style  
examples of Bayesian t-tests and ANOVA using the open-source 
project JASP5.

The P value predicament
When we conduct a t-test to compare two conditions A and B, 
a resulting P value below a critical threshold α shows that one is 
unlikely to encounter differences this extreme or more if the experi-
mental manipulation had no effect (H0: μA = μB). For a fixed sample 
size, the smaller the P, the more evidence we have against H0. Fisher 
argued that a low P value signals that “either the null hypothesis 

is false, or an exceptionally rare event has occurred.”6 But what if 
we find no significant effect (for example, P = 0.3)? Apart from 
sampling variability (i.e., ‘bad luck’), there are two fundamentally 
different causal explanations for a non-significant P value: the 
manipulation had a non-zero effect, but the sample size was too 
small to detect it (i.e., there was insufficient power); or the manipu-
lation had no effect (i.e., the true effect is zero). When sample size 
is small, either explanation is plausible. As sample size grows, a 
non-significant P value increasingly suggests the manipulation 
did not have an effect (or an effect so small it is not meaningful). 
While a power analysis can help disentangle these alternatives, the 
relationship between sample size, power, P value and evidence for  
H0 is complex enough that we are rightly reticent to draw strong 
conclusions from a non-significant P value. This has been famously 
and elegantly phrased in the antimetabole: ‘absence of evidence 
[read: the data are not informative, the design was underpowered] 
is not evidence of absence [read: the data provide support in favor 
of the null]’7.

Intuitively, one may believe that if lower P values provide more 
evidence against H0, higher P values should provide more evidence 
in favor of H0. We would thus expect that if we simulate truly ran-
dom data with no effect, high P values should be relatively frequent, 
especially with large sample sizes. This, however, is not the case. 
When we draw random samples from two identical distributions 
(i.e., where H0 is true; Fig. 1a leftmost column), P < 0.05 is rare 
(as expected), but all P values are equally likely. As sample size 
increases, and we thus intuitively have more evidence that the two 
distributions have the same mean, high P values do not become 
more frequent (Fig. 1a, leftmost column comparing top and bot-
tom row). Higher P values are thus not a reliable metric for more 
evidence for H0.

Hence, NHST leaves the neuroscientist in a peculiar predica-
ment: significant P values indicate evidence against H0 (but see  
refs. 1,8), but non-significant P values do not allow us to conclude that 
the data support H0. This inherent limitation of P values impedes 
our ability to draw the important conclusion that a manipulation 
has no effect and hence that a particular molecular pathway or brain 
circuitry is not involved or that a particular stimulus dimension 
does not matter for brain activity.

Using Bayes factor hypothesis testing in 
neuroscience to establish evidence of absence
Christian Keysers   1,2 ✉, Valeria Gazzola1,2 and Eric-Jan Wagenmakers   2

Most neuroscientists would agree that for brain research to progress, we have to know which experimental manipulations have 
no effect as much as we must identify those that do have an effect. The dominant statistical approaches used in neuroscience 
rely on P values and can establish the latter but not the former. This makes non-significant findings difficult to interpret: do 
they support the null hypothesis or are they simply not informative? Here we show how Bayesian hypothesis testing can be 
used in neuroscience studies to establish both whether there is evidence of absence and whether there is absence of evidence. 
Through simple tutorial-style examples of Bayesian t-tests and ANOVA using the open-source project JASP, this article aims to 
empower neuroscientists to use this approach to provide compelling and rigorous evidence for the absence of an effect.
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A Bayesian solution
In contrast to frequentist NHST, which focuses exclusively on the 
null hypothesis (H0), Bayesian hypothesis testing aims to quantify 
the relative plausibility of alternative hypotheses H1 and H0 (Box 1).

Figure 2 shows an example of how evidence is computed, using 
a Bayesian approach, for the case of a t-test when the question of 
interest is whether an experimental manipulation has a positive 
effect. This translates into two rival hypotheses: the manipulation 
had no effect versus the manipulation increased the dependent vari-
able. Rather than expressing hypotheses in raw values specific to 
a given experiment, they are expressed using the population stan-
dardized effect size δ (with δ = (μA – μB)/σ). The sceptic’s hypothesis, 
H0: δ = 0, states that the effect is absent, whereas the alternative 
hypothesis, H+: δ > 0, states that the effect is positive (Fig. 2a). Note 
that a ‘one-tailed’ H1 is denoted as H+ to indicate the direction of 
the hypothesized effect. To quantify which hypothesis best predicts 
the data, we quantify the observed effect size d (d = (mA – mB)/s) 
in the data and transform it into a t-value t ¼ d ´

ffiffiffi
n

pð Þ
I

, because 
the distribution of t-values expected for any δ is well known. Next, 
we transform the qualitative hypotheses H0 and H+ into quantita-
tive predictions about the probability of encountering every t-value 
using this t-distribution. This is achieved by assigning prior proba-
bility distributions to δ (Fig. 2b), and then computing the probability 
of each observable t based on these δ-value distributions (Fig. 2c). 
For the sceptic’s H0: δ = 0, the distribution of effect sizes is simply a 
spike at δ = 0 (red in Fig. 2b), and this makes predictions about the 
likelihood of each observable t-value using the same distribution 
that is used in a frequentist t-test with n participants: the Student’s 
t distribution with n – 2 degrees of freedom (red in Fig. 2c). For 
H+: δ > 0, we need to be specific about the probability of each pos-
sible positive δ to become specific about t. The one-tailed nature of 
our hypothesis is reflected in a truncated distribution, with nega-
tive values having zero probability under H+ (ref. 9 p. 283; note that 
two-tailed hypotheses are usually implemented by means of sym-
metrical distributions, for example, the dotted line in Fig. 3b). We 
also know that most neuroscience papers report effect sizes of δ < 
1 (ref. 10), with smaller effect sizes being more common than larger 
effect sizes; this is reflected in a peak for small positive δ and low 
probability for δ > 1. Indeed, that we feel that we need to perform a 
test in the first place corresponds to this presumption that the effect 
size must be fairly small9. These considerations about the plausible 
direction and magnitudes of the effect under H+ generate the prior 
distribution shown in blue in Fig. 2b (see section “Default priors 
provide an objective anchor” for guidance on how to define this 
prior distribution). For each of the hypothesized δ values, we can 
make predictions about t using the non-central t distribution with 
μ = δ. The mixture of these non-central t-distributions associated 

with each δ, weighted by the prior plausibility of that δ, predicts the 
probability of each possible t-value under H+ (blue in Fig. 2c). When 
the data arrive (Fig. 2d), we first calculate the t-value for our data, 
which we will call t1, and then see where t1 falls on the t-distribution 
expected under H0 (red) and under H+ (blue). The traditional fre-
quentist P value corresponds to the area to the right of t1 on the 
red distribution; note that the predictions from H+, indicated by the 
blue distribution, are entirely ignored in the frequentist approach. 
In contrast, for the Bayesian approach, we take the ordinates  
p(t1 | H0) and p(t1 | H+) and calculate the evidence that the data pro-
vide in favor of H+ over H0 as p(t1 | H+) ÷ p(t1 | H0) (Fig. 2e). At 
that specific t1 value, the ratio equals 4, indicating that our data was 
predicted four times better by H+ than H0; we may conclude that 
our data supports H+. The evidence—the relative predictive perfor-
mance of H0 versus H+—is known as the Bayes factor9,11,12 (Box 1). 
We abbreviate it as BF and use subscripts to denote which model is 
in the numerator versus the denominator; thus, BF+0 = p(t1 | H+) ÷ 
p(t1 | H0) and BF0+ = p(t1 | H0) ÷ p(t1 | H+).

If the t-value from our data were to be closer to 0, as exemplified 
by another hypothetical t-value, t2 (Fig. 2e), the ordinates of the red 
and blue distributions would be about equally high, indicating that 
the observed t2 is about equally likely to occur under H0 and H+; 
hence the predictive performance of H0 and H+ is about equal, the 
Bayes factor is near 1, and consequently we have absence of evi-
dence. If the t-value were to fall at t3 (Fig. 2e), this value would be 4 
times more likely to occur under H0 than under H+; consequently, 
BF+0 = ¼, that is, BF0+ = 4, and we may conclude that our data sup-
port H0—in other words, we have some evidence of absence.

Thus, the P value of a frequentist approach has two logical states, 
significant versus not significant, which translate into evidence for 
H1 (“great, I found the effect”) versus a state of suspended disbe-
lief (“I did not find an effect, but it could be because I was unlucky 
or because the effect does not exist or because my sample size was 
too small”), whereas the BF has three qualitatively different logical 
states: BF10 > x (“great, I have compelling evidence for the effect”), 
1/x < BF10 < x (“oops, my data are not sufficiently diagnostic”), BF10 
< 1/x (“great, I have compelling evidence for the absence of the 
effect”). Here x is the researcher-defined target level of evidence. 
The BF should primarily be seen as a continuous measure of evi-
dence. However, since larger deviations from 1 provide stronger 
evidence, Jeffreys proposed reference values to guide the interpreta-
tion of the strength of the evidence9. These values were spaced out 
in exponential half steps of 10, 100.5 ≈ 3, 101 = 10, 101.5 ≈ 30, etc., to 
be equidistant on a log scale. He then compared these values with 
critical values in frequentist t-tests (see Extended Data Fig. 1a for a 
modern equivalent) and χ2 tests, and declared, “Users of these tests 
speak of the 5 per cent point [p = 0.05] in much the same way as I 

