

STAT7630: Bayesian Statistics

Lecture Slides # 11

The Bayesian Linear Regression Model

Chapters 9-11 (Simple Normal Regression, Evaluating
Regression Models, & Extending the Normal Regression Model)

Elvan Ceyhan

Department of Mathematics & Statistics

Auburn University

Fall 2024,

Updated: November, 2024

Outline

Linear Regression Model

Bayesian Regression Model

 Bayesian Regression with Vague Priors

 Bayesian Regression with Conjugate Priors

 Bayesian Regression with `rstanarm`

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian Regression

 Posterior Predictive Distribution in Bayesian Regression

 Measures of Predictive Accuracy

Setup of Linear Regression Model

- **Model Framework:** We examine a regression model where the response variable Y is modeled as a function of $k - 1$ predictor variables X_1, X_2, \dots, X_{k-1} .
- **Model for n Observations:** For each observation $i = 1, 2, \dots, n$,

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{k-1} X_{i,k-1} + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$

Setup of Linear Regression Model

- **Matrix Formulation:** The linear regression model can be expressed as:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \text{MVN}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$

where

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & X_{11} & \cdots & X_{1,k-1} \\ 1 & X_{21} & \cdots & X_{2,k-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & \cdots & X_{n,k-1} \end{bmatrix},$$

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{k-1} \end{bmatrix}$$

Likelihood for Linear Regression Model

- **Likelihood Function:** Based on the normality assumption, the likelihood is given by:

$$L(\beta, \sigma^2 | \mathbf{X}, \mathbf{y}) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)\right)$$

- **Least Squares Estimates:** The least squares estimators for β and σ^2 are:

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}, \quad \hat{\sigma}^2 = \frac{(\mathbf{y} - \mathbf{X}\hat{\beta})'(\mathbf{y} - \mathbf{X}\hat{\beta})}{n - k}$$

Likelihood for Linear Regression Model

- Likelihood Derivation:

$$\begin{aligned} L(\beta, \sigma^2 | \mathbf{X}, \mathbf{y}) &\propto \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} (\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{X}'\mathbf{y} + \beta'\mathbf{X}'\mathbf{X}\beta) \right\} \\ &= \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} (\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{X}'\mathbf{y} + \beta'\mathbf{X}'\mathbf{X}\beta \right. \\ &\quad \left. - 2[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}]'\mathbf{X}'\mathbf{y} + 2[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}]'\mathbf{X}'\mathbf{X}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}]) \right\} \end{aligned}$$

- Simplification Using $\mathbf{X}'\mathbf{y} = \mathbf{X}'\mathbf{X}\hat{\beta}$:

$$\begin{aligned} &= \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} (\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{X}'\mathbf{X}\hat{\beta} + \beta'\mathbf{X}'\mathbf{X}\beta \right. \\ &\quad \left. - 2[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\beta}]'\mathbf{X}'\mathbf{X}\hat{\beta} + \right. \\ &\quad \left. 2[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\beta}]'\mathbf{X}'\mathbf{X}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\beta}]) \right\} \end{aligned}$$

Likelihood for Linear Regression Model

- Likelihood Derivation:

$$L(\beta, \sigma^2 | \mathbf{X}, \mathbf{y}) \propto \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} (\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{X}'\mathbf{y} + \beta'\mathbf{X}'\mathbf{X}\beta) \right\}$$

where:

- $\mathbf{y}'\mathbf{y}$ represents the sum of squared outcomes.
- $-2\beta'\mathbf{X}'\mathbf{y}$ involves the interaction between data and parameters.
- $\beta'\mathbf{X}'\mathbf{X}\beta$ is the quadratic form involving the design matrix.

- Simplification Using the Projection Matrix $\hat{\mathbf{y}} = \mathbf{X}\hat{\beta}$:

$$\begin{aligned} & \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} (\mathbf{y}'\mathbf{y} - \hat{\beta}'\mathbf{X}'\mathbf{y}) \right\} \\ &= \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} (\text{RSS}(\mathbf{y}, \hat{\mathbf{y}}) + \text{ESS}(\mathbf{X}, \hat{\beta})) \right\} \end{aligned}$$

where **RSS** (Residual Sum of Squares): Variance unexplained by the model, and **ESS** (Explained Sum of Squares): Variance explained by the model.

