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Assessing Bayesian Model Adequacy

e Key steps in evaluating the adequacy of a Bayesian model
include:

1. Assessing the sensitivity of the posterior distribution to the
choice of prior and likelihood.

2. Ensuring that the observed data aligns with predictions based
on the posterior distribution.

3. Evaluating the model’s robustness to outliers and individual
data points.



Sensitivity Analysis

e Regular sensitivity checks on the data model/likelihood are
recommended but seldom performed.

e One approach is to evaluate how the posterior changes when
selecting alternative models for the data (e.g., Poisson vs.
negative binomial for count data).

e More frequently, we focus on assessing the sensitivity of the
posterior to the prior specification.

e Key questions include:

1. How does the posterior change when we modify the functional
form of the prior?

2. What is the impact when we retain the prior form but alter its
parameters?

e |f the posterior remains robust under these variations, we gain

confidence in the reliability of our inferences.



Sensitivity Analysis: Example 1(a)

: iid
Consider Y1,..., Y, ~

Different prior choices for pu:

N(u, o?) with o known.

e Conjugate prior: p ~ N(J,72)
e Noninformative prior: p(p) =1
e Another prior: p ~ t-distribution centered at ¢

Key Question: How does the posterior change under these 3
priors?

Methods for comparison:

1. Plot the posterior distributions for each prior.
2. Examine several posterior quantiles for each prior.



Local Sensitivity Analysis

e Evaluating a broad class of prior specifications can be
challenging, particularly for multidimensional parameters 6.

e Local sensitivity analysis focuses on the effect of small changes
in the hyperparameter values on the posterior distribution.
e Example 1(a): Y1,..., Y, Y N(u,?), with o known.
e Conjugate prior for p: pu ~ N(8,72)
e Compare the resulting posterior (using plots or quantiles) with
these alternative priors:
o~ N —T1,72)
o 1~ N(§+7,7%)
e 1~ N(5,0.57%)
o 1~ N(5,272)

e See R example for implementation.



Local Sensitivity Analysis: Example 1(b)

e Consider Y7, ..., Yoo as annual deaths from horse kicks for
10 Prussmn cavalry corps over 20 years.
e Model: Y; Poisson(\), with prior A ~ Gamma(«, /).
e Compare posterior distributions for A\ under the following
priors:
e )\~ Gamma(2,4)
e A\~ Gamma(4,38)
e X\~ Gamma(1,2)
e A\~ Gamma(0.1 x 2,1/0.1 x 4)
e A\~ Gamma(3 x 2,/3 x 4)
e See the R example with Prussian horse kick data for detailed
analysis.
¢ Recommendation: If the posterior is highly sensitive to the
prior specification, consider using a more “objective” prior or

be ready to justify your choice of prior.
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Prior Predictive Distribution

e Recall that for a fixed value of #, the data Y follow the
distribution p(Y|0).

e Since the true value of 0 is uncertain, we should average over
all possible values of 0 to obtain a more accurate
representation of the distribution of Y.

e Prior to observing data, the uncertainty in @ is captured by
the prior distribution p(0).

e For a new data point yhew, the prior predictive distribution
is given by:

P(Ynew):/@P(}’neW79)d9:/@P(ynew’@)p(e)de
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Posterior Predictive Distribution (Post-Sample)

e After observing the data, the uncertainty in 0 is updated using
the posterior p(f]y).

e The posterior predictive distribution for a new data point
Ynew 1S given by:

P(Ynewly) = /@ D(Ynewlf. y)p(6]y)d0 = /@ P(Ynew|0)p(6]y)d0

(since given 6, Vnew is independent of the sample data y)
e This distribution describes how we expect new data to behave.

o |f the observed data align well with this pattern, it suggests
that our model and prior are well-chosen.

11



Posterior Predictive Distribution: Example 2

e Recall the model: Yi,...,Y, e Poisson(A), with
A ~ Gamma(a, ).
e The posterior distribution for A given y is
Aly ~ Gamma (> yi + a,n+ 5).
e The posterior predictive distribution for a new data point ynew

P(nenly) = /0 " p(ymen V(M) dA

e Substituting the Poisson pmf and Gamma posterior:

00 Nhewe=A (4 B)L Vit
p()/new|y) = / I X( B)
0 Ynew: F(ZYI' +a)

)\Z y,-+a—1e—(n+,8))\ d\
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Posterior Predictive Distribution: Example 2 (continued)

The posterior predictive distribution for yhew simplifies to:

(n + 6)2 yito /OO ita—1,—
hew = ,\YneW+Z yita—1g=(n+B+1)A dA
P(y e |y) r (Z Vi + a) r(ynew + 1) 0 )

(14 B)Z7 (et Syt )

Ty ) T (e + 1) (4 B+ Lt svita

M (Ynew +2_yi + @) ( n+ 08 )Ey/‘+a (l)ynew
r(zyl+a)r(Ynew+1) n+ﬂ+1 n+5+1

This is a (generalized) negative binomial distribution, NB(r, p),

with r=>yi+a, p= ﬁ and has mean and variance as

Mean = 72 yi+o
n+ 5
Variance = 2yite

(n+6)2(n+B+1)
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Posterior Predictive Distribution: Key Insight

e The posterior predictive distribution retains the same mean as
the posterior distribution.

e However, the variance is greater due to additional sampling
uncertainty when predicting a new data point.

e This reflects the variability introduced by drawing a new
value, in addition to the uncertainty in the parameter A.

e See the R example using the Prussian cavalry data for an
illustration of this concept.

14



Posterior Predictive Distribution: Example 1(a)

Model Setup:

e Let Y1, Ys,..., Y, beiid. from N(u,0c3), where o3 is known,
but u is unknown.

e Place a normal prior on s, i.e., u ~ N(6,72).

2
(uly) 11+n 6+n)7 1+n_1
xexp|—=|—=5+—= - s+=)l=+—
PAHLY Pl 2\~ o3 a ™ o) \1% o3
1 2
X exp <_%cf(”_”1) )

where posterior mean and variance are

b (L, - d o? Ly B
= _ _— _ _— an g1 = _— _—
H 2 o3 T2 o3 ! T2 o3
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Posterior Predictive Distribution: Example 1(a)

Predictive Distribution for New Data:

pnenty) o [ erp (-3 [V tE o (ol g,

oo 2 of o5

Expected Value & Variance of the Posterior Predictive Distribution:

2
o
E[Yhewly] = 1 and  Var[Yiewly] = gg 4 71

Final Form of the Predictive Distribution:

1
Ynew|y ~ N <M1703 + HU%>

16



Posterior Predictive Distribution

Model Diagnostics:

e Simulated data from the posterior predictive distribution can
be used to assess model fit (Gelman et al., 2003).

e Poor fit occurs when replicated data differ significantly from
observed data.

e The posterior predictive distribution enables explicit model
comparison (Chen, Dey, Ibrahim, 2000).

17



Posterior Predictive Distribution: Monte Carlo Sampling

e While the form of p(ynew|y) can sometimes be derived
analytically, it is often more practical to sample from
P(¥new|y) using Monte Carlo methods.

e The procedure is:

1. Forj=1,...,J, sample ull from p(uly).

2. Then, sample yngw from p(ynew\,um).
e The resulting y,EgN, .. ,y,Eé!N form an independent and

identically distributed (iid) sample from p(ynew|y)-

e See the R example using the lead data for an implementation.

18



Hypothesis Testing
Classical (Frequentist) Hypothesis Testing
Bayesian Hypothesis Testing
Bayes Factor

BIC

19
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Hypothesis Testing: Classical Approach

e Classical hypothesis testing focuses on the p-value: the
probability (under Hp) that a test statistic would take a value
as extreme as, or more favorable to, H, than the observed
value.

e Consider iid data y = yi,...,y, from f(y|0), where
—00 < 6 < 0.

e We test Hy: 60 <0 vs. H,:6 >0 using a test statistic T(Y),
a function of the data.

e If the observed test statistic is T(y) = T%, the p-value is:

o0

pvalue = P(T(Y) > T*| = 0) = / fr(t|0 = 0)dt

*

where f1(t|0) is the density function of T(Y).

21



Issues with Classical Hypothesis Testing

e The p-value averages over possible values of T (and thus
sample values) that did not occur and are unlikely to occur.

e This approach violates the Likelihood Principle, as it relies
on hypothetical data rather than solely the observed data.

e The concept of repeated testing, which motivates the
probabilities of Type | and Type Il errors, becomes
questionable in contexts where the study cannot be replicated.

22
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The Bayesian Approach to Hypothesis Testing

e In Bayesian hypothesis testing, we compute the posterior
probabilities that 6 falls within the null or alternative regions.

e Consider a one-sided hypothesis test of the form:
Hy:0<c vs. Hy;:0>c

for some constant ¢, where —oco < 0 < .

e We can assign prior probabilities to @, such that:
po = P(—oc0 <0 <c)=P(0 €Op)

and
p1:1—p0:P(C<9<OO):P(0¢@0)
where ©g represents the set of #-values for which Hy holds.

24



The Bayesian Approach (continued)

e The posterior probability that Hp is true is given by:

C

P(6 € Qoly) = / p(6ly)dé

—00

e Using Bayes' Law, this can be expressed as:

[ p(y|0)podd
IS p(y|0)podd + [ p(y|0)p1dd

P(6 € ©oly) =

e The denominator is the marginal likelihood of Y, which
normalizes the posterior distribution.

25



The Bayesian Approach: Simplified with Uninformative Priors

e Often, we use an uninformative prior where pg = p; = %

e In this case, the posterior probability P(6 € ©gly) simplifies

IS pyl0)do
J25. pylo)de

e This simplifies the calculation, focusing on the ratio of the

to:

P(0 € ©ly) =

integral over the null region to the total likelihood of the data.

26



Hypothesis Testing Example: Coal Mining Strike Data

e Example 1: Coal mining strike data

e Let Y represent the number of strikes in a sequence before
cessation.

e We have data yj, ..., y11 for 11 such sequences in France.

e While a Poisson model is natural, the variance in these data
greatly exceeds the mean.

e Thus, we select a geometric model Geometric(), where:
F(y10) = 6(1 - 0)”

e Here, 0 is the probability of cessation of the strike sequence,
and y; represents the number of strikes before cessation.
e We use a prior for 6 such that:

p(0) x 6711 —0)~Y/2

27



Hypothesis Testing Example: Coal Mining Strike Data (contin-

ued)

The posterior distribution for 6 is:
p(0]y)  p(0)L(0ly) = 6"L(1 — g)>=¥i—1/2

This is kernel of the Beta(n, )  y; + 1/2) distribution.
We test the hypothesis:

Ho:60<0.05 vs. H,:6>0.05
The posterior probability P(# < 0.05]y) is:

0.05
P(6 < 0.05]y) =/ p(0]y)do
0

This is the area to the left of 0.05 in the Beta(n, > y; + 1/2)
density, and can be computed directly or via Monte Carlo
methods.

See the R example with coal mining strike data. 28



Two-Sided Hypothesis Tests

e Two-sided hypothesis tests take the form:
Hy:0=c vs. Hy:0+#¢c

for some constant c.
e A continuous prior on @ is not suitable for this test because it
would lead to:

P(@ S @0) =0 and P(9 S @o|y) =0

for any observed data set y.

e Solution 1: One solution is to place a prior probability mass
on the point # = ¢, but many Bayesians find this approach
problematic.

e The difficulty lies in assigning an appropriate value to the
point mass, which can significantly influence the posterior

results.
29



Two-Sided Tests: Solutions

e Solution 2: Define a small € > 0 such that if 4 is within ¢ of
c, it is considered “practically indistinguishable” from c.

e Set ©p = [c — &, ¢ + £] and compute the posterior probability
that 6 € ©q.

e Example 1: Testing Hy: € = 0.10 vs. H, : 6 = 0.10 with
e = 0.003. Here, ©p = [0.097,0.103] and:

0.103

P(0 € Ooly) = / p(0ly)do = 0.033
0.097

(calculated using R).

e Solution 3 (mimicking the classical approach): Derive a
100(1 - )% highest posterior density (HPD) credible interval
for 6. Reject Hy : 0 = c at level « if and only if ¢ lies outside
the credible interval.

30



Two-Sided Tests: Bayesian Decision Theory

e In Bayesian decision theory, we incorporate the cost of making
incorrect decisions regarding Hy or H, using a loss function.

e The goal is to evaluate the Bayes risk of a decision rule,
which is the expected loss based on the posterior distribution
of 6.

e This approach provides a framework for making decisions that
account for both the uncertainty in # and the consequences of

incorrect conclusions.

31
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The Bayes Factor

e The Bayes Factor provides a way to formally compare two
competing models, say My and M.

e It is similar to testing a “full model” vs. “reduced model”
(e.g., with a likelihood ratio test) in classical statistics.

e However, with the Bayes Factor, one model does not have to
be nested within the other.

e Given a data set y, we compare models:

My : fi(y|#1) and Ms : f(y|62)

e We may specify prior distributions p1(61) and p2(62), which
lead to prior probabilities for each model p(M;) and p(M>).

33



The Bayes Factor (continued)

e By Bayes' Law, the posterior odds in favor of Model 1 versus

Model 2 is:
Jo, P(M1)fi(y|01)p1(61)d0:
p(Mily) _ p(y)
p(Maly) — Jo, P(M2)fa(y]62)p2(62)d0>
p(y)

e Simplifying this, we get:

p(Mily) _ p(Mi) Jo, filyl61)p1(61)d6y
p(Maly) — p(M2)  [o, fo(y]02)p2(62)db>

e This gives us:
[posterior odds] = [prior odds] x [Bayes Factor BF(y)]

34



The Bayes Factor (continued)

e Rearranging, the Bayes Factor is:

_ p(Mily) | p(M2)
p(Mely) ™ p(Mh)

BF(y)

e This simplifies to:

_ p(Mily)/p(Maly)
BFO) = = o) ()

e The Bayes Factor is the ratio of the posterior odds for M; to
the prior odds for Mj.