Fig. 1 | P value of a t-test and BF+0 as a function of effect size and sample size. a, Each histogram shows the distribution of P values obtained from 
1,000 one-tailed one-sample t-tests based on n random numbers drawn from a normal distribution with mean µ and s.d. = 1. To differentiate levels of 
significance, the first bin was split into multiple bins based on standard critical values. Note how, when there is an effect in the data (i.e., µ > 0, all but 
leftmost column), increasing sample size (downwards) or effect size (rightwards) leads to a leftwards shift of the distribution: more evidence for an effect 
leads to lower P values. In this case, P values <0.05 are considered hits and are shown in green, while P values >0.05 are considered misses and shown 
in red. However, somewhat counterintuitively, the converse does not hold true: in the absence of an effect, (µ = 0, leftwards column), increasing sample 
size does not lead to a rightward shift (increase) of the P values. Instead the distribution is completely flat, with all P values equally likely (note that the 
distribution seems to thin out below 0.05, but this is because we subdivided the last leftmost bin into several bins to resolve levels of significance). In 
this case, P < 0.05 represents false alarms, shown in red, and P > 0.05 represents correct rejections, shown in green. P values are thus not a symmetrical 
instrument: cases with much evidence for H1 (high effect size and sample size) give us quasi-certainty to find a very low P value, whereas cases with 
much evidence for H0 (for example, µ = 0 with n = 100) do not make P values close to 1 highly likely; instead, any P value remains as likely as any other. b, 
Distribution of BF+0 (using r ¼

ffiffiffi
2

p
=2

I
 for the effect size prior Cauchy width) values obtained from 1,000 t-tests based on n random numbers drawn from 

an N(µ,1) normal distribution with mean µ and s.d. = 1. Each histogram has the same bounds specified below the graphs, representing conventional limits 
for moderate and strong evidence. When an effect is absent (μ = 0, leftmost column), evidence of absence (green bars and percentages, BF+0 < 1/3) 
increases with increasing sample size and the false alarm rate is well controlled. When an effect is present (μ > 0), evidence for a positive effect (BF+0 > 
3, green bars and green percentages) increases with sample size and effect size, and misses (BF+0 < 3, red bars and red percentages) are rare (μ = 0.5) or 
absent (μ = 1.2 or 2). When percentages are not shown, they are 0% (red) or 100% (green). Data can be found at https://osf.io/md9kp/.
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should speak of the K = 101/2 [i.e. BF10 = 3] point, and of the 1 per 
cent [p = 0.01], point as I should speak of the K = 101 point [i.e. BF10 
= 10]; and for moderate numbers of observations the points are not 

very different.”9 These reference values remain in use: BF > 3 is con-
sidered moderate evidence for the hypothesis in the numerator (i.e., 
H1 if BF10 > 3), roughly similar to P < 0.05; BF > 10 is considered 
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strong evidence, roughly similar to P < 0.01 (ref. 13). Because BF10 
= 1/BF01, this also defines the bounds for evidence for the hypoth-
esis in the denominator: BF < 1/3 is moderate and BF < 1/10 is 
strong evidence. BF values between 1/3 and 3 indicate that there 
is insufficient evidence to draw a conclusion for or against either 
hypothesis. While these guidelines enable us to reach somewhat dis-
crete conclusions, the magnitude of the BF should be considered as 
a continuous quantity, and the strength of the conclusions expressed 
in the discussion section of a paper should reflect the magnitude of 
the BF. For new discoveries, Jeffreys suggested that x = 10 is more 
appropriate than x = 3; however, each scientist and field will need to 
decide whether to privilege the sensitivity of the test for small sam-

ples or effects by using smaller x values such as 3, or to avoid false 
conclusions by using higher x values such as 10. Regardless, readers 
can judge the strength of the evidence directly from the numerical 
value of BF, with a BF twice as high providing evidence twice as 
strong. In contrast, it can be difficult to interpret an actual P value 
as strength of evidence, as P = 0.01 does not provide five times as 
much evidence as P = 0.05.

Crucially, the three-state system of the Bayes factor allows us to 
differentiate between evidence of absence and absence of evidence. 
This represents a fundamental conceptual step forward in the way 
we interpret data: instead of one outcome (i.e., P < α) that generates 
knowledge, we now have two (i.e., BF10 > x and BF01 > x).

Box 1 | Bayesian updating

The Bayesian formalism describes how an optimal observer up-
dates beliefs in response to data. In the context of hypothesis test-
ing, at the start, observers entertain a set of two or more rival ac-
counts. In the context of a t-test, they would be called hypotheses 
H0 and H1; in the case of an ANOVA, they would be called models. 
Each is specified via parameters we can call θ, for example, the 
effect size δ in a t-test hypothesis or a regression parameter β in 
an ANOVA. Prior to looking at the data, the rival accounts have 
prior probabilities, and the parameter values within each account 
also have prior probabilities. At the level of the accounts, we may 
assume them to be equally believable a priori (for example, prior 
hypothesis probabilities p(H0) = p(H1) = 0.5). At the level of the 
parameters within each account, they are associated with prior 
parameter distributions (for example, H0: δ = 0, H1: d ~ Cauchy; 
Fig. 2). When data become available, the probabilities are reallo-
cated: accounts and parameters-within-accounts that predict the 
data relatively well receive a boost in credibility, whereas those that 
predict the data poorly suffer a decline30. Note the similarity to 
models of reinforcement learning31. Mathematically, this updating 
is done using Bayes’ rule, as we describe below separately for pa-
rameters and accounts.

Updating parameter estimates

p θjdatað Þ|fflfflfflfflffl{zfflfflfflfflffl}
posterior beliefs about θ

¼ p θð Þ|{z}
prior beliefs about θ

´
p datajθð Þ
p datað Þ|fflfflfflfflffl{zfflfflfflfflffl}

predictive updating factor

Here the probability of each possible value of θ within an account 
after seeing the data (i.e., posterior parameter beliefs) are cal-
culated as the product of the prior probability of that value (i.e. 
parameter prior beliefs) times the predictive updating factor. The 
latter reflects how likely the observed data is according to that par-
ticular parameter value divided by the average predictive perfor-
mance across all values of θ weighted by their prior probability, i.e. 
p datað Þ ¼

R
p datajθð Þ  p θð Þdθ

I
. This posterior parameter belief is 

the basis for the credible intervals (CI) that the Bayesian analysis 
provides for the parameters conditional on a given model.

Updating the plausibility of the rival accounts
For two rival accounts of the data (for example, H0 vs H1), 

Bayes’ rule can best be written in the form of odds32:
p H0jdatað Þ
p H1jdatað Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

posterior odds for H0vs H1

¼ p H0ð Þ
p H1ð Þ|fflffl{zfflffl}

prior odds for H0vs H1

´
p datajH0ð Þ
p datajH1ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

predictive updating factor

This equation shows that the change from prior hypothesis odds 
to posterior hypothesis odds is brought about by the predic-
tive updating factor—commonly known as the Bayes factor12. 

For instance, assume the rival hypotheses are equally plausible 
a priori (i.e., p(H0) = p(H1) = 0.5). The prior hypothesis odds are 
then equal to one. If the predictive updating factor is 10 (i.e., the 
observed data is 10 times more likely under H0 than under H1), 
this means that the posterior odds are then also 10. Given that 
for mutually exclusive hypotheses p(H0)+p(H1) = 1, these odds 
mean that the data have increased the probability of H0 from 0.5 
(the prior hypothesis probability) to 10/11 ≈ 0.91 (the posterior 
H0 probability).

The Bayes factor quantifies the degree to which the data warrant 
a change in beliefs, and it therefore represents the strength of 
evidence that the data provide for H0 vs H1. Note that this strength 
measure is symmetric: evidence may support H0 just as it may 
support H1; neither of the rival hypotheses enjoys a special status.

For a neuroscientist who wants to know whether or not their 
manipulation had an effect, the posterior odds might seem like 
the most obvious metric, as they reflect the plausibility of one 
hypothesis over another after considering the data. However, 
these posterior odds depend both on the evidence provided by 
the data (i.e., the Bayes factor) and the prior odds. The prior odds 
capture subjective beliefs before the experiment and introduce 
an often-undesirable element of subjectivity that could bias the 
conclusions drawn from the posterior beliefs. Scientists who 
embrace a certain theoretical standpoint and those who do not 
might fiercely disagree on these prior odds while agreeing on 
the evidence, that is, the extent to which the data should change 
their beliefs. As beliefs are considered less valuable for scientific 
reporting than evidence, the data-informed Bayes factor is the less 
controversial and thus favored metric to report.

There are three broad qualitative categories of Bayes factors. 
First, the Bayes factor may support H1; second, the Bayes factor 
may support H0; third, the Bayes factor may be near 1 and support 
neither of the two rival hypotheses. In the second case we have 
‘evidence of absence’, and in the third care we have ‘absence of 
evidence’ (see also ref. 2). More fine-grained classification schemes 
have been proposed16.

To develop an intuition for the continuous strength of evidence 
that a Bayes factor provides, one may use a probability wheel. 
Examples are shown in Fig. 3b. To construct the wheel, we have 
assumed that H0 and H1 are equally likely; the red part in the 
wheel is then the posterior probability for H1, and the blue part 
is the complementary probability for H0. Now pretend that the 
wheel is a pizza, with the red area covered with pepperoni and the 
blue area covered with mozzarella. Imagine that you poke your 
finger blindly onto the pizza and that it comes back covered in the 
non-dominant topping (in this case, pepperoni). How surprised 
are you? Your level of imagined surprise is an indication for the 
strength of evidence that a Bayes factor provides. We additionally 
compare the BF with traditional P values in Extended Data Fig. 1.
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Figure 1b shows how a Bayesian t-test performs compared to a 
frequentist t-test (Fig. 1a). The target level of evidence was set at x = 3,  
considered similar to the α-level of 0.05 in Fig. 1a (ref. 9). When an 
effect is absent (μ = 0), the Bayesian test will seldom come to the 
erroneous conclusion that an effect is present (less than 4% BF+0 > 3),  
similarly to the frequentist approach. However, unlike the frequen-
tist approach, the Bayesian t-test provides increasing evidence for 
the absence of an effect (see green percentages in Fig. 1b) with 
increasing sample size. Similarly, evidence for an effect increases as 
sample size or effect size increases (Extended Data Fig. 1b). Hence, 
unlike the frequentist P value, the BF has a symmetric property of 
quantifying evidence for the presence or the absence of an effect 
that scales with evidence in either direction, be it due to increased 
sample size or effect size. In each case, inconclusive cases (i.e., 
absence of evidence, defined here as 1/3 < BF < 3) become increas-
ingly rare as sample size increases.

Figure 1b also shows the statistical power to provide evidence for 
or against an effect. When an effect is absent, evidence of absence 
(BF+0 < 1/3) in the presence of noise is limited when sample size is 
very small (40% at n = 5), but reasonable in sample sizes often used 
in neuroscience (n = 20–100). When an effect is present, evidence 
for the presence of an effect (BF+0 > 3) is slightly less frequent than 
that of the frequentist approach (P < 0.05), but not dramatically dif-
ferent. However, as sample sizes become very large, the Bayes factor 
and P values diverge more dramatically: P values will become signif-
icant even for arguably irrelevantly small effect sizes (for example, at 
n = 1,000, d = 0.05, t(999) = d

ffiffiffiffiffiffiffiffiffiffi
1000

p
I

, P = 0.05), whereas the BF con-
tinues to require more relevant effect sizes (Extended Data Fig. 1b).  
It should be noted that for two-tailed tests, evidence for the null 
hypothesis becomes substantially harder to provide and requires 
larger sample sizes because the predictions of the null hypothesis 
are directly flanked by the high likelihood of finding small effect 
sizes in either direction under H1.