Likelihood for Linear Regression Model

- Likelihood Expression:

$$\begin{aligned} L(\beta, \sigma^2 | \mathbf{X}, \mathbf{y}) & \propto \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} \left(\mathbf{y}'\mathbf{y} - 2\hat{\beta}'\mathbf{X}'\mathbf{y} + \hat{\beta}'\mathbf{X}'\mathbf{X}\hat{\beta} + 2\hat{\beta}'\mathbf{X}'\mathbf{X}\hat{\beta} \right. \right. \\ & \quad \left. \left. - \hat{\beta}'\mathbf{X}'\mathbf{X}\hat{\beta} - 2\hat{\beta}'\mathbf{X}'\mathbf{X}\hat{\beta} + 2\hat{\beta}'\mathbf{X}'\mathbf{X}\hat{\beta} - 2\beta'\mathbf{X}'\mathbf{X}\hat{\beta} + \beta'\mathbf{X}'\mathbf{X}\beta \right) \right\} \\ & = \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} \left((\mathbf{y} - \mathbf{X}\hat{\beta})'(\mathbf{y} - \mathbf{X}\hat{\beta}) + \hat{\beta}'\mathbf{X}'\mathbf{X}\hat{\beta} \right. \right. \\ & \quad \left. \left. - 2\beta'\mathbf{X}'\mathbf{X}\hat{\beta} + \beta'\mathbf{X}'\mathbf{X}\beta \right) \right\} \\ & = \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} \left(\hat{\sigma}^2(n - k) + (\beta - \hat{\beta})'\mathbf{X}'\mathbf{X}(\beta - \hat{\beta}) \right) \right\} \end{aligned}$$

Outline

Linear Regression Model

Bayesian Regression Model

 Bayesian Regression with Vague Priors

 Bayesian Regression with Conjugate Priors

 Bayesian Regression with `rstanarm`

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian Regression

 Posterior Predictive Distribution in Bayesian Regression

 Measures of Predictive Accuracy

Outline

Linear Regression Model

Bayesian Regression Model

 Bayesian Regression with Vague Priors

 Bayesian Regression with Conjugate Priors

 Bayesian Regression with `rstanarm`

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian Regression

 Posterior Predictive Distribution in Bayesian Regression

 Measures of Predictive Accuracy

Noninformative Priors for β and σ^2

- Independent Vague Priors:

$$p(\beta) \propto 1, \quad \beta \in (-\infty, \infty)^k$$

$$p(\sigma^2) = \frac{1}{\sigma}, \quad \sigma \in (0, \infty)$$

- Joint Posterior for β and σ^2 :

$$p(\beta, \sigma^2 | \mathbf{X}, \mathbf{y}) \propto p(\beta)p(\sigma^2)L(\beta, \sigma^2 | \mathbf{X}, \mathbf{y})$$

$$\propto \sigma^{-n-1} \exp \left\{ -\frac{1}{2\sigma^2} \left[\hat{\sigma}^2(n-k) + (\beta - \hat{\beta})' \mathbf{X}' \mathbf{X} (\beta - \hat{\beta}) \right] \right\}$$

Noninformative Priors for β and σ^2

- **Transformation:** Let $s = \sigma^{-2}$ with Jacobian $|J| = \frac{1}{2}s^{-3/2}$.
- **Joint Posterior for β and s :**

$$p(\beta, s | \mathbf{X}, \mathbf{y}) \propto (s^{-1/2})^{-n-1} \exp \left\{ -\frac{1}{2}s \left[\hat{\sigma}^2(n-k) + (\beta - \hat{\beta})' \mathbf{X}' \mathbf{X} (\beta - \hat{\beta}) \right] \right\} \cdot \frac{1}{2}s^{-3/2}$$

- **Simplified Joint Posterior:**

$$\propto s^{\frac{n}{2}-1} \exp \left\{ -\frac{1}{2}s \left[\hat{\sigma}^2(n-k) + (\beta - \hat{\beta})' \mathbf{X}' \mathbf{X} (\beta - \hat{\beta}) \right] \right\}$$