35



The Bayes Factor (continued)

e Note: If the prior model probabilities are equal, i.e.,
p(M1) = p(M>), then the Bayes Factor equals the posterior
odds for M.

e Note: If p(M;) = p(M>) and the parameter spaces ©; and
©, are the same, the Bayes Factor reduces to a likelihood
ratio.

e Note also that in general:

p(Mu,y)
BF(y) = p(Mily)  p(M2) _ b(y)p(M)

M M)~ _p(Ma,y)
p(Maly) — p(Mh) P(Y)P%Mﬁ

p(My,y) /p(%,y) p(y| M)

p(M) | “p(Ma) — ply|Ms)’

e This shows that the Bayes Factor is the ratio of the L@t

likelihoods under each model. 5"; LQ m6




Computing the Bayes Factor with Multiple Parameters

e When models M; and M, specify parameter spaces ©1 and
©, (instead of single values for the parameters 6; and 67), the
Bayes Factor BF(y) compares the marginal likelihoods of

each model:
BF(y) = f@ 91)Q1§91)d01
y
Jo, £y |92)sz_(9})d92
where

e f1(y|f1) and f(y|62) are likelihoods under each model
e p1(01) and pa(62) are priors over parameter spaces
e This integration accounts for all possible parameter values,
weighted by their priors.
e Approximations: For complex models, use methods like:
e Monte Carlo integration
e Importance sampling

e Laplace approximations
é Markov Chain Monte Carlo (MCMCQ) 37



The Bayes Factor (continued)

e A Bayes Factor much greater than 1 supports Model 1 over
Model 2.

e Jeffreys’ Rules for interpreting the Bayes Factor when Model
1 represents the null model:
e BF(y) > 1: Model 1 supported
e 0.316 < BF(y) < 1: Minimal evidence against Model 1 (Note:
0.316 = 10-1/2)
e 0.1 < BF(y) < 0.316: Substantial evidence against Model 1
e 0.01 < BF(y) < 0.1: Strong evidence against Model 1
e BF(y) < 0.01: Decisive evidence against Model 1

e Clearly, these labels are somewhat arbitrary.

38



The Bayes Factor and Posterior Probability of Model 1

e When comparing two models, M; and M,, the posterior
probability of Model 1 can be expressed i.t.o. the Bayes
Factor BF(y).

P(y|My)P(M

e By Bayes' Rule, P(Mily) = (y’F)l()y)(l)

e Since P(y) = P(y|M1)P(My) + P(y|M2)P(Ms), we can
express P(Myly) as:

P(y|My)P(M)

P(Mily) =
MLIY) = By TR PUMY) + Py M) P(My)
e Using the definition of the Bayes Factor, BF(y) = 58%; e

o __ BF(y)-P(My)
can rewrite this as: P(M1]y) = BF(y) - P(My) 4+ P(M>)

e Therefore, the posterior probability of Model 1 is:

39




Example 2(a): Comparing Two Means (Bayes Factor Ap-

proach)

e Data: Blood pressure reduction was measured for 11 patients
who took calcium supplements and 10 patients who took a
placebo.

e The data are modeled as normally distributed with a common
variance:

(1\}71 Vf Calcium group: Yj; ~ N(u1,0%), j=1,...,11
) C Placebo group: Y5; 5 N(uz,0%), j=1,...,10
e Consider the two-sided test for whether the mean blood

pressure reduction differs between the two groups:
Ho:p1=po vs. Hy:pr # pe

40



Example: Comparing Two Means (continued)

e We will place a prior on the difference of standardized means:
A — H1 — 2
o

with mean pa and variance o3 .

e Consider the classical two-sample t-statistic:

o
wa‘l\er\en = (* 4 1 >_1. Sgoc&é

n

Y1 — Vs
(n171)512+(n271)s22
n+n,—2

T= - n*

41



Example: Comparing Two Means (continued)

e Hy and H, define two models for the distribution of the
t-statistic T:

e Under Hyp, T ~ t (central) with ny + ny — 2 degrees of freedom.
e Under H,, T ~ noncentral t-distribution with noncentrality

*
parametewA/_ VNt

e Using the prior, the Bayes Factor for Hy over H, is:

tn+m—2(t*]0,1)
BF(y) - 1* : * * 2
tn1+n2—2(t ‘ MAW; 1 +n UA)

where:
o t,in_o(x|p,o?): t-distribution density with n; + n, — 2
degrees of freedom, noncentrality i, and variance o
e t*: observed t-statistic

e See the R example to compute BF(y) and P(Hp | y).
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Example 2(a): Comparing Two Means (Gibbs Sampling Ap-

proach)

[ Mean /M cal ' nim ,M‘Z; [N\zoan )/ ho

o We revisit the same H ta set, now testing whether calciu
yields a better BP reduction than the placebo:

,\/ﬁ)\qy}ﬁ Ho:pr <po vs. Hy:pg > puo

Y{We set up the following sampling model:

Ylj:,u—i—7+51j, j=1,...,11

%(&‘ R’ YZJ Ty J= 10
&
X‘” whereeUNN /t/l/’Z ﬂ\

oHence U1 = u—l—Tanduz =BT

;,é 7o v Ha: T>U
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Example: Comparing Two Means (continued)

e \We assume indegendent priors for u, 7, and o?:
~ N(Nwai)’ T~ N(MT7U$)7 o ~ G (
_ \_/
e The Gibbs sampling process iteratively samples from the
following full conditional distributions:

S/’\(\/ N (2

141 1/11/2>
27 2

ey yao? ~Nomal I 6 /oo 57
e 7ly; Yo, 1, 02 ~ Normal < ’L/\:’Z—G;(L/O,/LQI)

® 0°ly1,Y2, /1, T ~ Inverse Gamma (IG) O~
o Recall that each conditional distribution leverages the latest
sampled values for the other parameters, creating a Markov
chain that approximates the joint posterior distribution.
e The specific parameters for these distributions can be found in
the accompanying R code.
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Full Conditional Distributions in Gibbs Sampling

e Conditional distribution for o2

02 | Yi,Y2, 1, T~ IG(

V1

+ N1+ no

2 9

2

vivy + Z}il()/lj —p—T)+ Z}Zl()Qj —pt T)2>

e Conditional distribution for y:

wlys,y2,7,0% ~ N

e Conditional distribution for 7:

T | Y17Y27M702 ~ N

Pu + Z;i1(}’1j*7)+zj21(y2j+7)
Jﬁ o2 1
1 ni+n 71 ni+no
o2 + o2 a2 + o2
by 4 S-S )
o2 o2 1
1 4 mim Pl mtm
o2 + a? o2 + a?



Derivation of the Posterior Conditionals (Sketch)

Model Setup:

e Two Groups with Measurements:
Yy=p+T17+ey, j=1,....m
Yoj=pu—7+¢e, j=1,...,m

where €;; ~ N(0, 02).

e This implies:

Yij ~ N(u+7,06%) and Yz~ N(u—T7,0%)
Prior Distributions:

e Independent priors for 4, 7, and o
vy ivp
K~ N(Mlmoﬁ)’ T~ N(/LWUE)’ o? ~ 1G <?a?)
e Recall that /G denotes the Inverse Gamma distribution, which

is commonly used as a prior for variance parameters. 46



Derivation of the Posterior Conditionals (Sketch)

e The joint posterior distribution of i, 7, and 0 is

proportional to the Iikegzhpvo\;:l times the prior: MWW

Y L T—
Pl 7, 0% [ y1.y2) o (1) -p(7) - p(0®) -ply1.y2 | 1:7.0%)
e Conditional distribution for o given s, 7, and the data is
derived from combining the likelihood and the prior for o:
ww’ﬁ@nd simplifying
further.
e Conditional distribution for u given 7, o2, and the data is
derived from combining the likelihood and the prior for p.
p(p | 7,0%,y1,¥2) o p(y1,y2 | 41, 7,0%) - p(r) and simplifying.
e Conditional distribution for 7 given u, o2, and the data is
derived from combining the likelihood and the prior for 7.
p(7 | 0%, y1,¥2)  p(y1,¥2 | 1, 7,02) - p(7) and simplifying.
47



Example: Comparing Two Means (continued)

R Example: A Gibbs Sampler can be used to obtain
approximate posterior distributions for 1 and, more
importantly, for 7.

Note that:

N R i

Additionally, we can compute the posterior predictive

probability:
P(Y1 > Y2)

These results provide insight into the effectiveness of calcium

in reducing blood pressure compared to the placebo.

48



Advantages of Bayes Factor

e Bayesian hypothesis testing enables researchers to
discriminate evidence of absence from absence of evidence.

e Bayesian results are relatively straightforward to interpret and
communicate.

e Bayes factor hypothesis testing encourages researchers to
quantify evidence on a continuous scale.

e For most statistical scenarios, Bayes factor hypothesis testing
is/rf)muelaﬂiely—easy.\‘ S%W( WLL@"

é Bayesian inference allows researchers to monitor the results as

the data accumulate.% MMM-E;ZJ( V\f ‘“@%

Bayes factor hypothesis testing allows researchers to fnclude

ior knowledge for a more diagnostic test.

oquodeIs compared do not have to be nested.‘p
— —

49



Issues with Bayes Factors

Note: When an improper prior (one that does not integrate
to a finite number over its support) is used for 6, the Bayes
Factor is not well-defined.

__ Posterior Odds for M- W "
Recall that BF(y) = =5, 5dds for 1, -+ and the “prior odds
is meaningless for an improper prior.

Several methods exist to define types of Bayes Factors with

improper priors (e.g., Local Bayes Factors, Intrinsic Bayes
=~ N\
Factors, Partial Bayes Factors, Fractional Bayes Factors), but

none are ideal.

One criticism of Bayes Factors is the (implicit) assumption

that one of the competing models (M; or M») is correct.

Another criticism is that the Bayes Factor depends heavily on

—

the choice of prior.
— P
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The Bayesian Information Criterion (BIC)

e The BIC can be used as a substitute for the Bayes factor to

LEAN
compare two (or more) models. Nlé( %OLX\? -
o ~dreg on
e Conveniently, the BIC does not require speufymg pnorW

egtnd

K Forssoaramgteriﬁ_@d data l,_the BIC is calculated as:

M@ y‘“ BIC = —2log L(A]y) + plog(n)

) g < pedobel
where p is the nu_r;ﬁ’)rer f free parameters in the model, and

L(Aly) is the maMn the observed data y.
Lly)1s
e Good models have relatively small BIC values:

e A small value of —2]og 5|y indicates a good fit to the data.
e A small value of the “overfitting penalty” term plog(n)
indicates a simple, parsimonious model.
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The BIC: Comparing Two Models

e To compare two models M; and M, we calculate:

1
S =~ (BICw, — BICy

~ log L(Dhly) ~ log L(Daly) ~ 3 (p1 — p2) og(r)

e A small value of S would favor M, while a large S would

e N —

favor M.

e As n— oo:
S log(BF(y) __

log(BF(y))
e For large n, we have the approximation:

BICw, — BICu, = —25 ~ —2log(BE(y))

w

53



The BIC: Additional Notes

e Differences in BIC values can be used to compare several

f
non-nested models:

e The BIC should only be trusted as a substitute for Bayes
Factors when:

1. No reliable prior information is available.
2. The sample size is quite large.
e See R examples:

e (1) Calcium data example.
e (2) Regression example on the Oxygen Uptake data set.
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BIC vs AIC - Overview

AIC (Akaike Information Criterion) and BIC (Bayesian
Information Criterion) are model selection tools balancing
model fit and complexity.

AIC formula: AIC = —2log(L) + 2k

e [ is the likelihood of the model, k is the number of parameters.
e AIC penalizes complexity by 2k, aiming to balance fit and
simplicity.

BIC formula: BIC = —2log(L) + k{og(n)

e nis the sample size.

e BIC uses klog(n), imposing a stronger penalty as n grows.
AIC - Based on information theory, aims to minimize the
Kullback-Leibler (KL) divergence between the true model and
estimated model.

BIC - Based on Bayesian principles, approximates the
posterior probability of a model, penalizing complexity more

, . 55
strictly as n increases.



Complexity Penalties

e AIC: Fixed penalty of 2k, regardless of sample size. Often
selects more complex models, especially with small samples.
e BIC: Penalty grows with sample size, k log(n), leading to

simpler models in large datasets.
o Comparison:
e AIC is generally more flexible, often better for prediction.
e BIC is more conservative, often better for finding the true

model structure.
model structu

When to Use AIC vs. BIC
AIC - Preferred for prediction-focused applications; minimizes
out-of-sample error.
BIC - Suitable for identifying the most likely true model,

articularly useful in scientific contexts.

Sample Size - BIC's penalty increases with n, making it more
conservative as sample size grows. 56



Consistency of AIC and BIC

e BIC is Consistent:
e As n — oo, BIC will identify the true model with high
probability, assuming it's among the candidates.
e Useful for accurate model selection when the goal is
interpretability.
e AIC is Not Consistent:
e AIC may not identify the true model, even as n grows, due to
its fixed penalty.
e However, AIC is asymptotically efficient, minimizing
prediction error.

57



He e, e HJ_" ve @,

Ndoda) = o (doda\ b :
- iftzi‘j\lxa)-«-eﬁ(“‘w
P (doikel x’\f)) . W,\,sz\wj cle»@g} %{Z doctr M\c%r Si‘)\& P
S eSS fﬁ"“\m\? wm j\j ﬁ:&‘\: nad-end
Wi%ﬁﬂ & QLJ( S ‘%)&\ W
aE pldnka| Ho) /\0 (Aﬁ«\ﬁl)'
R

ot )
ﬁ @a": {/M(O\/L) @12 (/A“/(A ir\ -‘:ﬂ‘;‘tﬁ oy QQV\'\CA K
5uu)\/\ '5‘3}‘%32’51\&0 S Lol \DLL g ~ \9\1 Code %Q
. | gt s o e
Bt s m& .m( ) o dackens “ Q‘j” L
e ﬁ(w VR T L L oud gl
PRSP z \ &’\ &D\(-Q_(\Q/

| ae &) \a 2001}
o Tuhaonstes gl “ﬁ@ﬁ%\ g{ %!Q M,,@fépilié

\ b Jide F‘*\’
4‘\(\9&3 5"4)/ V%Lkgmw - BW\,\PAQ (V\ﬂA%Q\U#bN"

o it
iw DA i %fﬁ‘““l e i
o [Elab) =T AT v ke

f- { -
eory w K RE= A‘E?"?’“Mm‘i’)

g——

ék)(g/g?\r& &\/{"95*) ,(\\—w\@r\of ‘M)

i,.