If Bayesian inference is so simple and informative, why isn’t 
it used more? We speculate that one of the main reasons is prag-
matic: until recently it was difficult to conduct Bayesian analyses 
for standard statistical scenarios. However, a number of packages 
are now available that make Bayesian hypothesis tests easier to per-
form. Here we focus on the multiplatform open-source program 
JASP (Jeffreys’s Amazing Statistics Program; https://jasp-stats.org), 
which uses an accessible graphical user interface; the R-package 
BayesFactor14 is a powerful alternative.

JASP, a convenient tool for Bayesian inference
In the JASP graphical user interface, developed to facilitate the adop-
tion of Bayesian inference, analyses are selected from drop-down 
menus, variables are dragged and dropped into windows, and out-
put is generated on the fly. Increasingly detailed analyses can be 
executed by ticking checkboxes. As a result, for many statistical sce-
narios, a comprehensive Bayesian (re)analysis can be performed in a 
matter of seconds. The examples below showcase the ways in which 
the output from such Bayesian analyses should be interpreted and 
how they allow researchers to go beyond the conclusions from the 
classical frequentist P values. On the Open Science Forum (https://
osf.io/md9kp/), we provide csv files associated with the examples 
presented below, as well as R code to replicate the BF values for 
power users to apply such analyses to a large number of units (for 
example, to classify hundreds of neurons recorded using calcium 
imaging into those responding and those not responding to a par-
ticular stimulus) and a video illustrating how to use JASP.

Example of a two-sample t-test
To illustrate the Bayesian t-test, we use an example inspired by 
ref. 15, in which we hypothesized that the anterior cingulate cortex 
(ACC) is critical for ‘emotional contagion’ in rats and that deacti-
vating the ACC by locally injecting muscimol should thus reduce  
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Fig. 2 | Hypothesis testing under the Bayesian framework. a, Two 
competing qualitative hypotheses are expressed in terms of a test 
parameter, such as the population effect size δ. H+ represents a directional 
hypothesis of a positive effect size. b, The two rival hypotheses are 
formulated in terms of specific probability distributions expressing the 
plausibility or probability of each effect size value. c, Each effect size 
distribution is transformed into expected t-values. For H0, this is simply 
the standard t-distribution used in frequentist t-tests. For H+, for each 
hypothesized effect size, a non-central t-distribution with that effect 
size is multiplied with the hypothesized probability of that effect size in 
b. All of these weighted non-central t-distributions are then summed 
together to get the distribution in c. d, After the data is obtained, the 
observed t-value (t1) can be interrogated in each distribution. Note that, 
in frequentist statistics, the P value is derived from the H0 distribution 
alone, as the area where t > t1. e, The likelihood of t1 under H0 and H+ is 
then compared to calculate the BF+0. Here we illustrate three examples 
of observed t-values. At an observed value of t1, the blue distribution is 
4 times higher than the red; hence BF+0 = 4, and we have (moderate) 
evidence for H+. At an observed value of t2, where the two distributions 
are equal, BF+0 = 1 and we have absence of evidence. At an observed value 
of t3, the red distribution is 4 times higher than the blue; hence BF0+ = 
4 and we have moderate evidence for H0. Here we illustrated one-tailed 
hypotheses, as these respect the directional nature of the underlying 
theory and yield more diagnostic predictions. More agnostic two-tailed 
hypotheses are calculated using the same principles, but the truncated 
blue distribution in b is then replaced with a non-truncated, symmetric 
distribution, as shown in the dotted line in Fig. 3b. Data can be found at 
https://osf.io/md9kp/.
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emotional contagion compared to injecting saline. The injected 
animal observed a conspecific receive electroshocks (ShockObs), 
and its freezing was measured as an index of emotional contagion. 
There was a non-social control condition in which the injected ani-
mal was exposed to a shock-conditioned tone (CS playback). To 
illustrate how to analyze this kind of design using Bayesian statis-
tics, we generated two synthetic data sets (see additional materials 
on OSF (https://osf.io/md9kp/) for muscimol1.csv and muscimol2.
csv) that illustrate two slightly different scenarios. We use simu-
lated data rather than the actual data from the paper to guide the 
reader though alternative scenarios and to allow the reader to 
modify the data and test the effect this has on the analysis (see 
additional materials on OSF (https://osf.io/md9kp/) for the script 
GenerateMuscimolData.R used to generate the data).

Video 1 (see additional materials at https://osf.io/md9kp/) shows 
how to setup the analyses in JASP to examine the data of Muscimol1.
csv. Our main analyses of interest are two independent sample 
t-tests on the freezing measures that compare H+: saline > mus-
cimol against H0: saline = muscimol separately for the ShockObs 
and CS conditions. To assess the specificity of the effect, we will use 
an ANOVA (see below). We use a one-tailed alternative hypothesis 
because deactivating the ACC should reduce (not enhance) freezing 
in the muscimol condition and hence lead to higher freezing in the 
saline condition. The frequentist approach can also be performed 
in JASP by selecting ‘Independent Samples T-Test’. Thus, this sin-
gle package enables scientists to combine frequentist and Bayesian 
approaches on the same data set.

The frequentist approach shows that for ShockObs, muscimol 
reduced freezing significantly (t(38) = 3.961, P < 0.001), i.e., the 
observed difference in freezing is unlikely under H0. For CS, the 
result is nonsignificant (t(38) = –0.519, P = 0.7), which could sig-
nal evidence for absence or absence of evidence. To adjudicate 
between these alternative interpretations, we perform the ‘Bayesian 
Independent Samples T-Test’. Here too we select ShockObs and CS 
as dependent variables, group as the Grouping Variable, and the 
one-tailed group1>group2 analysis (after selecting saline as group1 
and muscimol as group2 in the data viewer as shown in Video1). 
The results are shown in Fig. 4.

In the input panel on the left, we select BF10 as the output, 
i.e., p(data | H+) ÷ p(data | H0), with a one-tailed hypothesis of 
group1[saline] > group2[muscimol]. The results table on the right 
summarizes the main outcomes. For ShockObs, BF+0 = 162.282, 
indicating that the data are 162 times more likely under H+ than 
under H0. The data thus provides what is considered extremely 
strong evidence for our hypothesized reduction in socially trig-
gered freezing following ACC deactivation. For CS, BF+0 = 0.223. 
This value is below 1/3 and, according to the classification scheme 
by Jeffreys9,16, our data thus provide moderate evidence for H0, i.e., 
that ACC deactivation does not lead to a reduction of non-socially 
triggered freezing. Switching to option BF01 in the lefthand  
panel inverts the Bayes factor: now BF0+ for CS equals 4.494 
(1/0.223), meaning that the data are 4.5 times more likely under H0 
than under H+.

For the muscimol2 data, the frequentist t-test again reveals 
a significant reduction in ShockObs (t(38) = 3.8, P < 0.001) and a 
non-significant result for CS (t(38) = 1.2, P = 0.11). The Bayesian 
analysis confirms that the data provide extremely strong evidence 
for a reduction of freezing for ShockObs (BF+0 = 120). However, 
this time, for CS, BF+0 = 0.97. This result indicates an absence of 
evidence (in contrast to muscimol1, which showed moderate evi-
dence of absence).

Example of an ANOVA
We can also examine whether muscimol had a greater effect on 
ShockObs than on CS by assessing evidence for an interaction 
between group (saline vs muscimol) and condition (ShockObs vs 
CS)17,18. In a frequentist approach, we can conduct this analysis 
using the JASP ‘Repeated Measures ANOVA’ (rmANOVA) menu 
option. The results show significant main effects of condition (F(1,38) 
= 14.6, P < 0.001) and group (F(1,38) = 5.4, P = 0.026) and a signifi-
cant condition × group interaction (F(1,38) = 14.3, P < 0.001). We can 
also perform this analysis using the ‘Bayesian Repeated Measures 
ANOVA’ menu option (Fig. 5), the functionality of which is based 
on the BayesFactor R package19.

The Bayesian approach to the rmANOVA is to compare the pre-
dictive performance of models with and without each of the factors 
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Fig. 3 | Illustration of the data for the two simulated scenarios. Muscimol1 data were simulated using µ = 70 and σ = 20 for all conditions (imposing a 
floor of 0 and a ceiling of 100), except ShockObs (in blue) under muscimol, which was simulated using µ = 40. Muscimol2 data were simulated using the 
same parameters except for CS (in orange) under muscimol, which had μ = 65 and σ = 40. Based on these data, we should find evidence for H+: saline > 
muscimol in all cases for ShockObs. For CS (orange), muscimol1 should reveal evidence for H0 (evidence of absence) given that data were drawn from the 
same μ = 70, σ = 20 distributions. For muscimol2, CS was drawn from different distributions for saline and muscimol, but with n = 20, it might be hard to 
adjudicate the difference, and we might thus expect absence of evidence. Data can be found at https://osf.io/md9kp/. Plots are violin plots, with the gray 
bar showing the middle two quartiles.
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and interactions. Conceptually, it starts from a null model that pre-
dicts data based on a constant for each subject without considering 
any experimental factors. It computes the likelihood ℒnull of that null 
model, i.e., the probability of the observed data D under this null 
model. It then also calculates the likelihood ℒgroup of a model addi-
tionally including an effect of group. If the Bayes factor calculated as 
ℒgroup/ℒnull is >1, there is evidence for the effect of group. If BF < 1,  
i.e., the null model outperforms the more complex group model, 
there is evidence for the absence of an effect of group. If BF ≈ 1 we 
have evidence of absence. This Bayes factor can be interpreted using 
the same bounds discussed in Fig. 2 and Extended Data Fig. 1.