Noninformative Priors for β and σ^2

- **Marginal Posterior for β :** Integrate out s to obtain:

$$p(\beta | \mathbf{X}, \mathbf{y})$$

$$\begin{aligned} &\propto \int_0^\infty s^{\frac{n}{2}-1} \exp \left\{ -\frac{1}{2} \left[\hat{\sigma}^2(n-k) + (\beta - \hat{\beta})' \mathbf{X}' \mathbf{X} (\beta - \hat{\beta}) \right] s \right\} ds \\ &= \frac{\Gamma\left(\frac{n}{2}\right)}{\left(\frac{1}{2} \left[\hat{\sigma}^2(n-k) + (\beta - \hat{\beta})' \mathbf{X}' \mathbf{X} (\beta - \hat{\beta}) \right] \right)^{\frac{n}{2}}} \\ &\propto \left[(n-k) + (\beta - \hat{\beta})' \hat{\sigma}^{-2} \mathbf{X}' \mathbf{X} (\beta - \hat{\beta}) \right]^{-\frac{n}{2}} \end{aligned}$$

-

$$\frac{(n-k)\hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}}{n-k-2}$$

Noninformative Priors for β and σ^2

- **Marginal Posterior for σ^2 :** Integrate out β from the joint posterior:

$$p(\sigma^2 | \mathbf{X}, \mathbf{y})$$

$$\propto \sigma^{-n-1} \exp\left(-\frac{1}{2\sigma^2} \hat{\sigma}^2(n-k)\right)$$

$$\int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2} (\beta - \hat{\beta})' \mathbf{X}' \mathbf{X} (\beta - \hat{\beta})\right) d\beta$$

$$\propto \sigma^{-n-1} \exp\left(-\frac{1}{2\sigma^2} \hat{\sigma}^2(n-k)\right) (2\pi\sigma^2)^{k/2}$$

$$\propto (\sigma^2)^{-\frac{1}{2}(n-k-1)-1} \exp\left(-\frac{1}{2} \frac{\hat{\sigma}^2(n-k)}{\sigma^2}\right)$$

-

$$\sigma^2 | \mathbf{X}, \mathbf{y} \sim \text{IG}\left(\frac{n-k-1}{2}, \frac{\hat{\sigma}^2(n-k)}{2}\right)$$

- **Example:** Oxygen uptake data (available on Canvas)

Outline

Linear Regression Model

Bayesian Regression Model

 Bayesian Regression with Vague Priors

 Bayesian Regression with Conjugate Priors

 Bayesian Regression with `rstanarm`

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian Regression

 Posterior Predictive Distribution in Bayesian Regression

 Measures of Predictive Accuracy

Conjugate Analysis for the Linear Model

- Conjugate priors for linear regression are not actually recommended, because they are hard to elicit.
- Nonetheless, the mathematical results are elegant and hold historical and practical significance.
- Practical significance emerges in Bayesian nonparametric analysis involving Dirichlet process mixture models.
- If we have reliable prior information that can be quantified and used to specify priors for β and σ^2 , then conjugate priors may be utilized.

Conjugate Analysis for the Linear Model

- **Conjugate Priors:** With strong prior knowledge, we can use conjugate priors for β and σ^2 .
- **Prior on Error Precision τ :** Following the approach in BIDA by Christensen, Johnson, Branscum, and Hanson (2010), we specify a prior on the precision parameter $\tau = \frac{1}{\sigma^2}$:

$$\tau \sim \text{Gamma}(a, b)$$

This is analogous to using an inverse-gamma prior for σ^2 .

- **Prior on β (Conditional on τ):**

$$\beta | \tau \sim \text{MVN} \left(\delta, \tau^{-1} \left[\tilde{\mathbf{X}}^{-1} \mathbf{D} (\tilde{\mathbf{X}}^{-1})' \right] \right)$$

where $\tau^{-1} = \sigma^2$.