54\("{'&%‘%&\“ e C_W}Ab
\J\J\NKHL/E.;&Q‘ \/%‘,g{; L AnT Op JaL “Wﬁéﬁ

s Feoc e caze /\/\b”’@)
_tv
&F = ko A LR i‘
PI —tq’/(fv Cito?a)




W S=MMa =0 o . § 40 @
fn CV\O‘%;\M !CL& ukﬁuw-ﬁ, e - sanmpsie -+ S‘Lﬂ\‘g“%’cj lOWFW
W\QQ v oovodehed fe Adf ol Lhon J. s
bot M= MM ol epereneteie By (Pa]

e

5 )
(e2 (/‘Alé\/ Y i N(Mb/(%\

He ca &/\A [V\Q) AW et v\«\czs-i’“% 3¢ ‘VL;W\@‘%( & -

‘ ‘ | | e | [mo oc

’fA(O‘rL) ‘e Mﬁi‘;mkw WVC’(\ %} _ b 4 ‘ \.h,Qr /
A e R 8 ok reemamd
(U (o) N afhomvuce 59

al

o e Shder) | _ e

o5 e )\P ot e = depzndy o o \-)
oo,

g e A

T SAOeY D=
N (F(M/"”ﬂ/) ol 'L/(FL

® G’OW\I)\’J 2055 sy \ J

Rt seg D= Vi /e n o connnit] (o oo

. # ( [a/l ij ,L{(L ' /Szk/" i v/_i
OQ/LM s W Al et be o%’éf«/w//’ ‘

.. M, E%‘“\‘”‘ Pedusa, %C—ﬂﬁ

(B
e S w (/)‘bl 7.8
T

£ ' C/;zf(’}))
@M" “/o- (F"A e “\
o ble PME
pe iy o A okl iy

/d\



nature
neuroscience

‘ '.) Check for updates

REVIEW ARTICLE

https://doi.org/10.1038/5s41593-020-0660-4

Using Bayes factor hypothesis testing in
neuroscience to establish evidence of absence

Christian Keysers ©'224, Valeria Gazzola'? and Eric-Jan Wagenmakers ©?

Most neuroscientists would agree that for brain research to progress, we have to know which experimental manipulations have
no effect as much as we must identify those that do have an effect. The dominant statistical approaches used in neuroscience
rely on P values and can establish the latter but not the former. This makes non-significant findings difficult to interpret: do
they support the null hypothesis or are they simply not informative? Here we show how Bayesian hypothesis testing can be
used in neuroscience studies to establish both whether there is evidence of absence and whether there is absence of evidence.
Through simple tutorial-style examples of Bayesian t-tests and ANOVA using the open-source project JASP, this article aims to

empower neuroscientists to use this approach to provide compelling and rigorous evidence for the absence of an effect.

manipulation does not have an effect as much as whether

it does. One may use drugs to block a candidate pathway.
If the drug has an effect, that pathway is involved; if it doesnt, one
would like to conclude the pathway is not involved. Or one may alter
activity in a brain region X and measure behavior B. If de-activating
X changes B, X is involved in B; if B remains unchanged, one would
like to conclude that X is not involved in B.

Neuroscience research is characterized by advanced measure-
ment techniques and sophisticated experimental designs, but the
data analyses almost always employ the standard framework of
frequentist statistics, featuring P value null-hypothesis significance
testing (NHST). NHST is arguably appropriate when one wants to
quantify evidence against the null hypothesis (H,: there is no effect)
and therefore for the presence of an effect (but see ref. '); however,
NHST is problematic when one wants to quantify evidence for
the null hypothesis. It is notoriously difficult to establish whether
non-significant results support the null hypothesis (i.e., yield evi-
dence for absence) or are simply not informative (i.e., show absence
of evidence’™). NHST biases us to emphasize positive effects,
because those are the effects it equips us to quantify, and to ignore
null findings. If we agree that the absence of an effect is important
information, isn't this bias unacceptable? Here we aim to highlight
how an alternative statistical framework—Bayesian inference—can
resolve this problem in neuroscience practice.

We will first illustrate why it is problematic to quantify evi-
dence for the null hypothesis based on the dominant frequen-
tist approaches. We will then show how Bayesian statistics
provides a way out of this predicament through simple tutorial-style
examples of Bayesian t-tests and ANOVA using the open-source
project JASP°.

N euroscientists would need to know and publish whether a

The P value predicament

When we conduct a t-test to compare two conditions A and B,
a resulting P value below a critical threshold a shows that one is
unlikely to encounter differences this extreme or more if the experi-
mental manipulation had no effect (H,: u, = ug). For a fixed sample
size, the smaller the P, the more evidence we have against H,. Fisher
argued that a low P value signals that “either the null hypothesis

is false, or an exceptionally rare event has occurred”® But what if
we find no significant effect (for example, P = 0.3)? Apart from
sampling variability (i.e., ‘bad luck’), there are two fundamentally
different causal explanations for a non-significant P value: the
manipulation had a non-zero effect, but the sample size was too
small to detect it (i.e., there was insufficient power); or the manipu-
lation had no effect (i.e., the true effect is zero). When sample size
is small, either explanation is plausible. As sample size grows, a
non-significant P value increasingly suggests the manipulation
did not have an effect (or an effect so small it is not meaningful).
While a power analysis can help disentangle these alternatives, the
relationship between sample size, power, P value and evidence for
H, is complex enough that we are rightly reticent to draw strong
conclusions from a non-significant P value. This has been famously
and elegantly phrased in the antimetabole: ‘absence of evidence
[read: the data are not informative, the design was underpowered]
is not evidence of absence [read: the data provide support in favor
of the null]”.

Intuitively, one may believe that if lower P values provide more
evidence against H,, higher P values should provide more evidence
in favor of H,. We would thus expect that if we simulate truly ran-
dom data with no effect, high P values should be relatively frequent,
especially with large sample sizes. This, however, is not the case.
When we draw random samples from two identical distributions
(i.e., where H, is true; Fig. la leftmost column), P < 0.05 is rare
(as expected), but all P values are equally likely. As sample size
increases, and we thus intuitively have more evidence that the two
distributions have the same mean, high P values do not become
more frequent (Fig. 1a, leftmost column comparing top and bot-
tom row). Higher P values are thus not a reliable metric for more
evidence for H,.

Hence, NHST leaves the neuroscientist in a peculiar predica-
ment: significant P values indicate evidence against H, (but see
refs. ¥), but non-significant P values do not allow us to conclude that
the data support H,. This inherent limitation of P values impedes
our ability to draw the important conclusion that a manipulation
has no effect and hence that a particular molecular pathway or brain
circuitry is not involved or that a particular stimulus dimension
does not matter for brain activity.

Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands. 2Department of Psychology,
University of Amsterdam, Amsterdam, The Netherlands. ®e-mail: c.keysers@nin.knaw.nl
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A Bayesian solution
In contrast to frequentist NHST, which focuses exclusively on the
null hypothesis (H,), Bayesian hypothesis testing aims to quantify
the relative plausibility of alternative hypotheses H, and H, (Box 1).
Figure 2 shows an example of how evidence is computed, using
a Bayesian approach, for the case of a t-test when the question of
interest is whether an experimental manipulation has a positive
effect. This translates into two rival hypotheses: the manipulation
had no effect versus the manipulation increased the dependent vari-
able. Rather than expressing hypotheses in raw values specific to
a given experiment, they are expressed using the population stan-
dardized effect size § (with § = (u,, — pt5)/0). The sceptic’s hypothesis,
H,: 6 = 0, states that the effect is absent, whereas the alternative
hypothesis, H,: § > 0, states that the effect is positive (Fig. 2a). Note
that a ‘one-tailed’ H, is denoted as H, to indicate the direction of
the hypothesized effect. To quantify which hypothesis best predicts
the data, we quantify the observed effect size d (d = (m, — my)/s)
in the data and transform it into a t-value (t = dx /n), because
the distribution of t-values expected for any & is well known. Next,
we transform the qualitative hypotheses H, and H, into quantita-
tive predictions about the probability of encountering every ¢-value
using this ¢-distribution. This is achieved by assigning prior proba-
bility distributions to 6 (Fig. 2b), and then computing the probability
of each observable ¢ based on these §-value distributions (Fig. 2¢).
For the sceptic’s H: § = 0, the distribution of effect sizes is simply a
spike at § = 0 (red in Fig. 2b), and this makes predictions about the
likelihood of each observable t-value using the same distribution
that is used in a frequentist ¢-test with » participants: the Student’s
t distribution with n — 2 degrees of freedom (red in Fig. 2c). For
H,: 6 > 0, we need to be specific about the probability of each pos-
sible positive 6 to become specific about ¢. The one-tailed nature of
our hypothesis is reflected in a truncated distribution, with nega-
tive values having zero probability under H, (ref. ° p. 283; note that
two-tailed hypotheses are usually implemented by means of sym-
metrical distributions, for example, the dotted line in Fig. 3b). We
also know that most neuroscience papers report effect sizes of § <
1 (ref. '), with smaller effect sizes being more common than larger
effect sizes; this is reflected in a peak for small positive é and low
probability for § > 1. Indeed, that we feel that we need to perform a
test in the first place corresponds to this presumption that the effect
size must be fairly small’. These considerations about the plausible
direction and magnitudes of the effect under H, generate the prior
distribution shown in blue in Fig. 2b (see section “Default priors
provide an objective anchor” for guidance on how to define this
prior distribution). For each of the hypothesized § values, we can
make predictions about t using the non-central ¢ distribution with
w1 = . The mixture of these non-central ¢-distributions associated
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with each 8, weighted by the prior plausibility of that &, predicts the
probability of each possible t-value under H, (blue in Fig. 2c). When
the data arrive (Fig. 2d), we first calculate the t-value for our data,
which we will call ¢,, and then see where ¢, falls on the ¢-distribution
expected under H, (red) and under H, (blue). The traditional fre-
quentist P value corresponds to the area to the right of ¢, on the
red distribution; note that the predictions from H,, indicated by the
blue distribution, are entirely ignored in the frequentist approach.
In contrast, for the Bayesian approach, we take the ordinates
p(t, | Hy) and p(t, | H,) and calculate the evidence that the data pro-
vide in favor of H, over H, as p(t, | H,) + p(t, | H,) (Fig. 2e). At
that specific ¢, value, the ratio equals 4, indicating that our data was
predicted four times better by H, than Hj; we may conclude that
our data supports H,. The evidence—the relative predictive perfor-
mance of H, versus H,—is known as the Bayes factor”'"'"* (Box 1).
We abbreviate it as BF and use subscripts to denote which model is
in the numerator versus the denominator; thus, BF,, = p(¢, | H,) +
p(t, | Hy) and BE,, = p(t, | H,) + p(t, | H.).

If the t-value from our data were to be closer to 0, as exemplified
by another hypothetical t-value, t, (Fig. 2¢), the ordinates of the red
and blue distributions would be about equally high, indicating that
the observed t, is about equally likely to occur under H, and H,;
hence the predictive performance of H, and H, is about equal, the
Bayes factor is near 1, and consequently we have absence of evi-
dence. If the t-value were to fall at ¢, (Fig. 2e), this value would be 4
times more likely to occur under H, than under H,; consequently,
BF,, = %, that is, BF,, = 4, and we may conclude that our data sup-
port Hy—in other words, we have some evidence of absence.

Thus, the P value of a frequentist approach has two logical states,
significant versus not significant, which translate into evidence for
H, (“great, I found the effect”) versus a state of suspended disbe-
lief (“I did not find an effect, but it could be because I was unlucky
or because the effect does not exist or because my sample size was
too small”), whereas the BF has three qualitatively different logical
states: BF}, > x (“great, I have compelling evidence for the effect”),
1/x < BF,, < x (“oops, my data are not sufficiently diagnostic”), BF,,
< 1/x (“great, I have compelling evidence for the absence of the
effect”). Here x is the researcher-defined target level of evidence.
The BF should primarily be seen as a continuous measure of evi-
dence. However, since larger deviations from 1 provide stronger
evidence, Jeffreys proposed reference values to guide the interpreta-
tion of the strength of the evidence’. These values were spaced out
in exponential half steps of 10, 10°° = 3, 10' = 10, 10'* = 30, etc., to
be equidistant on a log scale. He then compared these values with
critical values in frequentist t-tests (see Extended Data Fig. 1a for a
modern equivalent) and y? tests, and declared, “Users of these tests
speak of the 5 per cent point [p = 0.05] in much the same way as I

>
>

Fig. 1| P value of a t-test and BF, as a function of effect size and sample size. a, Each histogram shows the distribution of P values obtained from

1,000 one-tailed one-sample t-tests based on n random numbers drawn from a normal distribution with mean p and s.d. = 1. To differentiate levels of
significance, the first bin was split into multiple bins based on standard critical values. Note how, when there is an effect in the data (i.e.,, u > O, all but
leftmost column), increasing sample size (downwards) or effect size (rightwards) leads to a leftwards shift of the distribution: more evidence for an effect
leads to lower P values. In this case, P values <0.05 are considered hits and are shown in green, while P values >0.05 are considered misses and shown

in red. However, somewhat counterintuitively, the converse does not hold true: in the absence of an effect, (u= 0, leftwards column), increasing sample
size does not lead to a rightward shift (increase) of the P values. Instead the distribution is completely flat, with all P values equally likely (note that the
distribution seems to thin out below 0.05, but this is because we subdivided the last leftmost bin into several bins to resolve levels of significance). In

this case, P < 0.05 represents false alarms, shown in red, and P > 0.05 represents correct rejections, shown in green. P values are thus not a symmetrical
instrument: cases with much evidence for H, (high effect size and sample size) give us quasi-certainty to find a very low P value, whereas cases with
much evidence for H, (for example, u = 0 with n =100) do not make P values close to 1 highly likely; instead, any P value remains as likely as any other. b,
Distribution of BF ,, (using r = v/2/2 for the effect size prior Cauchy width) values obtained from 1,000 t-tests based on n random numbers drawn from
an N(u,1) normal distribution with mean u and s.d. = 1. Each histogram has the same bounds specified below the graphs, representing conventional limits
for moderate and strong evidence. When an effect is absent (u = O, leftmost column), evidence of absence (green bars and percentages, BF,, < 1/3)
increases with increasing sample size and the false alarm rate is well controlled. When an effect is present (u > 0), evidence for a positive effect (BF_, >
3, green bars and green percentages) increases with sample size and effect size, and misses (BF,, < 3, red bars and red percentages) are rare (u = 0.5) or
absent (u =1.2 or 2). When percentages are not shown, they are 0% (red) or 100% (green). Data can be found at https://osf.io/md9kp/.
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should speak of the K = 10" [i.e. BF,, = 3] point, and of the 1 per
cent [p = 0.01], point as I should speak of the K = 10" point [i.e. BF,
= 10]; and for moderate numbers of observations the points are not

very different”” These reference values remain in use: BF > 3 is con-
sidered moderate evidence for the hypothesis in the numerator (i.e.,
H, if BF,, > 3), roughly similar to P < 0.05; BF > 10 is considered

a
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Box 1| Bayesian updating

The Bayesian formalism describes how an optimal observer up-
dates beliefs in response to data. In the context of hypothesis test-
ing, at the start, observers entertain a set of two or more rival ac-
counts. In the context of a t-test, they would be called hypotheses
H,and H; in the case of an ANOVA, they would be called models.
Each is specified via parameters we can call 8, for example, the
effect size 6 in a t-test hypothesis or a regression parameter  in
an ANOVA. Prior to looking at the data, the rival accounts have
prior probabilities, and the parameter values within each account
also have prior probabilities. At the level of the accounts, we may
assume them to be equally believable a priori (for example, prior
hypothesis probabilities p(H,) = p(H,) = 0.5). At the level of the
parameters within each account, they are associated with prior
parameter distributions (for example, H;: § = 0, H: d ~ Cauchy;
Fig. 2). When data become available, the probabilities are reallo-
cated: accounts and parameters-within-accounts that predict the
data relatively well receive a boost in credibility, whereas those that
predict the data poorly suffer a decline”. Note the similarity to
models of reinforcement learning’'. Mathematically, this updating
is done using Bayes’ rule, as we describe below separately for pa-
rameters and accounts.
Updating parameter estimates

p(data|0)