Complex models always fit data at least as well as simpler mod-
els. How can a simpler model thus ever outperform a more com-
plex model in the Bayesian sense? The answer is simple: a Bayes 
factor model comparison does not compare the fit of models for 
a specific parameter value (i.e., the maximum likelihood) but the 
predictive performance of models across all plausible parameter 
values (i.e., average likelihood)20–22. If we consider the models D = 
subject + β × group (i.e., the group model) and D = subject (i.e., 
the null model), the average likelihood of the data under the mod-
els is the weighted average of the probability of the data D under 
the full range of plausible values assigned to β in the parameter 
prior: L ¼

R
P Djβð ÞP βð Þdβ

I
. Hence, the null model’s L

I
 is calculated 

entirely at β = 0, whereas the group model’s L
I
 considers β = 0, but 

averaged with the predictions from all other plausible β values. The 
effect of this integration over β can be appreciated in Extended Data 
Fig. 2. Essentially, because the null model concentrates all its pre-
dictions on β = 0, small differences across the two groups are more 
likely under this null model, providing evidence for absence.

Figure 5 applies this logic to our data. The top table in the output 
panel indicates all the models that are being considered and com-
pared. This includes the abovementioned null model with subject 

constants only, a model that adds the effect of condition, one adding 
only group, one adding both main effects and one also including 
the interaction. The P(M) column indicates the prior probabilities 
of these various rival models, which are set equal so as not to influ-
ence the outcome of the test. Note that this model prior probability 
reflects how likely you are to believe each model to be true and is 
different from the parameter prior distribution that characterizes 
each model (Box 1). Next, we see how likely each model is after hav-
ing seen our data, P(M|data). This shows that the full model with 
the interaction (condition + croup + condition × group) is by far 
the most likely (P(M|data) = 0.983). The following columns indi-
cate the relative likelihood of each model compared with the aver-
age of all other models (BFM) or compared with the best or worst 
model (BF10). For instance, BFM for the null model is P(M|data) for 
the null model divided by the average of the P(M|data) over all other 
models. For BF10, the calculation depends on what is chosen in the 
menu ‘Order’. Selecting ‘Compare to null model’, as we did in Fig. 
5, shows the models with the null model on top, and all other BF10 
values can be read as describing how much more likely that model 
is than the null model. If one selects “Compare to best model”, the 
best model is shown first, and all other BF10 values express likeli-
hood relative to that best model. Switching to BF01 then inverts the 
BF and expresses how much better the best model is than each of 
the other models. The error column estimates the margin of error 
in the BF computation.

The analysis showed that amongst the tested models, the full 
model is the most likely in the light of our data, but which of its com-
ponents improved its predictive performance? To explore this ques-
tion systematically, select the ‘Effects’ option, which generates the 
‘Analysis of Effects’ table (Fig. 5). This analysis uses the P(M|data) 
column of the model comparison above to quantify the contribu-
tion of each component. When selecting the default option ‘across 
all models’, for each component, the BFincl (last column) is calculated 
as p(models with that factor | data) ÷ p(models without that factor | 
data). For condition for instance, BFincl is the average P(M|data) for 
all models with condition (i.e., condition, condition + group, and 
condition + group + condition × group) divided by that of all mod-
els without condition (i.e., null model and group). Selecting ‘across 
matched models’ restricts the comparison to models that only differ 
in the presence or absence of a particular component, and for con-
dition, BFincl is then the average P(M|data) for condition and con-
dition + group divided by the average P(M|data) of their matched 
models, i.e., models identical except for the absence of condition, 
namely the null and group models. In this calculation, the inter-
action model is not included in the nominator, because it lacks a 

Fig. 4 | Screenshot from the ‘Bayesian Independent Samples T-Test’ in 
JASP. Top right: the Bayes factor for the two variables, followed by the 
inferential plot showing the credible interval of the effect size and the 
sequential analysis. The inferential plots shown on the right are discussed 
in sections “Default priors provide an objective anchor” and “Accumulation 
of evidence.” Data can be found at https://osf.io/md9kp/, including a 
muscimol1.jasp file that can be loaded to replicate the analysis within JASP 
or to view the results of the analysis within OSF.

Fig. 5 | Screenshot of the Bayesian repeated measures ANOVA of 
muscimol1. Data can be found at https://osf.io/md9kp/, including a 
muscimol1.jasp file that can be loaded to replicate the analysis within JASP 
or to view the results of the analysis within OSF.
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matched model group + condition × group. We recommend the 
‘matched model option’ as it provides a more conservative estimate 
of each factor’s contribution.

This effects table then allows us to draw inferences about the 
contribution of each factor and interaction in the spirit of a tradi-
tional ANOVA. BFincl for condition (similarly to the main effect of 
condition) is 37.5, indicating that the models including the factor 
conditions are much (37.5 times) more likely than those not includ-
ing it. The BFincl for group (main effect of group) is 1.7, showing 
that models with group are marginally more likely than those with-
out that main effect, but the evidence is too weak to be conclusive. 
BFincl for the interaction is 96, meaning that the full model with the 
interaction is 96 times more likely than that without. This effect of 
interaction provides extremely strong evidence that deactivating 
the ACC has a much stronger impact on ShockObs than on the CS 
condition. However, performing the same analysis on muscimol2, 
where evidence that muscimol reduced freezing in the CS condition 
was inconclusive (BF+0 = 0.97), provides no evidence for an interac-
tion (BFincl = 1.16, i.e., absence of evidence). Thus, in muscimol2, 
we remain uncertain whether deactivating the ACC impairs freez-
ing in the CS condition (because the t-test BF+0 is inconclusive) and 
whether deactivating the ACC has a stronger effect on ShockObs 
than CS. Had we found a BFincl < 1/3, we would have had evidence 
of absence: that muscimol has the same effect on ShockObs and CS.

Default priors provide an objective anchor
As shown in Fig. 2, to calculate a Bayes factor we have to specify 
H1 such that its predictive adequacy can be assessed. We are gen-

erally uncertain about the true value of the parameters (such as 
effect size), and most neuroscientists would be reticent to pin down 
their expectations to a single value. In the Bayesian framework, this 
uncertainty is reflected in the use of a prior distribution across the 
parameter values instead of a single value. Defining this prior dis-
tribution introduces an element of subjectivity, one that scientists 
fear jeopardizes the objectivity and generalizability of their infer-
ences (for example, ref. 23, but see ref. 24). There is however a simple 
two-step solution: first, use a default prior that is designed to fulfil 
general statistical desiderata25; then, check how robust your infer-
ence is against motivated changes in the prior.

For the t-test and ANOVA, there is broad consensus on certain 
parameter priors being appropriate under most circumstances. We 
recommend using these default parameter priors to increase the 
objectivity of the analyses and to provide a common frame of refer-
ence that ensures the direct comparability of Bayes factors from dif-
ferent experiments. Indeed, these defaults are implemented in JASP 
(and in the BayesFactor package in R for those that prefer a com-
mand line environment). Above, we performed all our inferences 
without considering prior distributions. However, it is informative 
to consider these parameter priors in more detail.

For the t-test, the default prior is the Cauchy distribution with a 
scale parameter of r ¼

ffiffiffi
2

p
I

/2 ≈ 0.707 as shown in Figs. 2 and 4. A 
Cauchy distribution resembles a Gaussian distribution but has fatter 
tails. The prior specifies the a priori plausibility of each effect size, 
and the default specifies that half the effect sizes are within the scale 
parameter, i.e., ±0.707, with smaller effect sizes more likely than 
larger effect sizes. For ANOVA, the parameters are also assumed 

Box 2 | Six advantages of a Bayesian analysis for pragmatic neuroscientists

Pragmatic neuroscientists may be convinced to start conducting 
Bayesian analyses—and Bayes factor hypothesis tests in particu-
lar—only when the practical advantages of doing so are sufficiently 
evident. Below is a select overview of such practical advantages:

1. Bayesian hypothesis testing enables researchers to 
discriminate evidence of absence from absence of evidence.
Non-significant P values are notoriously ambiguous. Indeed, a P 
value of 0.25 may indicate that the experiment was underpowered 
(‘absence of evidence’) or that the data support the null hypothesis 
(‘evidence of absence’).

2. Bayesian results are relatively straightforward to interpret 
and communicate.
Compared to frequentist conclusions, Bayesian conclusions are 
remarkably intuitive. While P < 0.01 is not 5 times as convincing as 
P < 0.05, BF10 = 6 really does mean twice the evidence compared to 
BF10 = 3. When neuroscientists make positive claims (for example, 
that the ACC is necessary for vicarious freezing), reviewers and 
readers may find it convincing if these claims are accompanied by 
an assessment of the statistical evidence, that is, an assessment of 
the extent to which H1 outpredicted H0.

3. Bayes factor hypothesis testing encourages researchers to 
quantify evidence on a continuous scale.
The advantage of retaining a continuous representation of evidence 
was stressed by Rozeboom33: “The null-hypothesis significance test 
treats ‘acceptance’ or ‘rejection’ of a hypothesis as though these were 
decisions one makes. But a hypothesis is not something, like a piece 
of pie offered for dessert, which can be accepted or rejected by a 
voluntary physical action. Acceptance or rejection of a hypothesis 
is a cognitive process, a degree of believing or disbelieving which, 
if rational, is not a matter of choice but determined solely by how 
likely it is, given the evidence, that the hypothesis is true.”

4. For most statistical scenarios, Bayes factor hypothesis testing 
is now relatively easy.
Until recently, carrying out a Bayesian analysis for a standard 
statistical test required mathematical expertise and knowledge  
of probabilistic programming. This alone would be enough 
to deter many pragmatic neuroscientists who just wish to  
conduct a quick Bayesian t-test. However, recent R packages14, 
Shiny apps34 and graphical user interface (GUI)-based  
software packages such as JASP35 now provide comprehensive 
Bayesian analyses that can be conducted with a minimum  
of effort.

5. Bayesian inference allows researchers to monitor the results 
as the data accumulate.
As illustrated in Box 1 and Supplementary Fig. 1, the Bayesian 
predict–update cycle of learning continues indefinitely. In an 
experimental setting, neuroscientists may decide to terminate 
data collection when the result is deemed compelling or when 
they have run out of time, money or patience8,36. This means that 
experiments can be flexibly shortened or lengthened according 
to the evidence that has already been collected. If error control 
guarantees are put in place, such flexibility can reduce the required 
sample size by as much as 50%34,37.

6. Bayes factor hypothesis testing allows researchers to include 
prior knowledge for a more diagnostic test.
Although the default prior parameter distributions allow for a 
robust reference analysis38, these distributions can be adjusted 
in light of relevant background information. This background 
information acts to sharpen the predictions from the models, 
making them easier to discriminate. For instance, prior 
distributions for effect size may respect the direction of the 
prediction, or even its location39.
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to follow a Cauchy prior distribution, but their scale depends on 
the type of factor one explores (fixed effects r = 0.5, random effects  
r = 1, and covariates r = 0.354; see ref. 20 for details).

To examine the effect of changing the width of that prior distri-
bution in our t-test example, it suffices to select the option ‘Bayes 
factor robustness check’ to generate the plots of Fig. 3a. The default 
width of the prior distribution for t-tests is the above mentioned 
Cauchy with scale 0.707 (ref. 19); the prior that is used can be dis-
played (and changed) by pulling down the ‘Prior’ option on the 
bottom-left (Fig. 4). The robustness graph on the top of Fig. 3a 
shows how BF+0 changes as a function of the prior scale or width, 
with the scale set in the menu ‘Prior’ shown as the ‘user prior’ at 
the gray circle. Wider priors (wide, black circle; ultrawide, empty 
circles), assume that larger effects are more likely than the default 
prior. We consider wider priors to be less informed because if one 
has no expectation about effect size, all effect sizes should be con-
sidered equally likely a priori, and the prior would be infinitely 
wide. For ShockObs (Fig. 3a, left), evidence for H+ is extremely high 
for all but the narrowest prior distributions, and our conclusion 
that deactivating the ACC reduces freezing is thus robust against 
reasonable changes in the prior. For CS (Fig. 3a, right), evidence 
favors H0, also robustly across all but the narrowest prior distribu-
tions. In both cases, such robustness is reassuring and warrants con-
fident conclusions. In contrast, when conclusions vary dramatically 
across a range of reasonable prior distributions, caution may be in 
order. Note that when the scale parameter is zero, H+ reduces to H0, 
and the Bayes factor equals 1 regardless of the data; this explains 
why all robustness lines will converge to 1 for the narrowest prior 
distributions.

Selecting the option ‘Prior and posterior and additional info’ 
outputs the results shown in Fig. 3b for our one-tailed hypothesis. 
Under H+, the prior and posterior distributions are shown as dot-
ted and black lines, respectively. This posterior shows the effect size 
distribution after updating the prior based on the data (Box 1 and 
Box 2). The posterior median and credible interval summarize the 
Bayesian estimate of the effect if H+ holds (median δ = 1.109, 95% 
credibility interval: [0.406, 1.810]). This effect size estimate is not 
simply the Cohen’s d observed in the sample (which equals 1.24) but 
a combination of prior distribution and data (Box 1). The Cauchy 
prior distribution assumes that small effect sizes are more likely than 
large effect sizes; this knowledge exerts a small pull toward zero on 
the sample estimates—a reasonable and conservative approach—
leading to the Bayesian point estimate of δ = 1.1 (using the median 
and assuming H+ is true). For small sample sizes, the estimate will 
be more influenced by the prior, whereas for larger sample sizes, the 
estimate will approach the sample value d. This property is desir-
able in the way it counteracts the systematic overestimation of effect 
sizes in frequentist approaches with low power26. For CS (right), 
the posterior is folded at zero because of our one-tailed hypothesis, 
which implies that negative effect sizes are impossible. For param-
eter estimation of d, we recommend adopting a two-tailed hypoth-
esis by clicking on ‘Group1≠Group2’; this leads to estimates that are 
more suitable to report as effect size estimates (second row). Note 
that for the muscimol1 column, the posterior distribution for effect 
size is mostly unaffected by whether a two-sided or a one-sided 

prior distribution is used; in contrast, the Bayes factor against the 
null hypothesis is about twice as high for the one-sided analysis as 
for the two-sided analysis (i.e., BF+0 = 162 and BF10 = 81).

We recommend reporting the median and 95% credible inter-
val (abbreviated as 95% CI; although this Bayesian CI is often 
numerically close to the frequentist confidence interval, the inter-
vals are conceptually different; see ref. 27) in addition to the BF to 
provide complementary information. For instance, for ShockObs, 
the BF+0 reveals strong evidence for the presence of an effect, 
but it does not indicate the strength of the effect. This is because 
the same effect size δ will lead to different BF values at differ-
ent sample sizes (Extended Data Fig. 1b). The 95% CI provides 
us with information about this effect size, namely that the effect 
for ShockObs is probably very large (as suggested by the median 
δ = 1.1) and that we can be quite confident that it exceeds δ = 0.4 
(lower bound of the 95% CI). If one looks for effects of clinical 
relevance, knowing that a manipulation has an effect in a group of 
1,000 patients (as revealed by the BF) is often less interesting than 
knowing how strong the effect is likely to be (as revealed by the 
CI). A 95% CI that does not include δ = 0 is a further indication 
for the presence of an effect. For CS, the BF+0 provides evidence 
for the absence of an effect. In such cases, it is perhaps not relevant 
to consider the 95% CI, because the CI only makes sense under 
H1. However, the bounds of the CI specify that even if H+ were 
true (despite the observed data being 4 times more likely under 
H0), the effect size is unlikely to exceed 0.4 (upper bound of the 
CI), and is likely to be very small (median = –0.12). This informs 
the kind of group size that would be needed to systematically 
study such an effect. A 95% CI that includes δ = 0 is in line with 
the notion that the data reflect the absence of an effect; however, 
unlike the BF, the CI alone cannot distinguish absence of evidence 
from evidence for absence. If scientists prefer to see the CI in the 
original units of measurement (for example, number of days of 
illness saved by a medication) the bounds should be multiplied by 
the population s.d., σ.

For the ANOVA, extracting credible intervals of effect sizes in 
JASP is a work in progress28. In the meantime, post hoc Bayesian 
t-tests could be performed to obtain Bayesian CI for specific con-
trasts of interest, or the effect size (for example, η2) of the corre-
sponding frequentist ANOVA could be reported.

The effect of the directionality of H1 on the BF and posterior dis-
tribution is important. In frequentist statistics, one-tailed hypoth-
esis testing is sometimes frowned upon; if one focuses on the risk of 
false positives, a more-conservative two-tailed statistics is arguably 
preferable, and the only difference is typically that P values double. 
With Bayesian statistics, the focus shifts to giving H1 and H0 a more 
balanced ‘chance’, and the ability to provide evidence for H0 becomes 
an important consideration. In that context, if we hypothesize a spe-
cific direction of effect (for example, that injecting muscimol into 
the ACC should reduce freezing in response to ShockObs but not 
CS), we strongly recommend testing this directional hypothesis 
with the appropriate directional H+ effect size prior distribution. 
The reason is particularly apparent in small group sizes: with n = 8, 
under a two-tailed Bayesian one-sample t-test, t > 2.8 (correspond-
ing to δ ~ 0.8) can provide evidence for H1 (BF10 > 3), but even t = 0 

Fig. 6 | Further outputs for the Bayesian t-test on muscimol1.csv. a, Clicking the option ‘Bayes Factor Robustness Check’ will plot for each variable 
(ShockObs on the left and CS on the right) the BF as a function of the effect size prior. The user prior (gray) is by default set at Cauchy scale 0.707 as 
recommended in ref. 19. The wide and ultrawide prior are flatter priors that are sometimes used, especially when the goal is parameter estimation. As 
can be seen, there is extreme evidence for H1 in ShockObs, across all but the smallest priors (i.e., the gray, black and white dots all have BF+0 > 160), and 
there is moderate evidence for H0 for all but the smallest priors for CS (most BF0+ > 4.5). The interpretation of the data does thus not depend on the 
choice of prior scale within a reasonable range. b, Priors and posteriors for ShockObs and CS together with median and CI of the effect size. Results are 
shown for a one-tailed prior (top row) often more suited for hypothesis testing and two-tailed prior (bottom row) more suited for parameter estimation. 
c, Accumulation of evidence with increasing sample size using the ‘Sequential analysis’ option. Data can be found at https://osf.io/md9kp/, including a 
muscimol1.jasp file that can be loaded to replicate the analysis within JASP or to view the results of the analysis within OSF.
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(the datum with the highest evidence for H0) falls short of providing 
modest evidence for H0 (BF01 = 2.97). Using the theoretically appro-
priate H+ resolves this imbalance, as even small negative t-values 

can provide evidence for H0 over H+ (for example, t = –0.3, BF0+ = 
3.62). One-tailed testing is thus typically a fairer balance between 
the ability to provide evidence for H0 and H1.
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Finally, it is important to consider that some scenarios do call 
for user-defined priors (see ref. 24 for a more extensive discussion of 
how to create informed priors). For instance, to test a claim that a 
candidate drug has an effect size δ > 0.8 one would need to specify 
custom priors with H0: δ < 0.8 vs H1: δ > 0.8 and compare their 
likelihoods.

Accumulation of evidence
While designing experiments, we are typically uncertain about 
the effect sizes to expect. Determining the number of subjects or 
participants we need to provide sufficient power a priori is then 
difficult. By selecting the option ‘Sequential Analysis’ we can see 
how the BF changes as one considers an increasing number of 
data points in our Bayesian t-test examples (Figs. 3c and 6). For 
muscimol1, we observe a clear upward trend to ShockObs in favor 
of H+ and a downward trend to CS playback in favor of H0. Such 
consistent trends provide confidence in the effect a posteriori. 
Importantly, this analysis can be performed during data collection, 
effectively replacing a predefined sample size by a principled data 
collection plan: for example, collect a minimum of n = 20 animals 
(10 per group) at first, and then keep adding new animals to the 
saline and muscimol group until the BF+0 crosses a predetermined 
critical value (for example, BF+0 > 6 or BF+0 < 1/6) or until a pre-
set maximum of animals (for example, n = 40) has been reached 
(Supplementary Notes). In our example, we would have stopped at 
n = 20 animals in the ShockObs condition and continued until n = 
40 animals in the CS condition, thus saving n = 20 animals to reach 
the same conclusions. Such an approach is unacceptable in NHST 
(Supplementary Note and Supplementary Figure 1). This is because 
Bayesian statistics can provide evidence for H0 and H1, whereas 
NHST can only provide evidence against H0. Hence, testing until a 
significant result is found in NHST will per definition always find 
evidence against H0.

For muscimol2, the BF+0 values show no steep and consistent 
trend toward providing evidence in favor of either hypothesis  
(Fig. 3c, bottom right). This is typical of small effect sizes. For  
n > 20, the BF shows a mild upwards trend, and extending  
this trend shows that hundreds of animals would probably have  
to be added for the analysis to provide evidence for the presence  
of an effect (BF+0 > 3). This n > 100 projection is in line with  
the outcome of a traditional power analysis for δ = 0.4, which  
is the effect size we used to generate the simulated data in  
muscimol2.