0\dat = 0 ——1L
p(6\data) p(0) D(data)

posterior beliefs about 6 prior beliefs about 6 N——

predictive updating factor

Here the probability of each possible value of € within an account
after seeing the data (i.e., posterior parameter beliefs) are cal-
culated as the product of the prior probability of that value (i.e.
parameter prior beliefs) times the predictive updating factor. The
latter reflects how likely the observed data is according to that par-
ticular parameter value divided by the average predictive perfor-
mance across all values of 6 weighted by their prior probability, i.e.
p(data) = [p(data|0) - p(6)d6. This posterior parameter belief is
the basis for the credible intervals (CI) that the Bayesian analysis
provides for the parameters conditional on a given model.

Updating the plausibility of the rival accounts
For two rival accounts of the data (for example, H, vs H,),
Bayes’ rule can best be written in the form of odds™:

plHoldata) _ p(H) _ pldatalHy)
p(H;|data) p(Hy) p(datalH,)
—_———— —— ———

posterior odds for Hyvs H; prior odds for Hyvs H;  predictive updating factor

This equation shows that the change from prior hypothesis odds
to posterior hypothesis odds is brought about by the predic-
tive updating factor—commonly known as the Bayes factor’’.

strong evidence, roughly similar to P < 0.01 (ref. ©°). Because BF,
= 1/BF,,, this also defines the bounds for evidence for the hypoth-
esis in the denominator: BF < 1/3 is moderate and BF < 1/10 is
strong evidence. BF values between 1/3 and 3 indicate that there
is insufficient evidence to draw a conclusion for or against either
hypothesis. While these guidelines enable us to reach somewhat dis-
crete conclusions, the magnitude of the BF should be considered as
a continuous quantity, and the strength of the conclusions expressed
in the discussion section of a paper should reflect the magnitude of
the BE For new discoveries, Jeffreys suggested that x = 10 is more
appropriate than x = 3; however, each scientist and field will need to
decide whether to privilege the sensitivity of the test for small sam-
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For instance, assume the rival hypotheses are equally plausible
a priori (i.e., p(H,) = p(H,) = 0.5). The prior hypothesis odds are
then equal to one. If the predictive updating factor is 10 (i.e., the
observed data is 10 times more likely under H, than under H)),
this means that the posterior odds are then also 10. Given that
for mutually exclusive hypotheses p(H,)+p(H,) = 1, these odds
mean that the data have increased the probability of H,, from 0.5
(the prior hypothesis probability) to 10/11 ~ 0.91 (the posterior
H, probability).

The Bayes factor quantifies the degree to which the data warrant
a change in beliefs, and it therefore represents the strength of
evidence that the data provide for H, vs H;. Note that this strength
measure is symmetric: evidence may support H, just as it may
support H;; neither of the rival hypotheses enjoys a special status.

For a neuroscientist who wants to know whether or not their
manipulation had an effect, the posterior odds might seem like
the most obvious metric, as they reflect the plausibility of one
hypothesis over another after considering the data. However,
these posterior odds depend both on the evidence provided by
the data (i.e., the Bayes factor) and the prior odds. The prior odds
capture subjective beliefs before the experiment and introduce
an often-undesirable element of subjectivity that could bias the
conclusions drawn from the posterior beliefs. Scientists who
embrace a certain theoretical standpoint and those who do not
might fiercely disagree on these prior odds while agreeing on
the evidence, that is, the extent to which the data should change
their beliefs. As beliefs are considered less valuable for scientific
reporting than evidence, the data-informed Bayes factor is the less
controversial and thus favored metric to report.

There are three broad qualitative categories of Bayes factors.
First, the Bayes factor may support H,; second, the Bayes factor
may support H; third, the Bayes factor may be near 1 and support
neither of the two rival hypotheses. In the second case we have
‘evidence of absence] and in the third care we have ‘absence of
evidence’ (see also ref. ?). More fine-grained classification schemes
have been proposed'®.

To develop an intuition for the continuous strength of evidence
that a Bayes factor provides, one may use a probability wheel.
Examples are shown in Fig. 3b. To construct the wheel, we have
assumed that H, and H, are equally likely; the red part in the
wheel is then the posterior probability for H;, and the blue part
is the complementary probability for H,. Now pretend that the
wheel is a pizza, with the red area covered with pepperoni and the
blue area covered with mozzarella. Imagine that you poke your
finger blindly onto the pizza and that it comes back covered in the
non-dominant topping (in this case, pepperoni). How surprised
are you? Your level of imagined surprise is an indication for the
strength of evidence that a Bayes factor provides. We additionally
compare the BF with traditional P values in Extended Data Fig. 1.

ples or effects by using smaller x values such as 3, or to avoid false
conclusions by using higher x values such as 10. Regardless, readers
can judge the strength of the evidence directly from the numerical
value of BE, with a BF twice as high providing evidence twice as
strong. In contrast, it can be difficult to interpret an actual P value
as strength of evidence, as P = 0.01 does not provide five times as
much evidence as P = 0.05.

Crucially, the three-state system of the Bayes factor allows us to
differentiate between evidence of absence and absence of evidence.
This represents a fundamental conceptual step forward in the way
we interpret data: instead of one outcome (i.e., P < @) that generates
knowledge, we now have two (i.e., BF,, > x and BF,, > x).
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Fig. 2 | Hypothesis testing under the Bayesian framework. a, Two
competing qualitative hypotheses are expressed in terms of a test
parameter, such as the population effect size . H, represents a directional
hypothesis of a positive effect size. b, The two rival hypotheses are
formulated in terms of specific probability distributions expressing the
plausibility or probability of each effect size value. ¢, Each effect size
distribution is transformed into expected t-values. For H,, this is simply
the standard t-distribution used in frequentist t-tests. For H,, for each
hypothesized effect size, a non-central t-distribution with that effect
size is multiplied with the hypothesized probability of that effect size in
b. All of these weighted non-central t-distributions are then summed
together to get the distribution in c. d, After the data is obtained, the
observed t-value (t,) can be interrogated in each distribution. Note that,
in frequentist statistics, the P value is derived from the H, distribution
alone, as the area where t > t;. e, The likelihood of t, under H, and H, is
then compared to calculate the BF,,. Here we illustrate three examples
of observed t-values. At an observed value of t;, the blue distribution is
4 times higher than the red; hence BF,, = 4, and we have (moderate)
evidence for H,. At an observed value of t,, where the two distributions
are equal, BF,, =1and we have absence of evidence. At an observed value
of t;, the red distribution is 4 times higher than the blue; hence BF,, =
4 and we have moderate evidence for H,. Here we illustrated one-tailed
hypotheses, as these respect the directional nature of the underlying
theory and yield more diagnostic predictions. More agnostic two-tailed
hypotheses are calculated using the same principles, but the truncated
blue distribution in b is then replaced with a non-truncated, symmetric
distribution, as shown in the dotted line in Fig. 3b. Data can be found at
https://osf.io/md9kp/.

Figure 1b shows how a Bayesian f-test performs compared to a
frequentist ¢-test (Fig. 1a). The target level of evidence was setat x =3,
considered similar to the a-level of 0.05 in Fig. 1a (ref. °). When an
effect is absent (4 = 0), the Bayesian test will seldom come to the
erroneous conclusion that an effect is present (less than 4% BF,,> 3),
similarly to the frequentist approach. However, unlike the frequen-
tist approach, the Bayesian t-test provides increasing evidence for
the absence of an effect (see green percentages in Fig. 1b) with
increasing sample size. Similarly, evidence for an effect increases as
sample size or effect size increases (Extended Data Fig. 1b). Hence,
unlike the frequentist P value, the BF has a symmetric property of
quantifying evidence for the presence or the absence of an effect
that scales with evidence in either direction, be it due to increased
sample size or effect size. In each case, inconclusive cases (i.e.,
absence of evidence, defined here as 1/3 < BF < 3) become increas-
ingly rare as sample size increases.

Figure 1b also shows the statistical power to provide evidence for
or against an effect. When an effect is absent, evidence of absence
(BF,, < 1/3) in the presence of noise is limited when sample size is
very small (40% at n = 5), but reasonable in sample sizes often used
in neuroscience (n = 20-100). When an effect is present, evidence
for the presence of an effect (BF,, > 3) is slightly less frequent than
that of the frequentist approach (P < 0.05), but not dramatically dif-
ferent. However, as sample sizes become very large, the Bayes factor
and P values diverge more dramatically: P values will become signif-
icant even for arguably irrelevantly small effect sizes (for example, at
n=1,000, d = 0.05, t(999) = d+/1000, P = 0.05), whereas the BF con-
tinues to require more relevant effect sizes (Extended Data Fig. 1b).
It should be noted that for two-tailed tests, evidence for the null
hypothesis becomes substantially harder to provide and requires
larger sample sizes because the predictions of the null hypothesis
are directly flanked by the high likelihood of finding small effect
sizes in either direction under H,.

If Bayesian inference is so simple and informative, why isn’t
it used more? We speculate that one of the main reasons is prag-
matic: until recently it was difficult to conduct Bayesian analyses
for standard statistical scenarios. However, a number of packages
are now available that make Bayesian hypothesis tests easier to per-
form. Here we focus on the multiplatform open-source program
JASP (Jeffreyss Amazing Statistics Program; https://jasp-stats.org),
which uses an accessible graphical user interface; the R-package
BayesFactor'* is a powerful alternative.

JASP, a convenient tool for Bayesian inference

In the JASP graphical user interface, developed to facilitate the adop-
tion of Bayesian inference, analyses are selected from drop-down
menus, variables are dragged and dropped into windows, and out-
put is generated on the fly. Increasingly detailed analyses can be
executed by ticking checkboxes. As a result, for many statistical sce-
narios, a comprehensive Bayesian (re)analysis can be performed in a
matter of seconds. The examples below showcase the ways in which
the output from such Bayesian analyses should be interpreted and
how they allow researchers to go beyond the conclusions from the
classical frequentist P values. On the Open Science Forum (https://
osf.io/md9kp/), we provide csv files associated with the examples
presented below, as well as R code to replicate the BF values for
power users to apply such analyses to a large number of units (for
example, to classify hundreds of neurons recorded using calcium
imaging into those responding and those not responding to a par-
ticular stimulus) and a video illustrating how to use JASP.

Example of a two-sample t-test

To illustrate the Bayesian t-test, we use an example inspired by
ref. ', in which we hypothesized that the anterior cingulate cortex
(ACC) is critical for ‘emotional contagion’ in rats and that deacti-
vating the ACC by locally injecting muscimol should thus reduce
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Fig. 3 | lllustration of the data for the two simulated scenarios. Muscimoll data were simulated using =70 and ¢=20 for all conditions (imposing a
floor of O and a ceiling of 100), except ShockObs (in blue) under muscimol, which was simulated using u=40. Muscimol2 data were simulated using the
same parameters except for CS (in orange) under muscimol, which had y =65 and 6=40. Based on these data, we should find evidence for H,: saline >
muscimol in all cases for ShockObs. For CS (orange), muscimol1 should reveal evidence for H, (evidence of absence) given that data were drawn from the
same u =70, =20 distributions. For muscimol2, CS was drawn from different distributions for saline and muscimol, but with n=20, it might be hard to
adjudicate the difference, and we might thus expect absence of evidence. Data can be found at https://osf.io/md9kp/. Plots are violin plots, with the gray

bar showing the middle two quartiles.

emotional contagion compared to injecting saline. The injected
animal observed a conspecific receive electroshocks (ShockObs),
and its freezing was measured as an index of emotional contagion.
There was a non-social control condition in which the injected ani-
mal was exposed to a shock-conditioned tone (CS playback). To
illustrate how to analyze this kind of design using Bayesian statis-
tics, we generated two synthetic data sets (see additional materials
on OSF (https://osf.io/md9kp/) for muscimoll.csv and muscimol2.
csv) that illustrate two slightly different scenarios. We use simu-
lated data rather than the actual data from the paper to guide the
reader though alternative scenarios and to allow the reader to
modify the data and test the effect this has on the analysis (see
additional materials on OSF (https://osf.io/md9kp/) for the script
GenerateMuscimolData.R used to generate the data).

Video 1 (see additional materials at https://osf.io/md9kp/) shows
how to setup the analyses in JASP to examine the data of Muscimoll.
csv. Our main analyses of interest are two independent sample
t-tests on the freezing measures that compare H,: saline > mus-
cimol against H;: saline = muscimol separately for the ShockObs
and CS conditions. To assess the specificity of the effect, we will use
an ANOVA (see below). We use a one-tailed alternative hypothesis
because deactivating the ACC should reduce (not enhance) freezing
in the muscimol condition and hence lead to higher freezing in the
saline condition. The frequentist approach can also be performed
in JASP by selecting ‘Independent Samples T-Test. Thus, this sin-
gle package enables scientists to combine frequentist and Bayesian
approaches on the same data set.