Reporting both frequentist and Bayesian results
One concern for aspiring Bayesian neuroscientists is that review-
ers in neuroscience journals may be unfamiliar with Bayes factors 
and may be more impressed by P < 0.01 than by BF10 = 10.3. Our 
pragmatic recommendation is to consistently report both the fre-
quentist and Bayesian statistics (for example, t(38) = 3.961, P < 0.001, 
BF+0 = 162, with median posterior δ = 1.1, 95% CI = [0.4, 1.8]). 
Where evidence for H1 is presented, one can report a P value with 
a standard frequentist test and add the BF10 to provide additional 
quantification. Where there is no evidence for H1, reporting BF01 
is an attractive way to adjudicate between absence of evidence and 
evidence of absence.

This hybrid approach is a powerful opportunity to reap the best 
of both statistical approaches. In borderline cases where frequen-
tist and Bayesian approaches do not quite concur (for example, P < 
0.04 suggesting a significant effect, but BF10 = 2.3 suggesting only 
anecdotal evidence), we still recommend reporting both and dis-
cussing the divergence as showing that obtaining more data will be 
important to strengthen the evidence. Additionally, reporting the 
CI on the effect size is important. Extended Data Fig. 3 provides 
examples of wording appropriate to report the kind of analyses we 
discussed above.

Concluding comments
Bayesian inference offers unique practical advantages for neuro-
science (Box 2). Bayes factors provide a continuous and symmet-
ric measure of statistical evidence. The Bayes factor can support  
H0 as much as it can support H1. There is a bias toward publish-
ing significant results, and we have become increasingly aware  
of the negative impact that the resulting P value hacking has on 
the progress and replicability of science. Bayesian statistics provide 
a principled tool for reducing this bias by allowing us to provide 
equally compelling evidence for the absence and the presence of  
an effect.

We have presented examples of neuroscience scenarios in which 
Bayesian statistics are simple to adopt. Some applications will 
require more development. For example, neuroimaging requires 
statistical testing over thousands of voxels and, therefore, correc-
tion for multiple comparisons, and frameworks for the latter are still 
in their infancy for the Bayes factor. Also, the Bayesian t-test and 
ANOVA we leveraged here assume normally distributed data, but 
neuroscience datasets can have highly non-normal distributions. 
Non-parametric Bayesian tests so far only exist for certain applica-
tions (for example, some t-tests and regressions have a tick-mark for 
non-parametric approaches in JASP, and R code exists for a num-
ber of additional cases29), but remain in development for others (for 
example, ANOVA).

Neuroscientists have been slow to take up Bayesian statistics, 
presumably out of a perception that Bayesian hypothesis testing is 
difficult to perform and interpret. With the emergence of new soft-
ware and accessible packages, performing Bayesian equivalents of 
the most prevalent tests has become easy. Supplementing frequen-
tist approaches with Bayesian analyses will lead to richer data inter-
pretations that allow more informative conclusions. Null findings 
become interpretable and more easily publishable. We finally have a 
principled tool to shed light on the hitherto dark side of our scien-
tific enterprise: evidence of absence.

Data availability
All data and code can be downloaded at https://osf.io/md9kp/.
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Extended Data Fig. 1 | The relationship between BF, p, and effect sizes values. a, This log-log plot shows the BF+0 values corresponding to familiar critical 
p values for a one-tailed one-sample t-test at different sample sizes (n). The curves show the BF+0 values obtained in a Bayesian t-test based on the critical 
t-value that provides P=0.05 (yellow), P=0.01 (green), P=0.005 (black) and P=0.001 (black). The yellow dashed horizontal line indicates the BF+0=3 
bound for moderate evidence considered by Jeffreys9 to be similar to P=0.05, the green one the BF+0=10 for strong evidence considered similar to P=0.01. 
The two black dashed lines mark BF+0=1, i.e. the line of no evidence, and BF+0=1/3, the bound for moderate evidence of absence. The background gradient 
reminds the reader that the BF reference values of 3 and 10 should not be considered hard bounds. Instead the BF should be interpreted as a continuous 
value, with values diverging more from 1 supporting stronger conclusions. This panel makes two points. First, there is no simple equivalence between 
p and BF that holds over all sample sizes. This is because in a frequentist t-test, the observed effect size (d) sufficient to generate a specific p value 
decreases with 

ffiffiffi
n

p
I

 more rapidly than for the BF. As a result, at large n, very small effect sizes generate ‘significant’ t-test: at n=1000, the critical t-value for 
a one-tailed P=0.05 is 1.65, corresponding to d=1.65 /

ffiffiffi
n

p
I

 =0.05. For the BF, such a minuscule effect is 4 times more likely under H0 than H+ (BF+0=0.26). 
Hence, for small sample sizes p and BF support similar conclusions (e.g., P=0.05 at n=4 corresponds to BF+0>3, supporting the same conclusion of 
evidence for an effect), but for large sample sizes the frequentist and Bayesian conclusions can diverge in the presence of very small effect sizes (e.g., 
P=0.05 at n=1000 corresponds to BF+0<1/3, see Jeffreys, H. Some Tests of Significance, Treated by the Theory of Probability. Proc. Cambridge Philos. Soc. 
31, 203–222 (1935)). Considering confidence or credible intervals of the effect size in addition to p or BF values helps interpret such cases. Second, the fact 
that the dashed lines are above the curve of the same color for all n>4 shows that BF+0=3 and BF+0=10 indeed protect against Type I errors in a frequentist 
sense at least at P=0.05 or P=0.01, respectively. In other words, if BF10>3, p<0.05, and if BF10>10, p<0.01, but how much lower than 0.05 or 0.01 the exact 
P value is, depends on n. b, BF+0 (left) and p (right) values as a function of measured effect- and sample-sizes. These panels illustrate the measured effect 
sizes necessary to provide evidence for an effect at different sample sizes in a one-sample one-tailed t-test using the BF vs. traditional p values. Each curve 
connects the results at different sample sizes for the specified value of d. The logarithmic BF and p scales are aligned so as to place BF=3 next to P=0.05, 
and BF=10 next to P=0.01.
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Extended Data Fig. 2 | Evidence for or against a factor in a Bayesian ANOVA. A Bayesian ANOVA is a form of model comparison. This figure illustrates 
how the Bayes factor can provide evidence for a simpler model by concentrating its predictions on a single parameter value. This example ANOVA 
determines whether or not the data D depend on the value of the factor Group by comparing the Null Model D=0*Group (left) against the Group Model 
D=β*Group, with a Cauchy prior on β (right). The top row illustrates the prior probability attributed to the different values of β under the two competing 
models. Note how both models include β = 0 as a possibility, but given that the probability values must integrate to 1 over the entire β space, for the Null 
Model p(β = 0) = 1 while for the Group Model, the probability is distributed across all plausible alternative values. The middle row shows the predicted 
t-values based on these priors, where t represents the difference between the data from the two groups as in Fig. 2. Note how these predictions are more 
peaked for the Null compared to the Group model. The bottom row compares the predicted probability of finding particular t-values under the two models, 
and shows how values close to zero (i.e., small or no difference between the groups) are predicted more often by the Null compared to the Group Model, 
while the opposite is true for large t-values. If conducting the experiment reveals a measured t-values close to zero, the Bayes Factor for including the 
factor Group would be substantially below 1, providing evidence for the absence of an effect of Group, while the inverse would be true for high t-values.
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Extended Data Fig. 3 | Examples of how to report results.
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The Bayesian Two-Sample t Test
Mithat GÖNEN, Wesley O. JOHNSON, Yonggang LU, and Peter H. WESTFALL

This article shows how the pooled-variance two-sample t statis-
tic arises from a Bayesian formulation of the two-sided point
null testing problem, with emphasis on teaching. We identify a
reasonable and useful prior giving a closed-form Bayes factor
that can be written in terms of the distribution of the two-sample
t statistic under the null and alternative hypotheses, respectively.
This provides a Bayesian motivation for the two-sample t statis-
tic, which has heretofore been buried as a special case of more
complex linear models, or given only roughly via analytic or
Monte Carlo approximations. The resulting formulation of the
Bayesian test is easy to apply in practice, and also easy to teach
in an introductory course that emphasizes Bayesian methods.
The priors are easy to use and simple to elicit, and the posterior
probabilities are easily computed using available software, in
some cases using spreadsheets.

KEY WORDS: Bayes factor; Posterior probability; Prior
elicitation; Teaching Bayesian statistics.

1. INTRODUCTION AND THE TEST

The two-sample comparison is a staple in elementary statis-
tics courses. A typical course sequence is as follows: one-sample
problems (means and proportions, tests and intervals), two-
sample comparisons (differences of means and proportions, tests
and intervals), then more advanced topics (ANOVA, regression).
Single-sample problems involving the selection of a population
reference value for the mean, µ0, are less interesting than their
two-sample counterparts. Most designed experiments involve
this latter category, where the samples are experimental and
control (drug and placebo in most clinical trials), and interesting
applications also exist in virtually all areas of scientific inquiry.

Assuming the data yir (i = 1, 2; r = 1, . . . , ni) are inde-
pendent and normally distributed with means µi and common
variance σ2, the pooled-variance two-sample t test is commonly
used for testing H0 : µ1 = µ2 against the two-sided alternative
H1 : µ1 �= µ2. The test statistic is

t =
y1 − y2

sp/n
1/2
δ

, (1)

Mithat Gönen is Associate Attending Biostatistician, Department of Epidemi-
ology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York,
NY 10021 (E-mail: gonenm@mskcc.org). Wesley O. Johnson is Professor, De-
partment of Statistics, University of California at Irvine, Irvine, CA 92697
(E-mail: wjohnson@ics.uci.edu). Yonggang Lu is a Ph.D. student, and Peter
H. Westfall is Professor of Statistics, Department of Information Systems and
Quantitative Sciences, Texas Tech University, Lubbock, TX 79409 (E-mail ad-
dresses: gentlelu@yahoo.com and peter.westfall@ttu.edu). The author order is
alphabetical. The authors are grateful to the referees, the associate editor, and
the editor for their suggestions that greatly improved the article.

where

s2
p =

{
(n1 − 1)s2

1 + (n2 − 1)s2
2
}

/(n1 + n2 − 2)

is the pooled variance estimate, yi and s2
i are the sample mean

and sample variance for group i, and

nδ =
(
n−1

1 + n−1
2

)−1
,

which may be called the “effective sample size” for the two-
sample experiment. Letting ν = n1+n2 −2 denote the degrees
of freedom and t{1−α/2, ν} denote the 1−α/2 quantile of the
Tν distribution, H0 is rejected in favor of H1 when |t| ≥ t{1−
α/2, ν}; the two-sided p value is obtained as p = 2×P (T ≥ |t|),
where T has the Tν distribution. This test has many optimality
properties (Lehmann 1986), it is routinely produced by statistical
software, and it is found in most elementary statistics texts.

Although the two-sample t statistic is well understood and
widely accepted, it is difficult to find motivation for it in the
Bayesian hypothesis testing literature. Recent literature sug-
gesting that we should teach Bayesian methods at the elemen-
tary learning stage includes Albert (1997a), Albert and Ross-
man (2001), Antelman (1997), Berry (1996, 1997), and Bolstad
(2004); however, none of these discuss the two-sample t statistic,
at least not from the Bayesian formulation of hypothesis testing.

In the general Bayesian formulation of hypothesis testing, one
places prior probabilities π0 and π1 (π0+π1 = 1) on hypotheses
H0 and H1, respectively, then updates these values via Bayes’
theorem to obtain the posterior probabilities

P (Hj |data) = πjP (data |Hj)
π0P (data |H0) + π1P (data |H1)

, j = 0, 1,

where P (data|Hj) denotes the marginal density of the data un-
der hypothesis j. Because the posterior probabilities are sensitive
to the priors π0 and π1, it is often suggested to use the Bayes
factor (BF) instead:

BF =
P (data |H0)
P (data |H1)

.

When BF > 1 the data provide evidence for H0, and when
BF < 1 the data provide evidence for H1 (and against H0).
Jeffreys (1961) suggested BF < .1 provides “strong” evidence
against H0 and BF < .01 provides “decisive” evidence. The
posterior probability is simply related to the Bayes factor as

P (H0 |data) =
[
1 +

π1

π0

1
BF

]−1

.

Much of the literature on Bayes factors and posterior prob-
abilities is concerned with calculating or approximating (either
analytically or via Monte Carlo) the marginal densities

P (data |Hj) =
∫

P (data |θj , Hj)Πj(θj |Hj) dθj ,
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where θj is the parameter vector under hypothesis Hj and
Πj(θj |Hj) is its prior distribution. Relevant references are Jef-
freys (1961), Dickey (1971), Zellner and Siow (1980), Berger
and Sellke (1987), Bernardo and Smith (1994), Carlin and
Chib (1995), Chib (1995), Kass and Raftery (1995), and Albert
(1997b).

When considering the two-sample case in particular where the
hypotheses are H0 : µ1 = µ2 = µ, versus H1 : µ1 �= µ2, the
parameter vectors are θ0 = (µ, σ2) and θ1 = (µ1, µ2, σ

2), and
one may consider a variety of priorsΠj(θj |Hj). Such analyses
for the Bayesian two-sample t test are found in the literature, but
only implicitly as a special case of more complex regression for-
mulations, or as related to the estimation problem as in Bolstad
(2004). The aims of this article are two-fold: first we present the
model and a reasonable prior for which the BF depends on the
data only through the pooled-variance two-sample t statistic, as
well as the associated (central and noncentral) Tν distributions;
and second, we show how one might use the results for prior
selection, data analysis, and learning about Bayesian statistics.

For the two-sample problem with normally distributed, ho-
moscedastic, and independent data, with prior distributions as
specified in Section 2, the Bayes factor for testing H0 : µ1 =
µ2 = µ, versus H1 : µ1 �= µ2 is

BF =
Tν(t | 0, 1)

Tν(t |n1/2
δ λ, 1 + nδσ2

δ )
. (2)

Here t is the pooled-variance two-sample t statistic (1), λ and
σ2

δ denote the prior mean and variance of the standardized ef-
fect size (µ1 − µ2)/σ under H1, and Tν(. | a, b) denotes the
noncentral t probability density function (pdf) having location
a, scale b1/2, and df ν. Specifically, Tν(. | a, b) is the pdf of
the random variable Y/

√
U/ν, where Y is distributed normally

with mean a and variance b, and where U has the chi-square
distribution with ν degrees of freedom, independent of Y . The
mathematical derivation of (2) and further details are available
online (Gönen, Westfall, Johnson, and Lu 2004). The data enter
the BF only through the pooled-variance two-sample t statistic
(1), providing a Bayesian motivation for its use. Benefits of hav-
ing the analytic result (2) are: (i) one can explain the Bayesian
two-sample t test in terms of unconditional (central and non-
central T ) distributions; (ii) it allows simple sensitivity analysis
with respect to prior inputs, as we show in Section 4; and (iii)
it allows for simple explanations of interesting Bayesian topics
such as the noncorrespondence between posterior probabilities
and p values (Berger and Sellke 1987), and “Lindley’s Paradox”
(Lindley 1957), both of which are also illustrated in Section 4.

Calculation of (2) requires evaluation of the noncentral T pdf
with general scale parameter. Many software packages provide
the pdf of the noncentral t having scale parameter 1.0, and a
simple modification is needed for the general case: Tν(t | a, b) =
Tv(t/b1/2 | a/b1/2, 1)/b1/2. Thus, for example, using the statis-
tics freeware package R (http://www.r-project.org/), the Bayes
factor can be computed as

BF = dt(t,n1+n2-2)/(dt(t/sqrt(postv),

n1+n2-2,nc)/sqrt(postv))

where “t” is the value of the two-sample t statistic, postv
= 1 + nδσ

2
δ and nc= n

1/2
δ λ/(1 + nδσ

2
δ )

1/2. The noncentral
t density is also available in commercial packages including
SAS, SPSS, and Mathematica, and it may be obtained using
specialized programs or add-ins with other packages as well.
For the case where the prior mean λ of the effect size is assumed
to be zero, the Bayes factor requires only the central T pdf and
is calculated more simply (e.g., using a spreadsheet) as

BF =
[

1 + t2/ν

1 + t2/{ν(1 + nδσ2
δ )}
]−(ν+1)/2

(1 + nδσ
2
δ )

1/2.

Assessment of priors is discussed generically in Section 2,
and Section 3 discusses prior selection in a specific context in-
volving clinical trials. Section 4 presents an analysis of a dataset
comparing blood pressure drop in patients receiving either cal-
cium supplements or placebo, along with a sensitivity analysis,
and Section 5 concludes.

2. PRIOR DISTRIBUTION AND ASSESSMENT

Let N(y | a, b) denote the pdf of a normally distributed ran-
dom variable with mean a and variance b, and as usual, Y ∼
N(a, b)means that Y has pdf N(y | a, b). The assumption for the
two-sample t test is that the data are conditionally independent
with Yir|{µi, σ

2} ∼ N(µi, σ
2). The goal is to test the null hy-

pothesis H0 : δ = µ1−µ2 = 0 against the two-sided alternative
H1 : δ �= 0.

To obtain the usual two-sample t statistic, prior knowledge is
modeled for δ/σ rather than for δ. Let µ = (µ1 + µ2)/2, and
reparameterize (µ1, µ2, σ

2) to (µ, δ, σ2). The prior for δ/σ is
specified as

δ/σ | {µ, σ2, δ/σ �= 0} ∼ N(λ, σ2
δ ).

For Jeffreys (1961), dependence of the prior for δ on the value of
σ is implicit in his assertion “from conditions of similarity, it [the
mean] must depend on σ, since there is nothing in the problem
except σ to give a scale for [the mean].” This dependence is also
found in Dickey (1971), Zellner and Siow (1980) and Berger,
Boukai, and Wang (1997).

The standardized effect size δ/σ is a familiar dimensionless
quantity, easily modeled a priori. Cohen (1988) reported that
|δ/σ| values of .20, .50, and .80 are “small,” “medium,” and
“large,” respectively, based on a survey of studies reported in
the social sciences literature. These benchmarks can be used to
check whether the specifications of hyperparameters λ and σ2

δ

are reasonable; a simple check based on λ ± 3σδ can determine
whether the prior allows unreasonably large effect sizes.

The remaining parameters (µ, σ2) are assigned a standard
noninformative prior, no matter whether δ = 0 or δ �= 0. Al-
though noninformative priors are attractive in the sense of min-
imizing prior inputs, they also ensure that the Bayes factor de-
pends on the data only through the two-sample t statistic. One
can verify numerically that, when the prior for (µ, σ2) is infor-
mative, two different datasets having identical t statistics and
sample sizes can yield different Bayes factors.

To summarize, the prior is as follows:

Π(δ /σ|µ, σ2, δ �= 0) = N(δ/σ |λ, σ2
δ ),
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with the nuisance parameters assigned the improper prior

Π(µ, σ2) ∝ 1/σ2.

Finally, the prior is completed by specifying the probability that
H0 is true:

π0 = P (δ = 0),

where π0 is often taken to be 1/2 as an “objective” value (Berger
and Sellke 1987). However, π0 can be simply assigned by the
experimenter to reflect prior belief in the null; it can be assigned
to differentially penalize more complex models (Jeffreys 1961,
p. 246); it can be assessed from multiple comparisons consid-
erations (Jeffreys 1961, p. 253; Westfall, Johnson, Utts 1997);
and it can be estimated using empirical Bayes methods (Efron,
Tibshirani, Storey, and Tusher 2001). The next section provides
a case study for prior assessment.

It should be mentioned prominently that Jeffreys, who pio-
neered the Bayesian testing paradigm, derived a Bayesian test
for H0 : µ1 = µ2 that is also a function of the two-sample t
statistic (1). However, his test (Jeffreys 1961, sec. 5.41) uses
an unusually complex prior that partitions the simple alternative
H1 : µ1 �= µ2 into three disjoint events depending upon a hy-
perparameter µ: H11 : µ2 = µ �= µ1, H12 : µ1 = µ �= µ2,
and H13 : {(µ1 �= µ2) and neither equals µ}. Jeffreys fur-
ther suggested prior probabilities in the ratio 1 : 1/4 : 1/4 : 1/8
for H0, H11, H12, and H13, respectively, adding another level
of avoidable complexity. An additional concern with Jeffreys’
two-sample t test is that it does not accommodate prior infor-
mation about the alternative hypothesis.