The frequentist approach shows that for ShockObs, muscimol
reduced freezing significantly (¢s, = 3.961, P < 0.001), i.e., the
observed difference in freezing is unlikely under H,. For CS, the
result is nonsignificant (¢, = -0.519, P = 0.7), which could sig-
nal evidence for absence or absence of evidence. To adjudicate
between these alternative interpretations, we perform the ‘Bayesian
Independent Samples T-Test. Here too we select ShockObs and CS
as dependent variables, group as the Grouping Variable, and the
one-tailed groupl>group?2 analysis (after selecting saline as groupl
and muscimol as group2 in the data viewer as shown in Videol).
The results are shown in Fig. 4.

In the input panel on the left, we select BF,, as the output,
ie., p(data | H,) + p(data | Hy), with a one-tailed hypothesis of
groupl[saline] > group2[muscimol]. The results table on the right
summarizes the main outcomes. For ShockObs, BF,, = 162.282,
indicating that the data are 162 times more likely under H, than
under H,. The data thus provides what is considered extremely
strong evidence for our hypothesized reduction in socially trig-
gered freezing following ACC deactivation. For CS, BF, = 0.223.
This value is below 1/3 and, according to the classification scheme
by Jeffreys”'®, our data thus provide moderate evidence for H,, i.e.,
that ACC deactivation does not lead to a reduction of non-socially
triggered freezing. Switching to option BF, in the lefthand
panel inverts the Bayes factor: now BF,, for CS equals 4.494
(1/0.223), meaning that the data are 4.5 times more likely under H,
than under H,.

For the muscimol2 data, the frequentist ¢-test again reveals
a significant reduction in ShockObs (t;s = 3.8, P < 0.001) and a
non-significant result for CS (¢s5 = 1.2, P = 0.11). The Bayesian
analysis confirms that the data provide extremely strong evidence
for a reduction of freezing for ShockObs (BF,, = 120). However,
this time, for CS, BF,, = 0.97. This result indicates an absence of
evidence (in contrast to muscimoll, which showed moderate evi-
dence of absence).

Example of an ANOVA
We can also examine whether muscimol had a greater effect on
ShockObs than on CS by assessing evidence for an interaction
between group (saline vs muscimol) and condition (ShockObs vs
CS)'7%. In a frequentist approach, we can conduct this analysis
using the JASP ‘Repeated Measures ANOVA (rmANOVA) menu
option. The results show significant main effects of condition (F|, 5
= 14.6, P < 0.001) and group (F,, 35 = 5.4, P = 0.026) and a signifi-
cant condition X group interaction (F,, ;5= 14.3, P < 0.001). We can
also perform this analysis using the ‘Bayesian Repeated Measures
ANOVA' menu option (Fig. 5), the functionality of which is based
on the BayesFactor R package’.

The Bayesian approach to the rmANOVA is to compare the pre-
dictive performance of models with and without each of the factors
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Fig. 4 | Screenshot from the ‘Bayesian Independent Samples T-Test' in
JASP. Top right: the Bayes factor for the two variables, followed by the
inferential plot showing the credible interval of the effect size and the
sequential analysis. The inferential plots shown on the right are discussed
in sections “Default priors provide an objective anchor” and “Accumulation
of evidence.” Data can be found at https://osf.io/md9kp/, including a
muscimoll.jasp file that can be loaded to replicate the analysis within JASP
or to view the results of the analysis within OSF.

and interactions. Conceptually, it starts from a null model that pre-
dicts data based on a constant for each subject without considering
any experimental factors. It computes the likelihood L, of that null
model, i.e., the probability of the observed data D under this null
model. It then also calculates the likelihood L, of a model addi-
tionally including an effect of group. If the Bayes factor calculated as
Lyroup/Loun is >1, there is evidence for the effect of group. If BF < 1,
i.e., the null model outperforms the more complex group model,
there is evidence for the absence of an effect of group. If BF ~ 1 we
have evidence of absence. This Bayes factor can be interpreted using
the same bounds discussed in Fig. 2 and Extended Data Fig. 1.
Complex models always fit data at least as well as simpler mod-
els. How can a simpler model thus ever outperform a more com-
plex model in the Bayesian sense? The answer is simple: a Bayes
factor model comparison does not compare the fit of models for
a specific parameter value (i.e., the maximum likelihood) but the
predictive performance of models across all plausible parameter
values (i.e., average likelihood)**-*2. If we consider the models D =
subject + f X group (i.e., the group model) and D = subject (i.e.,
the null model), the average likelihood of the data under the mod-
els is the weighted average of the probability of the data D under
the full range of plausible values assigned to f in the parameter
prior: £ = [P(D|$)P(f)dp. Hence, the null model’s £ is calculated
entirely at # = 0, whereas the group model’s £ considers = 0, but
averaged with the predictions from all other plausible f values. The
effect of this integration over § can be appreciated in Extended Data
Fig. 2. Essentially, because the null model concentrates all its pre-
dictions on f = 0, small differences across the two groups are more
likely under this null model, providing evidence for absence.
Figure 5 applies this logic to our data. The top table in the output
panel indicates all the models that are being considered and com-
pared. This includes the abovementioned null model with subject

794
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Fig. 5 | Screenshot of the Bayesian repeated measures ANOVA of
muscimoll. Data can be found at https://osf.io/md9kp/, including a
muscimoll.jasp file that can be loaded to replicate the analysis within JASP
or to view the results of the analysis within OSF.

constants only, a model that adds the effect of condition, one adding
only group, one adding both main effects and one also including
the interaction. The P(M) column indicates the prior probabilities
of these various rival models, which are set equal so as not to influ-
ence the outcome of the test. Note that this model prior probability
reflects how likely you are to believe each model to be true and is
different from the parameter prior distribution that characterizes
each model (Box 1). Next, we see how likely each model is after hav-
ing seen our data, P(M|data). This shows that the full model with
the interaction (condition + croup + condition X group) is by far
the most likely (P(M]|data) = 0.983). The following columns indi-
cate the relative likelihood of each model compared with the aver-
age of all other models (BF,,) or compared with the best or worst
model (BF,,). For instance, BF,, for the null model is P(M|data) for
the null model divided by the average of the P(M]|data) over all other
models. For BF,,, the calculation depends on what is chosen in the
menu ‘Order’. Selecting ‘Compare to null model, as we did in Fig.
5, shows the models with the null model on top, and all other BF,,
values can be read as describing how much more likely that model
is than the null model. If one selects “Compare to best model’, the
best model is shown first, and all other BF,, values express likeli-
hood relative to that best model. Switching to BF,, then inverts the
BF and expresses how much better the best model is than each of
the other models. The error column estimates the margin of error
in the BF computation.

The analysis showed that amongst the tested models, the full
model is the most likely in the light of our data, but which of its com-
ponents improved its predictive performance? To explore this ques-
tion systematically, select the ‘Effects’ option, which generates the
‘Analysis of Effects’ table (Fig. 5). This analysis uses the P(M]|data)
column of the model comparison above to quantify the contribu-
tion of each component. When selecting the default option ‘across
all models, for each component, the BF, , (last column) is calculated
as p(models with that factor | data) + p(models without that factor |
data). For condition for instance, BF,  is the average P(M|data) for
all models with condition (i.e., condition, condition + group, and
condition + group + condition X group) divided by that of all mod-
els without condition (i.e., null model and group). Selecting ‘across
matched models’ restricts the comparison to models that only differ
in the presence or absence of a particular component, and for con-
dition, BF, is then the average P(M|data) for condition and con-
dition + group divided by the average P(M|data) of their matched
models, i.e., models identical except for the absence of condition,
namely the null and group models. In this calculation, the inter-
action model is not included in the nominator, because it lacks a
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Box 2 | Six advantages of a Bayesian analysis for pragmatic neuroscientists

Pragmatic neuroscientists may be convinced to start conducting
Bayesian analyses—and Bayes factor hypothesis tests in particu-
lar—only when the practical advantages of doing so are sufficiently
evident. Below is a select overview of such practical advantages:

1. Bayesian hypothesis testing enables researchers to
discriminate evidence of absence from absence of evidence.
Non-significant P values are notoriously ambiguous. Indeed, a P
value of 0.25 may indicate that the experiment was underpowered
(‘absence of evidence’) or that the data support the null hypothesis
(‘evidence of absence’).

2. Bayesian results are relatively straightforward to interpret
and communicate.

Compared to frequentist conclusions, Bayesian conclusions are
remarkably intuitive. While P < 0.01 is not 5 times as convincing as
P <0.05, BF,, = 6 really does mean twice the evidence compared to
BF,, = 3. When neuroscientists make positive claims (for example,
that the ACC is necessary for vicarious freezing), reviewers and
readers may find it convincing if these claims are accompanied by
an assessment of the statistical evidence, that is, an assessment of
the extent to which H, outpredicted H,.

3. Bayes factor hypothesis testing encourages researchers to
quantify evidence on a continuous scale.

The advantage of retaining a continuous representation of evidence
was stressed by Rozeboom?: “The null-hypothesis significance test
treats ‘acceptance’ or ‘rejection’ of a hypothesis as though these were
decisions one makes. But a hypothesis is not something, like a piece
of pie offered for dessert, which can be accepted or rejected by a
voluntary physical action. Acceptance or rejection of a hypothesis
is a cognitive process, a degree of believing or disbelieving which,
if rational, is not a matter of choice but determined solely by how
likely it is, given the evidence, that the hypothesis is true”

matched model group + condition X group. We recommend the
‘matched model option’ as it provides a more conservative estimate
of each factor’s contribution.

This effects table then allows us to draw inferences about the
contribution of each factor and interaction in the spirit of a tradi-
tional ANOVA. BF,, for condition (similarly to the main effect of
condition) is 37.5, indicating that the models including the factor
conditions are much (37.5 times) more likely than those not includ-
ing it. The BF,, for group (main effect of group) is 1.7, showing
that models with group are marginally more likely than those with-
out that main effect, but the evidence is too weak to be conclusive.
BF,, for the interaction is 96, meaning that the full model with the
interaction is 96 times more likely than that without. This effect of
interaction provides extremely strong evidence that deactivating
the ACC has a much stronger impact on ShockObs than on the CS
condition. However, performing the same analysis on muscimol2,
where evidence that muscimol reduced freezing in the CS condition
was inconclusive (BE,, = 0.97), provides no evidence for an interac-
tion (BF,,4 = 1.16, i.e., absence of evidence). Thus, in muscimol2,
we remain uncertain whether deactivating the ACC impairs freez-
ing in the CS condition (because the t-test BE,, is inconclusive) and
whether deactivating the ACC has a stronger effect on ShockObs
than CS. Had we found a BF,, < 1/3, we would have had evidence
of absence: that muscimol has the same effect on ShockObs and CS.

Default priors provide an objective anchor
As shown in Fig. 2, to calculate a Bayes factor we have to specify
H, such that its predictive adequacy can be assessed. We are gen-

4. For most statistical scenarios, Bayes factor hypothesis testing
is now relatively easy.

Until recently, carrying out a Bayesian analysis for a standard
statistical test required mathematical expertise and knowledge
of probabilistic programming. This alone would be enough
to deter many pragmatic neuroscientists who just wish to
conduct a quick Bayesian t-test. However, recent R packages'’,
Shiny apps* and graphical user interface (GUI)-based
software packages such as JASP* now provide comprehensive
Bayesian analyses that can be conducted with a minimum
of effort.

5. Bayesian inference allows researchers to monitor the results
as the data accumulate.

As illustrated in Box 1 and Supplementary Fig. 1, the Bayesian
predict-update cycle of learning continues indefinitely. In an
experimental setting, neuroscientists may decide to terminate
data collection when the result is deemed compelling or when
they have run out of time, money or patience®*. This means that
experiments can be flexibly shortened or lengthened according
to the evidence that has already been collected. If error control
guarantees are put in place, such flexibility can reduce the required
sample size by as much as 50%°***.

6. Bayes factor hypothesis testing allows researchers to include
prior knowledge for a more diagnostic test.

Although the default prior parameter distributions allow for a
robust reference analysis*, these distributions can be adjusted
in light of relevant background information. This background
information acts to sharpen the predictions from the models,
making them easier to discriminate. For instance, prior
distributions for effect size may respect the direction of the
prediction, or even its location™.

erally uncertain about the true value of the parameters (such as
effect size), and most neuroscientists would be reticent to pin down
their expectations to a single value. In the Bayesian framework, this
uncertainty is reflected in the use of a prior distribution across the
parameter values instead of a single value. Defining this prior dis-
tribution introduces an element of subjectivity, one that scientists
fear jeopardizes the objectivity and generalizability of their infer-
ences (for example, ref. *, but see ref. **). There is however a simple
two-step solution: first, use a default prior that is designed to fulfil
general statistical desiderata®; then, check how robust your infer-
ence is against motivated changes in the prior.

For the t-test and ANOVA, there is broad consensus on certain
parameter priors being appropriate under most circumstances. We
recommend using these default parameter priors to increase the
objectivity of the analyses and to provide a common frame of refer-
ence that ensures the direct comparability of Bayes factors from dif-
ferent experiments. Indeed, these defaults are implemented in JASP
(and in the BayesFactor package in R for those that prefer a com-
mand line environment). Above, we performed all our inferences
without considering prior distributions. However, it is informative
to consider these parameter priors in more detail.

For the t-test, the default prior is the Cauchy distribution with a
scale parameter of r = \/2/2 =~ 0.707 as shown in Figs. 2 and 4. A
Cauchy distribution resembles a Gaussian distribution but has fatter
tails. The prior specifies the a priori plausibility of each effect size,
and the default specifies that half the effect sizes are within the scale
parameter, i.e., +£0.707, with smaller effect sizes more likely than
larger effect sizes. For ANOVA, the parameters are also assumed

NATURE NEUROSCIENCE | VOL 23 | JULY 2020 | 788-799 | www.nature.com/natureneuroscience 795


http://www.nature.com/natureneuroscience

REVIEW ARTICLE

NATURE NEUROSCIENCE

to follow a Cauchy prior distribution, but their scale depends on
the type of factor one explores (fixed effects r = 0.5, random effects
r =1, and covariates r = 0.354; see ref. ° for details).