3. A CASE STUDY: CLINICAL TRIALS

This section provides a case study in clinical trials to sug-
gest how priors can be specified. Prior information to suggest
the expected effect size (i.e., the value of λ) is routinely used for
sample size calculations. In clinical trials, the outcome is consid-
ered positive if it is significant in the correct tail using a standard
two-sided test with Type I error probability α = .05. The large-
sample sample size calculation formula for two-sample tests is
given by

n =
2(z1−α/2 + z1−β)2

(δ/σ)2
,

where n = n1 = n2 = 2nδ is the sample size per group and β
is the Type II error probability. The analyst must specify δ/σ. In
a study powered at 100(1 − β)% = 80%, the analyst will have
used

δ/σ =
z1−α/2 + z1−β

n
1/2
δ

,

or δ/σ = (1.96+.84)/n
1/2
δ = 2.80/n

1/2
δ as an anticipated stan-

dardized effect size. For example, if n = 100, then the analyst
anticipated δ/σ = 2.80/501/2 = .396 [“small” to “medium” in
the terminology of Cohen (1988)].

The value σδ can be expressed as a function of the prior prob-
ability that the effect is in the wrong direction. For example, if
λ = .396 and one thinks P (δ < 0 | δ �= 0) = .10, then one
obtains σδ = .309 using normal distribution calculations. More

generally, if λ = 2.80/n
1/2
δ , then σδ = 2.19/n

1/2
δ , again as-

suming P (δ < 0 | δ �= 0) = .10. These calculations involved
the choice of zero for the tenth percentile of the prior on δ/σ;
other percentiles could have been selected as well. Yet another
calibration would involve selection of σδ based on a prior as-
sumed value for P (δ/σ > 2λ | δ �= 0). It would be useful to try
several such values to ensure consistency.

The remaining parameter to specify is π0 = P (H0). Observ-
ing that it is unethical to randomize patients when the outcome
is certain, the quantities P (δ ≤ 0 ) and P (δ > 0 ) should be
roughly comparable. One may set π0 = .5, which, in conjunc-
tion with P (δ < 0 | δ �= 0) = .10, yields P (δ ≤ 0 ) = .5 +
.10(.5) = .55. Alternatively, one may first set P (δ ≤ 0 ) = .5,
which, in conjunction with P (δ < 0 | δ �= 0) = .10, implies
π0 = .444.

If historical (meta-analysis) data are available on rejection
rates, one can check whether the prior specification is consistent
with historical data by calculating the proportion of nulls that
would be expected to be rejected. Since (for large sample sizes)
the t statistic is approximately distributed as N(0, 1) when δ =
0, and approximately (marginally) distributed as N(n1/2

δ λ, 1 +
nδσ

2
δ )when δ �= 0, the proportion of rejected nulls (upper-tailed,

α = .025) is expected to be

π0(.025) + π1

[
1− Φ

(
1.96− n

1/2
δ λ√

1 + nδσ2
δ

)]
.

Using, as suggested above, λ = 2.80/n
1/2
δ , and σδ =

2.19/n
1/2
δ , this expression yields 33.1% rejections when π0 =

.5 and 36.5% when π0 = .444. For comparison, Lee and Zelen
(2000) surveyed the oncology literature for a variety of diseases
and found that only 28.7% of the randomized trials reported
rejection of the null hypothesis. Hence the choice of π0 = .5,
along with (λ, σδ) = (2.80/n

1/2
δ , 2.19/n

1/2
δ ), yields a model

that is roughly consistent with results of randomized trials, at
least in oncology.

4. AN EXAMPLE

The Data and Story Library (DASL; the Web site is http:
//lib.stat.cmu.edu/DASL) provides datasets that illustrate the use
of basic statistical methods. Under the “Pooled t test” method
one finds the “Calcium and Blood Pressure Story,” which con-
tains a subset of the data shown by Lyle et al. (1987). As posted
on the DASL Web site, the data consist of blood pressure mea-
surements on a subgroup of 21 African-American subjects, 10
who have taken calcium supplements and 11 who have taken
placebo. The primary analysis variable is the blood pressure
difference (“Begin” minus “End”). Summary statistics are as
follows:

Group n mean StdDev

Calcium 10 5.0000 8.7433
Placebo 11 −.2727 5.9007

Here, sp = 7.385, nδ = 5.238, and t = 1.634; the positive t
value suggests calcium is beneficial for reducing blood pressure.
The two-sided frequentist p value, from the T19 distribution, is
p = .1187.
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Figure 1. Posterior probabilities of H0 as a function of λ, when π0 = .5, and σδ = .01, .33, .67, 1.00 (solid lines). The prior probability π0 = .5 is
also shown (dotted line).

To perform the Bayesian test, priors must be specified. The
previous section provided a case study to suggest particular val-
ues based on frequentist power considerations; however, this
particular study was not powered for the African-American sub-
group and those results do not apply. For the purposes of discus-
sion, we will be as generic as possible in our initial specification
and then provide sensitivity analysis.

Although not experts in the subject matter, if we suppose
that the direction of an effect is completely uncertain, then we
would set λ = 0. Further, we might assume that a standardized

effect size greater than 1 is unlikely; setting σδ = 1/3 seems
reasonable as this would imply P (|δ/σ| > 1 |H1) = .003. We
now compute the Bayes factor: BF = .791, suggesting that the
data support H1 : µ1 �= µ2 better than H0 : µ1 = µ2. If we
wish to calculate posterior probabilities, then we need the prior
probabilities as well; generically we may set π0 = .5. With
these settings we have P (H0 | data) = .442. Although it is true
that the null hypothesis that calcium has no effect is less likely
after seeing the data, the results are not compelling.

Figure 1 shows a sensitivity analysis of the posterior prob-
ability P (H0 | data) with respect to λ, for σδ = .01, .33, .67,

Figure 2. Posterior probability of H0 as a function of σδ, when λ = 0 and π0 = .5, both for the observed data (solid line) where the p value is
p = .1187, and for hypothetical data with p = .05 (dotted line). The minimum posterior probability for the case where p = .05 is P(H0 | data) = .305,
illustrating Berger and Sellke’s “irreconcilability” of frequentist p values with posterior probabilities in the case of the two-sample t test.
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Figure 3. Posterior probability of H0 as a function of nδ when π0 = .5, ( λ; σδ) = (0, 1/3), and t = 3.00, illustrating Lindley’s paradox.

and 1.00, assuming the prior probability is π0 = .5. There
is not reasonable evidence against H0 no matter which com-
binations of the prior values λ and σδ are chosen. Smaller
posterior probabilities of H0 occur for λ near the sample es-
timate (y1 − y2)/sp = .714, but even the smallest value
(P (H0 | data) = .217, occurring when σδ = .01) is not small
enough to rule out H0. The graph also shows large differences
in the posterior probability for different λ; for example, if λ is
near −1 (meaning that, if there is a difference, then calcium
is expected to be much worse than placebo for reducing blood
pressure), the positive t statistic t = 1.634 provides much more
evidence for H0 than for H1. Although this lack of sensitivity
may be troubling, one can question whether such values of λ
would have been reasonable choices; after all, presumably the
goal of the study was to assess whether calcium causes greater
reductions in blood pressure, and therefore nonnegative values
of λ might have been more plausible a priori.

Figure 2 shows the special case where λ = 0 and σδ is varied
over a wider range. Here the minimum posterior probability is
P (H0 | data) = .423, much larger than the frequentist p value
(p = .1187). This graph highlights the central point of Berger
and Sellke (1987); namely, that P (H0 | data) is typically much
higher than the frequentist p value. For comparison, the posterior
probability that results when t = 2.093, for which the frequentist
two-sided p value is exactly .05, is also displayed in the graph as
a dotted line. The curve corresponding to t = 2.093 (p = .05)
dramatizes Berger and Sellke’s (perhaps surprising) conclusion
that H0 will be true in at least 30% of studies for which the p
value is observed to be in a small neighborhood of .05 (assuming
that H0 is true, a priori, in 50% of all studies considered, and
assuming that the prior effect sizes for the nonnull studies come
from a symmetric unimodal distribution centered at 0).

Although the posterior probability P (H0 | data) does not ap-
pear to be overly sensitive to the prior inputs λ and σδ (provided
a sensible range of inputs is considered), it is clearly much more

sensitive to the prior probability π0. For example, when (λ,
σδ) = (0, 1/3), the posterior probabilities are determined as
follows:

Prior Probability π0 : .100 .250 .500 .750 .900

Posterior Probability
P (H0 |data) : .081 .209 .442 .704 .877

The posterior is sensitive to the prior as expected, but what is
more interesting is that these data barely modify one’s prior
belief about H0.

As a concluding note, it is simple to discuss “Lindley’s Para-
dox” (Lindley 1957) using (2). Lindley noticed that data from
large sample sizes that are “highly significant” from a frequentist
standpoint can support H0 better than H1. Imagine, in the case
above, that t = 3.00, highly significant by any measure. From
the frequentist standpoint, the result would be considered even
more significant for larger values of n1 and n2. On the other
hand, t = 3.00 becomes less likely under H1 for extremely
large nδ: the denominator of (2) decreases (since the variance
1 + nδσ

2 increases) while the numerator remains fixed. Figure
3 shows the effect of increasing nδ (assuming n1 = n2) on the
posterior probability of H0 when t = 3.00, showing a minimum
posterior probability of .055 at nδ = 81.5 (n1 = n2 = 163), and
increasing to 1.0 thereafter for larger nδ . This seeming “para-
dox” is not really a paradox at all, since the frequentist statistical
significance with large nδ is a result of a large sample amplifi-
cation of a very small effect size.

5. CONCLUSION

The two-sample comparison is one of the most important
problems in statistics. From the teaching standpoint, two-sample
testing problems are usually much more interesting and relevant
than single-sample problems. However, it is difficult to find the
Bayesian two-sample t test explicitly in the literature. We present
a simple, relatively easy-to-elicit prior for which the Bayes fac-
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tor for the two-sample comparison of means is a function of the
usual two-sample t statistic, thus providing a Bayesian motiva-
tion for this statistic. Because the analytic result itself is easy
to teach and compute, and because it facilitates discussions of
Bayesian concepts such as prior selection and Lindley’s Para-
dox, we recommend that this test be incorporated routinely when
teaching elementary statistics from a Bayesian perspective.

[Received June 2003. Revised March 2005.]
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