To examine the effect of changing the width of that prior distri-
bution in our f-test example, it suffices to select the option ‘Bayes
factor robustness check’ to generate the plots of Fig. 3a. The default
width of the prior distribution for t-tests is the above mentioned
Cauchy with scale 0.707 (ref. '°); the prior that is used can be dis-
played (and changed) by pulling down the ‘Prior’ option on the
bottom-left (Fig. 4). The robustness graph on the top of Fig. 3a
shows how BF,, changes as a function of the prior scale or width,
with the scale set in the menu ‘Prior’ shown as the ‘user prior’ at
the gray circle. Wider priors (wide, black circle; ultrawide, empty
circles), assume that larger effects are more likely than the default
prior. We consider wider priors to be less informed because if one
has no expectation about effect size, all effect sizes should be con-
sidered equally likely a priori, and the prior would be infinitely
wide. For ShockObs (Fig. 3a, left), evidence for H, is extremely high
for all but the narrowest prior distributions, and our conclusion
that deactivating the ACC reduces freezing is thus robust against
reasonable changes in the prior. For CS (Fig. 3a, right), evidence
favors Hy, also robustly across all but the narrowest prior distribu-
tions. In both cases, such robustness is reassuring and warrants con-
fident conclusions. In contrast, when conclusions vary dramatically
across a range of reasonable prior distributions, caution may be in
order. Note that when the scale parameter is zero, H, reduces to H,,
and the Bayes factor equals 1 regardless of the data; this explains
why all robustness lines will converge to 1 for the narrowest prior
distributions.

Selecting the option ‘Prior and posterior and additional info’
outputs the results shown in Fig. 3b for our one-tailed hypothesis.
Under H,, the prior and posterior distributions are shown as dot-
ted and black lines, respectively. This posterior shows the effect size
distribution after updating the prior based on the data (Box 1 and
Box 2). The posterior median and credible interval summarize the
Bayesian estimate of the effect if H, holds (median § = 1.109, 95%
credibility interval: [0.406, 1.810]). This effect size estimate is not
simply the Cohen’s d observed in the sample (which equals 1.24) but
a combination of prior distribution and data (Box 1). The Cauchy
prior distribution assumes that small effect sizes are more likely than
large effect sizes; this knowledge exerts a small pull toward zero on
the sample estimates—a reasonable and conservative approach—
leading to the Bayesian point estimate of § = 1.1 (using the median
and assuming H, is true). For small sample sizes, the estimate will
be more influenced by the prior, whereas for larger sample sizes, the
estimate will approach the sample value d. This property is desir-
able in the way it counteracts the systematic overestimation of effect
sizes in frequentist approaches with low power®. For CS (right),
the posterior is folded at zero because of our one-tailed hypothesis,
which implies that negative effect sizes are impossible. For param-
eter estimation of d, we recommend adopting a two-tailed hypoth-
esis by clicking on ‘Groupl#Group?2’; this leads to estimates that are
more suitable to report as effect size estimates (second row). Note
that for the muscimoll column, the posterior distribution for effect
size is mostly unaffected by whether a two-sided or a one-sided

prior distribution is used; in contrast, the Bayes factor against the
null hypothesis is about twice as high for the one-sided analysis as
for the two-sided analysis (i.e., BF,, = 162 and BF,, = 81).

We recommend reporting the median and 95% credible inter-
val (abbreviated as 95% CI; although this Bayesian CI is often
numerically close to the frequentist confidence interval, the inter-
vals are conceptually different; see ref. 7’) in addition to the BF to
provide complementary information. For instance, for ShockObs,
the BF,, reveals strong evidence for the presence of an effect,
but it does not indicate the strength of the effect. This is because
the same effect size 6 will lead to different BF values at differ-
ent sample sizes (Extended Data Fig. 1b). The 95% CI provides
us with information about this effect size, namely that the effect
for ShockObs is probably very large (as suggested by the median
0 = 1.1) and that we can be quite confident that it exceeds 6 = 0.4
(lower bound of the 95% CI). If one looks for effects of clinical
relevance, knowing that a manipulation has an effect in a group of
1,000 patients (as revealed by the BF) is often less interesting than
knowing how strong the effect is likely to be (as revealed by the
CI). A 95% CI that does not include § = 0 is a further indication
for the presence of an effect. For CS, the BF,, provides evidence
for the absence of an effect. In such cases, it is perhaps not relevant
to consider the 95% CI, because the CI only makes sense under
H,. However, the bounds of the CI specify that even if H, were
true (despite the observed data being 4 times more likely under
H,), the effect size is unlikely to exceed 0.4 (upper bound of the
CI), and is likely to be very small (median = -0.12). This informs
the kind of group size that would be needed to systematically
study such an effect. A 95% CI that includes 6 = 0 is in line with
the notion that the data reflect the absence of an effect; however,
unlike the BE, the CI alone cannot distinguish absence of evidence
from evidence for absence. If scientists prefer to see the CI in the
original units of measurement (for example, number of days of
illness saved by a medication) the bounds should be multiplied by
the population s.d., o.

For the ANOVA, extracting credible intervals of effect sizes in
JASP is a work in progress®. In the meantime, post hoc Bayesian
t-tests could be performed to obtain Bayesian CI for specific con-
trasts of interest, or the effect size (for example, #?) of the corre-
sponding frequentist ANOVA could be reported.

The effect of the directionality of H, on the BF and posterior dis-
tribution is important. In frequentist statistics, one-tailed hypoth-
esis testing is sometimes frowned upon; if one focuses on the risk of
false positives, a more-conservative two-tailed statistics is arguably
preferable, and the only difference is typically that P values double.
With Bayesian statistics, the focus shifts to giving H, and H, a more
balanced ‘chance) and the ability to provide evidence for H, becomes
an important consideration. In that context, if we hypothesize a spe-
cific direction of effect (for example, that injecting muscimol into
the ACC should reduce freezing in response to ShockObs but not
CS), we strongly recommend testing this directional hypothesis
with the appropriate directional H, effect size prior distribution.
The reason is particularly apparent in small group sizes: with n =8,
under a two-tailed Bayesian one-sample t-test, t > 2.8 (correspond-
ing to & ~ 0.8) can provide evidence for H, (BF,, > 3), butevent =0

>
>

Fig. 6 | Further outputs for the Bayesian t-test on muscimoll.csv. a, Clicking the option ‘Bayes Factor Robustness Check’ will plot for each variable
(ShockObs on the left and CS on the right) the BF as a function of the effect size prior. The user prior (gray) is by default set at Cauchy scale 0.707 as
recommended in ref. °. The wide and ultrawide prior are flatter priors that are sometimes used, especially when the goal is parameter estimation. As
can be seen, there is extreme evidence for H, in ShockObs, across all but the smallest priors (i.e., the gray, black and white dots all have BF,,>160), and
there is moderate evidence for H, for all but the smallest priors for CS (most BF,, > 4.5). The interpretation of the data does thus not depend on the
choice of prior scale within a reasonable range. b, Priors and posteriors for ShockObs and CS together with median and Cl of the effect size. Results are
shown for a one-tailed prior (top row) often more suited for hypothesis testing and two-tailed prior (bottom row) more suited for parameter estimation.
¢, Accumulation of evidence with increasing sample size using the ‘Sequential analysis’ option. Data can be found at https://osf.io/mdS9kp/, including a
muscimoll.jasp file that can be loaded to replicate the analysis within JASP or to view the results of the analysis within OSF.
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(the datum with the highest evidence for H,) falls short of providing
modest evidence for H, (BF,, = 2.97). Using the theoretically appro-
priate H, resolves this imbalance, as even small negative t-values
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can provide evidence for H, over H, (for example, t = -0.3, BF,, =
3.62). One-tailed testing is thus typically a fairer balance between
the ability to provide evidence for H; and H,.
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Finally, it is important to consider that some scenarios do call
for user-defined priors (see ref. > for a more extensive discussion of
how to create informed priors). For instance, to test a claim that a
candidate drug has an effect size § > 0.8 one would need to specify
custom priors with Hy: § < 0.8 vs H;: § > 0.8 and compare their
likelihoods.

Accumulation of evidence

While designing experiments, we are typically uncertain about
the effect sizes to expect. Determining the number of subjects or
participants we need to provide sufficient power a priori is then
difficult. By selecting the option ‘Sequential Analysis’ we can see
how the BF changes as one considers an increasing number of
data points in our Bayesian t-test examples (Figs. 3¢ and 6). For
muscimoll, we observe a clear upward trend to ShockObs in favor
of H, and a downward trend to CS playback in favor of H,. Such
consistent trends provide confidence in the effect a posteriori.
Importantly, this analysis can be performed during data collection,
effectively replacing a predefined sample size by a principled data
collection plan: for example, collect a minimum of # = 20 animals
(10 per group) at first, and then keep adding new animals to the
saline and muscimol group until the BF,, crosses a predetermined
critical value (for example, BF,, > 6 or BF,, < 1/6) or until a pre-
set maximum of animals (for example, n = 40) has been reached
(Supplementary Notes). In our example, we would have stopped at
n = 20 animals in the ShockObs condition and continued until n =
40 animals in the CS condition, thus saving n = 20 animals to reach
the same conclusions. Such an approach is unacceptable in NHST
(Supplementary Note and Supplementary Figure 1). This is because
Bayesian statistics can provide evidence for H; and H,, whereas
NHST can only provide evidence against H,. Hence, testing until a
significant result is found in NHST will per definition always find
evidence against H,,.

For muscimol2, the BF,, values show no steep and consistent
trend toward providing evidence in favor of either hypothesis
(Fig. 3c, bottom right). This is typical of small effect sizes. For
n > 20, the BF shows a mild upwards trend, and extending
this trend shows that hundreds of animals would probably have
to be added for the analysis to provide evidence for the presence
of an effect (BF,, > 3). This n > 100 projection is in line with
the outcome of a traditional power analysis for § = 0.4, which
is the effect size we used to generate the simulated data in
muscimol2.

Reporting both frequentist and Bayesian results

One concern for aspiring Bayesian neuroscientists is that review-
ers in neuroscience journals may be unfamiliar with Bayes factors
and may be more impressed by P < 0.01 than by BF,, = 10.3. Our
pragmatic recommendation is to consistently report both the fre-
quentist and Bayesian statistics (for example, f,5 = 3.961, P < 0.001,
BF,, = 162, with median posterior 6 = 1.1, 95% CI = [0.4, 1.8]).
Where evidence for H, is presented, one can report a P value with
a standard frequentist test and add the BF,, to provide additional
quantification. Where there is no evidence for H,, reporting BF,,
is an attractive way to adjudicate between absence of evidence and
evidence of absence.

This hybrid approach is a powerful opportunity to reap the best
of both statistical approaches. In borderline cases where frequen-
tist and Bayesian approaches do not quite concur (for example, P <
0.04 suggesting a significant effect, but BF,, = 2.3 suggesting only
anecdotal evidence), we still reccommend reporting both and dis-
cussing the divergence as showing that obtaining more data will be
important to strengthen the evidence. Additionally, reporting the
CI on the effect size is important. Extended Data Fig. 3 provides
examples of wording appropriate to report the kind of analyses we
discussed above.
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Concluding comments

Bayesian inference offers unique practical advantages for neuro-
science (Box 2). Bayes factors provide a continuous and symmet-
ric measure of statistical evidence. The Bayes factor can support
H, as much as it can support H,. There is a bias toward publish-
ing significant results, and we have become increasingly aware
of the negative impact that the resulting P value hacking has on
the progress and replicability of science. Bayesian statistics provide
a principled tool for reducing this bias by allowing us to provide
equally compelling evidence for the absence and the presence of
an effect.

We have presented examples of neuroscience scenarios in which
Bayesian statistics are simple to adopt. Some applications will
require more development. For example, neuroimaging requires
statistical testing over thousands of voxels and, therefore, correc-
tion for multiple comparisons, and frameworks for the latter are still
in their infancy for the Bayes factor. Also, the Bayesian t-test and
ANOVA we leveraged here assume normally distributed data, but
neuroscience datasets can have highly non-normal distributions.
Non-parametric Bayesian tests so far only exist for certain applica-
tions (for example, some t-tests and regressions have a tick-mark for
non-parametric approaches in JASP, and R code exists for a num-
ber of additional cases®), but remain in development for others (for
example, ANOVA).

Neuroscientists have been slow to take up Bayesian statistics,
presumably out of a perception that Bayesian hypothesis testing is
difficult to perform and interpret. With the emergence of new soft-
ware and accessible packages, performing Bayesian equivalents of
the most prevalent tests has become easy. Supplementing frequen-
tist approaches with Bayesian analyses will lead to richer data inter-
pretations that allow more informative conclusions. Null findings
become interpretable and more easily publishable. We finally have a
principled tool to shed light on the hitherto dark side of our scien-
tific enterprise: evidence of absence.

Data availability
All data and code can be downloaded at https://osf.io/md9kp/.
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Extended Data Fig. 1| The relationship between BF, p, and effect sizes values. a, This log-log plot shows the BF_, values corresponding to familiar critical
p values for a one-tailed one-sample t-test at different sample sizes (n). The curves show the BF,, values obtained in a Bayesian t-test based on the critical
t-value that provides P=0.05 (yellow), P=0.01 (green), P=0.005 (black) and P=0.001 (black). The yellow dashed horizontal line indicates the BF ,=3
bound for moderate evidence considered by Jeffreys® to be similar to P=0.05, the green one the BF,,=10 for strong evidence considered similar to P=0.01.
The two black dashed lines mark BF,,=1, i.e. the line of no evidence, and BF,,=1/3, the bound for moderate evidence of absence. The background gradient
reminds the reader that the BF reference values of 3 and 10 should not be considered hard bounds. Instead the BF should be interpreted as a continuous
value, with values diverging more from 1 supporting stronger conclusions. This panel makes two points. First, there is no simple equivalence between

p and BF that holds over all sample sizes. This is because in a frequentist t-test, the observed effect size (d) sufficient to generate a specific p value
decreases with /n more rapidly than for the BF. As a result, at large n, very small effect sizes generate ‘significant’ t-test: at n=1000, the critical t-value for
a one-tailed P=0.05 is 1.65, corresponding to d=1.65 /+/n =0.05. For the BF, such a minuscule effect is 4 times more likely under H, than H, (BF,,=0.26).
Hence, for small sample sizes p and BF support similar conclusions (e.g., P=0.05 at n=4 corresponds to BF ,>3, supporting the same conclusion of
evidence for an effect), but for large sample sizes the frequentist and Bayesian conclusions can diverge in the presence of very small effect sizes (e.g.,
P=0.05 at n=1000 corresponds to BF,,<1/3, see Jeffreys, H. Some Tests of Significance, Treated by the Theory of Probability. Proc. Cambridge Philos. Soc.
31, 203-222 (1935)). Considering confidence or credible intervals of the effect size in addition to p or BF values helps interpret such cases. Second, the fact
that the dashed lines are above the curve of the same color for all n>4 shows that BF, ;=3 and BF,,=10 indeed protect against Type | errors in a frequentist
sense at least at P=0.05 or P=0.01, respectively. In other words, if BF,;>3, p<0.05, and if BF,,>10, p<0.01, but how much lower than 0.05 or 0.01 the exact
P value is, depends on n. b, BF,, (left) and p (right) values as a function of measured effect- and sample-sizes. These panels illustrate the measured effect
sizes necessary to provide evidence for an effect at different sample sizes in a one-sample one-tailed t-test using the BF vs. traditional p values. Each curve
connects the results at different sample sizes for the specified value of d. The logarithmic BF and p scales are aligned so as to place BF=3 next to P=0.05,
and BF=10 next to P=0.01.
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Extended Data Fig. 2 | Evidence for or against a factor in a Bayesian ANOVA. A Bayesian ANOVA is a form of model comparison. This figure illustrates
how the Bayes factor can provide evidence for a simpler model by concentrating its predictions on a single parameter value. This example ANOVA
determines whether or not the data D depend on the value of the factor Group by comparing the Null Model D=0*Group (left) against the Group Model
D=p*Group, with a Cauchy prior on p (right). The top row illustrates the prior probability attributed to the different values of  under the two competing
models. Note how both models include p = O as a possibility, but given that the probability values must integrate to 1 over the entire p space, for the Null
Model p(p = 0) =1 while for the Group Model, the probability is distributed across all plausible alternative values. The middle row shows the predicted
t-values based on these priors, where t represents the difference between the data from the two groups as in Fig. 2. Note how these predictions are more
peaked for the Null compared to the Group model. The bottom row compares the predicted probability of finding particular t-values under the two models,
and shows how values close to zero (i.e., small or no difference between the groups) are predicted more often by the Null compared to the Group Model,
while the opposite is true for large t-values. If conducting the experiment reveals a measured t-values close to zero, the Bayes Factor for including the
factor Group would be substantially below 1, providing evidence for the absence of an effect of Group, while the inverse would be true for high t-values.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience


http://www.nature.com/natureneuroscience

T-test

REVIEW ARTICLE NATURE NEUROSCIENCE

Section

Example Text

Methods

Differences across the muscimol and saline groups were analysed using the
Bayesian Independent Samples T-Test as implemented in JASP vXXX using
default effect size priors (Cauchy scale 0.707). Results are reported using the
one-tailed Bayes factor BF.o that represents p(data|H.:Saline>Muscimol) /
p(data|Ho:Saline=Muscimol). Effect size estimates are reported as median
posterior Cohen’s & with 95% credibility interval using a two-tailed H1 in order not
to bias estimates in the expected direction

Results
Muscimol1

We found extremely strong evidence for a reduction of freezing in the Muscimol
compared to the Saline group for ShockObs (f38y=3.961, p<0.001, BF+,=162.282,
with median posterior & = 1.11, 95%CI=[0.42, 1.795]) and moderate evidence for
the absence of a reduction for the CS (f38=-0.519, p=0.7, BF.0=0.223, with
median posterior & =-0.133, 95%CI=[-0.712, 0.414]

Discussion
Muscimol1

Our data supports the notion that the ACC is involved in socially triggered freezing
and that the ACC is not involved in freezing triggered by a CS

Results
Muscimol?2

We found extremely strong evidence for a reduction of freezing in the Muscimol
compared to the Saline group for ShockObs (f38=3.8, p<0.001, BF+x=120, with
median posterior & =1.07, 95%CI=[0.427, 1.765]). For the CS condition, results
were inconclusive (fz8=1.2, p=0.11, BF+c=0.98, with median posterior & =0.31,
95%CI=[-0.23, 0.90]), which suggests that the data are equally likely under Ho and
H4

Discussion
Muscimol2

Although it remains unclear whether or not muscimol injection to the ACC reduces
freezing following CS playback, if there is an effect, it is relatively small. In
contrast, our data strongly support our hypothesis that muscimol reduces freezing
during the ShockObs condition, and the effect size appears to be large

ANOVA

Methods

Bayesian ANOVAs were conducted using JASP with default priors, and effects
are reported as the Bayes factor for the inclusion of a particular effect, calculated
as the ratio between the likelihood of the data given the model with vs the next
simpler model without that effect

Results
Muscimol1

A repeated measures ANOVA revealed strong evidence for the presence of an
interaction of Group*Cond (F(1,38=14.3, p<0.001, BFinc=239)

Discussion
Muscimol1

Our data further provides strong evidence for the specificity of the involvement of
the ACC, in that the effect of Muscimol injection in the ACC was substantially
stronger during ShockObs than CS playback

Results
Muscimol2

A repeated measures ANOVA revealed inconclusive evidence regarding the
presence of an interaction of Group*Cond (F1,38=3.4, p=0.072, BFinc=1.16)

Discussion
Muscimol?2

It remains unclear whether muscimol injection to the ACC reduces freezing
following CS playback and it remains unclear whether muscimol reduces freezing
less in the CS than the ShockObs condition

Extended Data Fig. 3 | Examples of how to report results.
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The Bayesian Two-Sample ¢ Test

Mithat GONEN, Wesley O. JOHNSON, Yonggang LU, and Peter H. WESTFALL

This article shows how the pooled-variance two-sample ¢ statis-
tic arises from a Bayesian formulation of the two-sided point
null testing problem, with emphasis on teaching. We identify a
reasonable and useful prior giving a closed-form Bayes factor
that can be written in terms of the distribution of the two-sample
t statistic under the null and alternative hypotheses, respectively.
This provides a Bayesian motivation for the two-sample ¢ statis-
tic, which has heretofore been buried as a special case of more
complex linear models, or given only roughly via analytic or
Monte Carlo approximations. The resulting formulation of the
Bayesian test is easy to apply in practice, and also easy to teach
in an introductory course that emphasizes Bayesian methods.
The priors are easy to use and simple to elicit, and the posterior
probabilities are easily computed using available software, in
some cases using spreadsheets.

KEY WORDS: Bayes factor; Posterior probability; Prior
elicitation; Teaching Bayesian statistics.

1. INTRODUCTION AND THE TEST

The two-sample comparison is a staple in elementary statis-
tics courses. A typical course sequence is as follows: one-sample
problems (means and proportions, tests and intervals), two-
sample comparisons (differences of means and proportions, tests
and intervals), then more advanced topics (ANOVA, regression).
Single-sample problems involving the selection of a population
reference value for the mean, ug, are less interesting than their
two-sample counterparts. Most designed experiments involve
this latter category, where the samples are experimental and
control (drug and placebo in most clinical trials), and interesting
applications also exist in virtually all areas of scientific inquiry.

Assuming the data y;- (i = 1,2;r = 1,...,n;) are inde-
pendent and normally distributed with means p; and common
variance o2, the pooled-variance two-sample # test is commonly
used for testing Hy : u1 = po against the two-sided alternative
Hiy @ py # po. The test statistic is

Y1 — Y
=" Y2 (1)
1/2°
31)/”6/

Mithat Gonen is Associate Attending Biostatistician, Department of Epidemi-
ology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York,
NY 10021 (E-mail: gonenm@mskcc.org). Wesley O. Johnson is Professor, De-
partment of Statistics, University of California at Irvine, Irvine, CA 92697
(E-mail: wjohnson@ics.uci.edu). Yonggang Lu is a Ph.D. student, and Peter
H. Westfall is Professor of Statistics, Department of Information Systems and
Quantitative Sciences, Texas Tech University, Lubbock, TX 79409 (E-mail ad-
dresses: gentlelu@yahoo.com and peter.westfall@ttu.edu). The author order is
alphabetical. The authors are grateful to the referees, the associate editor, and
the editor for their suggestions that greatly improved the article.
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where
so={(n1—1)s7 + (na — 1)s3} /(n1 + nz — 2)

is the pooled variance estimate, 7; and s? are the sample mean
and sample variance for group ¢, and

ns = (ny "+ n;l)_l :

which may be called the “effective sample size” for the two-
sample experiment. Letting v = ny + no — 2 denote the degrees
of freedom and ¢{1 — /2, v} denote the 1 — /2 quantile of the
T, distribution, Hy is rejected in favor of Hy when [t| > ¢{1 —
a/2,v};the two-sided p value is obtained as p = 2x P(T > |t]),
where T has the T, distribution. This test has many optimality
properties (Lehmann 1986), itis routinely produced by statistical
software, and it is found in most elementary statistics texts.

Although the two-sample ¢ statistic is well understood and
widely accepted, it is difficult to find motivation for it in the
Bayesian hypothesis testing literature. Recent literature sug-
gesting that we should teach Bayesian methods at the elemen-
tary learning stage includes Albert (1997a), Albert and Ross-
man (2001), Antelman (1997), Berry (1996, 1997), and Bolstad
(2004); however, none of these discuss the two-sample ¢ statistic,
at least not from the Bayesian formulation of hypothesis testing.

In the general Bayesian formulation of hypothesis testing, one
places prior probabilities 7y and 73 (7941 = 1) on hypotheses
Hy and H,, respectively, then updates these values via Bayes’
theorem to obtain the posterior probabilities

ij(data | H])
moP(data| Hy) + w1 P(data| Hy)

P(H;|data) = , 7=0,1,
where P(data|H;) denotes the marginal density of the data un-
der hypothesis j. Because the posterior probabilities are sensitive
to the priors 7y and 71, it is often suggested to use the Bayes
factor (BF) instead:

_ P(data| Hy)

BF = ——~.
P(data| Hy)

When BF > 1 the data provide evidence for Hy, and when
BF < 1 the data provide evidence for H; (and against Hy).
Jeffreys (1961) suggested BF < .1 provides “strong” evidence
against Hy and BF < .01 provides “decisive” evidence. The
posterior probability is simply related to the Bayes factor as

P(Hy|data) = [1 +—==
7r

Much of the literature on Bayes factors and posterior prob-
abilities is concerned with calculating or approximating (either
analytically or via Monte Carlo) the marginal densities

P(data | Hj) = /P(data|9j7Hj)Hj(9j | Hj)db,,

© 2005 American Statistical Association DOI: 10.1198/000313005X55233



Downloaded by [University of Glasgow] at 05:51 15 August 2013

where 6; is the parameter vector under hypothesis H; and
I1;(6, | H;) is its prior distribution. Relevant references are Jef-
freys (1961), Dickey (1971), Zellner and Siow (1980), Berger
and Sellke (1987), Bernardo and Smith (1994), Carlin and
Chib (1995), Chib (1995), Kass and Raftery (1995), and Albert
(19970).

When considering the two-sample case in particular where the
hypotheses are Hy : p1 = po = p, versus Hy : py # po, the
parameter vectors are 8y = (u1,02) and 81 = (p1, pi2, 02), and
one may consider a variety of priors IT; (6 | H;). Such analyses
for the Bayesian two-sample ¢ test are found in the literature, but
only implicitly as a special case of more complex regression for-
mulations, or as related to the estimation problem as in Bolstad
(2004). The aims of this article are two-fold: first we present the
model and a reasonable prior for which the BF depends on the
data only through the pooled-variance two-sample ¢ statistic, as
well as the associated (central and noncentral) 7}, distributions;
and second, we show how one might use the results for prior
selection, data analysis, and learning about Bayesian statistics.

For the two-sample problem with normally distributed, ho-
moscedastic, and independent data, with prior distributions as
specified in Section 2, the Bayes factor for testing Hy : 13 =
o = p, versus Hy : g # po is

T,(t] n};/Q)\, 1+ nso?)

BF =

Here ¢ is the pooled-variance two-sample ¢ statistic (1), A and
o2 denote the prior mean and variance of the standardized ef-
fect size (u1 — p2)/o under Hy, and T,(.|a,b) denotes the
noncentral ¢ probability density function (pdf) having location
a, scale b'/2, and df v. Specifically, T, (.|a,b) is the pdf of
the random variable Y/\/U /v, where Y is distributed normally
with mean a and variance b, and where U has the chi-square
distribution with v degrees of freedom, independent of Y. The
mathematical derivation of (2) and further details are available
online (Gonen, Westfall, Johnson, and Lu 2004). The data enter
the BF only through the pooled-variance two-sample ¢ statistic
(1), providing a Bayesian motivation for its use. Benefits of hav-
ing the analytic result (2) are: (i) one can explain the Bayesian
two-sample ¢ test in terms of unconditional (central and non-
central T") distributions; (ii) it allows simple sensitivity analysis
with respect to prior inputs, as we show in Section 4; and (iii)
it allows for simple explanations of interesting Bayesian topics
such as the noncorrespondence between posterior probabilities
and p values (Berger and Sellke 1987), and “Lindley’s Paradox”
(Lindley 1957), both of which are also illustrated in Section 4.

Calculation of (2) requires evaluation of the noncentral T" pdf
with general scale parameter. Many software packages provide
the pdf of the noncentral ¢ having scale parameter 1.0, and a
simple modification is needed for the general case: T,,(¢ | a, b) =
T,(t/bY? | a/b/? 1) /b'/2. Thus, for example, using the statis-
tics freeware package R (http://www.r-project.org/), the Bayes
factor can be computed as

BF = dt(t,nl+n2-2)/(dt(t/sgrt (postv),
nl+n2-2,nc)/sqrt (postv))

where “t” is the value of the two-sample ¢ statistic, postv
= 1+ ngo? and nc= n§/2/\/(1 + ngo2)'/2. The noncentral
t density is also available in commercial packages including
SAS, SPSS, and Mathematica, and it may be obtained using
specialized programs or add-ins with other packages as well.
For the case where the prior mean ) of the effect size is assumed
to be zero, the Bayes factor requires only the central 7" pdf and

is calculated more simply (e.g., using a spreadsheet) as

—(v+1)/2

1+4¢2
+/v (1—|—n50§)1/2.

BE= T ena s ns02)}

Assessment of priors is discussed generically in Section 2,
and Section 3 discusses prior selection in a specific context in-
volving clinical trials. Section 4 presents an analysis of a dataset
comparing blood pressure drop in patients receiving either cal-
cium supplements or placebo, along with a sensitivity analysis,
and Section 5 concludes.

2. PRIOR DISTRIBUTION AND ASSESSMENT

Let N(y|a,b) denote the pdf of a normally distributed ran-
dom variable with mean a and variance b, and as usual, Y ~
N (a,b) means that Y has pdf N (y | a, b). The assumption for the
two-sample ¢ test is that the data are conditionally independent
with Y. [{pi, 0%} ~ N(pi, 02). The goal is to test the null hy-
pothesis Hy : § = pq — puz = 0 against the two-sided alternative
H1 ) 7£ 0.

To obtain the usual two-sample ¢ statistic, prior knowledge is
modeled for 0 /o rather than for d. Let p = (1 + p2)/2, and
reparameterize (p11, fi2, 02) to (i, d,02). The prior for §/c is
specified as

6/0‘{Nﬂ0—275/0—7é0}NN()‘aO—E)'

For Jeffreys (1961), dependence of the prior for § on the value of
o isimplicit in his assertion “from conditions of similarity, it [the
mean] must depend on o, since there is nothing in the problem
except o to give a scale for [the mean].” This dependence is also
found in Dickey (1971), Zellner and Siow (1980) and Berger,
Boukai, and Wang (1997).

The standardized effect size 6 /o is a familiar dimensionless
quantity, easily modeled a priori. Cohen (1988) reported that
|0/c| values of .20, .50, and .80 are “small,” “medium,” and
“large,” respectively, based on a survey of studies reported in
the social sciences literature. These benchmarks can be used to
check whether the specifications of hyperparameters A and o2
are reasonable; a simple check based on A + 305 can determine
whether the prior allows unreasonably large effect sizes.

The remaining parameters (j,c?) are assigned a standard
noninformative prior, no matter whether 6 = 0 or § # 0. Al-
though noninformative priors are attractive in the sense of min-
imizing prior inputs, they also ensure that the Bayes factor de-
pends on the data only through the two-sample ¢ statistic. One
can verify numerically that, when the prior for (p, 02) is infor-
mative, two different datasets having identical ¢ statistics and
sample sizes can yield different Bayes factors.

To summarize, the prior is as follows:

(6 /o|p,0%,6 #0) = N(6/a | X, 07),

The American Statistician, August 2005, Vol. 59, No. 3 253
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with the nuisance parameters assigned the improper prior
(p,0?) o 1/02.

Finally, the prior is completed by specifying the probability that
Hj is true:

WOZP((SZO),

where 7y is often taken to be 1/2 as an “objective” value (Berger
and Sellke 1987). However, my can be simply assigned by the
experimenter to reflect prior belief in the null; it can be assigned
to differentially penalize more complex models (Jeffreys 1961,
p. 246); it can be assessed from multiple comparisons consid-
erations (Jeffreys 1961, p. 253; Westfall, Johnson, Utts 1997);
and it can be estimated using empirical Bayes methods (Efron,
Tibshirani, Storey, and Tusher 2001). The next section provides
a case study for prior assessment.

It should be mentioned prominently that Jeffreys, who pio-
neered the Bayesian testing paradigm, derived a Bayesian test
for Hy : p1 = peo that is also a function of the two-sample ¢
statistic (1). However, his test (Jeffreys 1961, sec. 5.41) uses
an unusually complex prior that partitions the simple alternative
Hy : py # po into three disjoint events depending upon a hy-
perparameter p: Huy @ po = pp # pa, Hiz 0 g = p # o,
and Hiz : {(u1 # p2) and neither equals p}. Jeffreys fur-
ther suggested prior probabilities in the ratio 1 : 1/4 : 1/4 : 1/8
for Hy, Hy1, H12, and H;s, respectively, adding another level
of avoidable complexity. An additional concern with Jeffreys’
two-sample ¢ test is that it does not accommodate prior infor-
mation about the alternative hypothesis.

3. A CASE STUDY: CLINICAL TRIALS

This section provides a case study in clinical trials to sug-
gest how priors can be specified. Prior information to suggest
the expected effect size (i.e., the value of )) is routinely used for
sample size calculations. In clinical trials, the outcome is consid-
ered positive if it is significant in the correct tail using a standard
two-sided test with Type I error probability o = .05. The large-
sample sample size calculation formula for two-sample tests is
given by

- 2(21704/2 + Z1—5)2
O EE
where n = n; = ny = 2n; is the sample size per group and (3
is the Type I error probability. The analyst must specify 6 /c. In
a study powered at 100(1 — 3)% = 80%, the analyst will have
used

Z1—a/2 T 21—

1/2 )
N

0o =

ord/o = (1.96—&—.84)/71;/2 = 2.80/71(1;/2 as an anticipated stan-
dardized effect size. For example, if n = 100, then the analyst
anticipated 6 /o = 2.80/50%/2 = .396 [“small” to “medium” in
the terminology of Cohen (1988)].

The value o can be expressed as a function of the prior prob-
ability that the effect is in the wrong direction. For example, if
A = .396 and one thinks P(6 < 0| # 0) = .10, then one
obtains o5 = .309 using normal distribution calculations. More
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generally, if A = 2.80/n(1;/2, then o5 = 2.19/n(1;/2, again as-
suming P(0 < 0| # 0) = .10. These calculations involved
the choice of zero for the tenth percentile of the prior on 6/c;
other percentiles could have been selected as well. Yet another
calibration would involve selection of o5 based on a prior as-
sumed value for P(d/c > 2X |0 # 0). It would be useful to try
several such values to ensure consistency.

The remaining parameter to specify is mg = P(Hj). Observ-
ing that it is unethical to randomize patients when the outcome
is certain, the quantities P(6 < 0) and P(§ > 0) should be
roughly comparable. One may set my = .5, which, in conjunc-
tion with P(6 < 0] # 0) = .10, yields P(§ < 0) = .5 +
.10(.5) = .55. Alternatively, one may first set P(6 < 0) = .5,
which, in conjunction with P(§ < 0] # 0) = .10, implies
mo = .444.

If historical (meta-analysis) data are available on rejection
rates, one can check whether the prior specification is consistent
with historical data by calculating the proportion of nulls that
would be expected to be rejected. Since (for large sample sizes)
the ¢ statistic is approximately distributed as N (0, 1) when § =

0, and approximately (marginally) distributed as N (ntlg/ 2)\, 1+
nso2) whend # 0, the proportion of rejected nulls (upper-tailed,
a = .025) is expected to be

770(025) + m

1/2

_ (1.96—715 /\)] |

1+ nso?
Using, as suggested above, A = 2.80/n§/2, and o5 =
2.19/ ny ?, this expression yields 33.1% rejections when 7y =
.5 and 36.5% when my = .444. For comparison, Lee and Zelen
(2000) surveyed the oncology literature for a variety of diseases
and found that only 28.7% of the randomized trials reported
rejection of the null hypothesis. Hence the choice of 7y = .5,
along with (A, 05) = (2.80/n(1;/2,2.19/n(1;/2), yields a model
that is roughly consistent with results of randomized trials, at
least in oncology.

4. AN EXAMPLE

The Data and Story Library (DASL; the Web site is http:
/Mib.stat.cmu.edu/DASL) provides datasets that illustrate the use
of basic statistical methods. Under the “Pooled ¢ test” method
one finds the “Calcium and Blood Pressure Story,” which con-
tains a subset of the data shown by Lyle et al. (1987). As posted
on the DASL Web site, the data consist of blood pressure mea-
surements on a subgroup of 21 African-American subjects, 10
who have taken calcium supplements and 11 who have taken
placebo. The primary analysis variable is the blood pressure
difference (“Begin” minus “End”). Summary statistics are as
follows:

Group n  mean StdDev

Calcium 10 5.0000 8.7433
Placebo 11 —.2727 5.9007

Here, s, = 7.385, ns = 5.238, and ¢t = 1.634; the positive ¢
value suggests calcium is beneficial for reducing blood pressure.
The two-sided frequentist p value, from the 779 distribution, is
p=.1187.
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Figure 1. Posterior probabilities of Hy as a function of A\, when mgp = .
also shown (dotted line).

To perform the Bayesian test, priors must be specified. The
previous section provided a case study to suggest particular val-
ues based on frequentist power considerations; however, this
particular study was not powered for the African-American sub-
group and those results do not apply. For the purposes of discus-
sion, we will be as generic as possible in our initial specification
and then provide sensitivity analysis.

Although not experts in the subject matter, if we suppose
that the direction of an effect is completely uncertain, then we
would set A = 0. Further, we might assume that a standardized

0.80

0.70

0.60

P(H, | data)

0.40

0.30 Ceeiiiaies I'"'

0.0 0.5 1.0
A
5,and o5 = .01, .33, .67, 1.00 (solid lines). The prior probability 7o = .5 is

effect size greater than 1 is unlikely; setting o5 = 1/3 seems
reasonable as this would imply P(|6/c| > 1| Hy) = .003. We
now compute the Bayes factor: BF = .791, suggesting that the
data support Hy : p1 # po better than Hy : py = po. If we
wish to calculate posterior probabilities, then we need the prior
probabilities as well; generically we may set mg = .5. With
these settings we have P(Hy | data) = .442. Although it is true
that the null hypothesis that calcium has no effect is less likely
after seeing the data, the results are not compelling.

Figure 1 shows a sensitivity analysis of the posterior prob-
ability P(Hy |data) with respect to A, for o5 = .01, .33, .67,

0.0 1.0

T
2.0 3.0 4.0
as

Figure 2. Posterior probability of Hy as a function of o5, when A\ = 0 and ¢ = .5, both for the observed data (solid line) where the p value is

p = .1187, and for hypothetical data with p = .05 (dotted line). The minim

o W

um posterior probability for the case where p = .05 is P(Hy | data) = .305,

illustrating Berger and Sellke’s “irreconcilability” of frequentist p values with posterior probabilities in the case of the two-sample t test.
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Figure 3. Posterior probability of Hy as a function of ns when my = .5, (\; o5) = (0, 1/3), and t = 3.00, illustrating Lindley’s paradox.

and 1.00, assuming the prior probability is mg = .5. There
is not reasonable evidence against Hy no matter which com-
binations of the prior values A and os are chosen. Smaller
posterior probabilities of Hy occur for A\ near the sample es-
timate (g, — Uo)/sp = .714, but even the smallest value
(P(Hy | data) = .217, occurring when o5 = .01) is not small
enough to rule out Hy. The graph also shows large differences
in the posterior probability for different A; for example, if A is
near —1 (meaning that, if there is a difference, then calcium
is expected to be much worse than placebo for reducing blood
pressure), the positive ¢ statistic ¢ = 1.634 provides much more
evidence for Hy than for H;. Although this lack of sensitivity
may be troubling, one can question whether such values of A
would have been reasonable choices; after all, presumably the
goal of the study was to assess whether calcium causes greater
reductions in blood pressure, and therefore nonnegative values
of A might have been more plausible a priori.

Figure 2 shows the special case where A = 0 and o is varied
over a wider range. Here the minimum posterior probability is
P(Hy|data) = .423, much larger than the frequentist p value
(p = .1187). This graph highlights the central point of Berger
and Sellke (1987); namely, that P(Hy | data) is typically much
higher than the frequentist p value. For comparison, the posterior
probability that results when ¢ = 2.093, for which the frequentist
two-sided p value is exactly .05, is also displayed in the graph as
a dotted line. The curve corresponding to t = 2.093 (p = .05)
dramatizes Berger and Sellke’s (perhaps surprising) conclusion
that Hy will be true in at least 30% of studies for which the p
value is observed to be in a small neighborhood of .05 (assuming
that Hy is true, a priori, in 50% of all studies considered, and
assuming that the prior effect sizes for the nonnull studies come
from a symmetric unimodal distribution centered at 0).

Although the posterior probability P(H | data) does not ap-
pear to be overly sensitive to the prior inputs A and o5 (provided
a sensible range of inputs is considered), it is clearly much more
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sensitive to the prior probability 7y. For example, when (),
os) = (0,1/3), the posterior probabilities are determined as
follows:

Prior Probability 7o : .100 .250 .500 .750 .900

Posterior Probability
P(Hp|data) : .081 .209 .442 .704 .877

The posterior is sensitive to the prior as expected, but what is
more interesting is that these data barely modify one’s prior
belief about H.

As a concluding note, it is simple to discuss “Lindley’s Para-
dox” (Lindley 1957) using (2). Lindley noticed that data from
large sample sizes that are “highly significant” from a frequentist
standpoint can support Hy better than H;. Imagine, in the case
above, that ¢ = 3.00, highly significant by any measure. From
the frequentist standpoint, the result would be considered even
more significant for larger values of n; and ny. On the other
hand, ¢ = 3.00 becomes less likely under H; for extremely
large ns: the denominator of (2) decreases (since the variance
1 + nso? increases) while the numerator remains fixed. Figure
3 shows the effect of increasing ns (assuming n; = ng) on the
posterior probability of Hy when ¢t = 3.00, showing a minimum
posterior probability of .055 atns = 81.5(n1 = ny = 163), and
increasing to 1.0 thereafter for larger ns. This seeming “para-
dox” is not really a paradox at all, since the frequentist statistical
significance with large n; is a result of a large sample amplifi-
cation of a very small effect size.

5. CONCLUSION

The two-sample comparison is one of the most important
problems in statistics. From the teaching standpoint, two-sample
testing problems are usually much more interesting and relevant
than single-sample problems. However, it is difficult to find the
Bayesian two-sample ¢ test explicitly in the literature. We present
a simple, relatively easy-to-elicit prior for which the Bayes fac-
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tor for the two-sample comparison of means is a function of the
usual two-sample ¢ statistic, thus providing a Bayesian motiva-
tion for this statistic. Because the analytic result itself is easy
to teach and compute, and because it facilitates discussions of
Bayesian concepts such as prior selection and Lindley’s Para-
dox, we recommend that this test be incorporated routinely when
teaching elementary statistics from a Bayesian perspective.

[Received June 2003. Revised March 2005. ]
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