Conjugate Analysis for the Linear Model

- **Hypothetical Observations:** Specify a set of k reasonable hypothetical observations with predictor vectors $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_k$. These, along with a column of 1's, form the rows of $\tilde{\mathbf{X}}$. Assume prior expected response values $\tilde{y}_1, \dots, \tilde{y}_k$.
- **Prior on $\tilde{\mathbf{X}}\beta$:** The multivariate normal prior on β translates to a prior on $\tilde{\mathbf{X}}\beta$:

$$\tilde{\mathbf{X}}\beta | \tau \sim \text{MVN}(\tilde{\mathbf{y}}, \tau^{-1}\mathbf{D})$$

- **Prior Mean and Weights:**

- The prior mean of $\tilde{\mathbf{X}}\beta$ is $\tilde{\mathbf{y}}$, so the prior mean δ of β is $\tilde{\mathbf{X}}^{-1}\tilde{\mathbf{y}}$.
- \mathbf{D}^{-1} is a diagonal matrix with diagonal elements representing the weights of the hypothetical observations.
- Intuitively, the prior has an equivalent “worth” of $\text{tr}(\mathbf{D}^{-1})$ observations.

Conjugate Analysis for the Linear Model

- **Joint Posterior Density:**

$$\begin{aligned} p(\beta, \tau | \mathbf{X}, \mathbf{y}) &\propto p(\beta | \tau) p(\tau) L(\beta, \tau | \mathbf{X}, \mathbf{y}) \\ &\propto \tau^{n/2} |\mathbf{D}|^{-1/2} \exp \left(-\frac{1}{2} (\tilde{\mathbf{X}}\beta - \tilde{\mathbf{y}})' (\tau^{-1} \mathbf{D})^{-1} (\tilde{\mathbf{X}}\beta - \tilde{\mathbf{y}}) \right) \\ &\quad \times \tau^{a-1} e^{-b\tau} \\ &\quad \times \tau^{n/2} \times \exp \left(-\frac{1}{2} (\mathbf{X}\beta - \mathbf{y})' (\tau^{-1} \mathbf{I})^{-1} (\mathbf{X}\beta - \mathbf{y}) \right) \end{aligned}$$

- **Conditional Posterior for $\beta | \tau$:**

$$\beta | \tau, \mathbf{X}, \mathbf{y} \sim \text{MVN} \left(\hat{\beta}, \tau^{-1} (\mathbf{X}'\mathbf{X} + \tilde{\mathbf{X}}'\mathbf{D}^{-1}\tilde{\mathbf{X}})^{-1} \right)$$

where

$$\hat{\beta} = (\mathbf{X}'\mathbf{X} + \tilde{\mathbf{X}}'\mathbf{D}^{-1}\tilde{\mathbf{X}})^{-1} \left(\mathbf{X}'\mathbf{y} + \tilde{\mathbf{X}}'\mathbf{D}^{-1}\tilde{\mathbf{y}} \right)$$

Conjugate Analysis for the Linear Model

- Posterior for τ :

$$\tau | \mathbf{X}, \mathbf{y} \sim \text{Gamma} \left(\frac{n + 2a}{2}, \frac{n + 2a}{2} s^* \right)$$

where

$$s^* = \frac{(\mathbf{y} - \mathbf{X}\hat{\beta})'(\mathbf{y} - \mathbf{X}\hat{\beta}) + (\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\hat{\beta})'\mathbf{D}^{-1}(\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\hat{\beta}) + 2b}{n + 2a}$$

- Incorporation of Subjective Information:

- The estimate $\hat{\beta}$ incorporates prior knowledge through $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{y}}$.
- s^* incorporates subjective parameters a and b , alongside $\hat{\beta}$.

Conjugate Analysis for the Linear Model

- **Marginal Posterior for β :** The marginal posterior $p(\beta|\mathbf{X}, \mathbf{y})$ is a (scaled) **noncentral multivariate t -distribution**, although the conditional posterior $p(\beta|\tau, \mathbf{X}, \mathbf{y})$ is multivariate normal.
- **Inference on β :** To simplify inference on β , it is effective to use the conditional posterior $p(\beta|\tau, \mathbf{X}, \mathbf{y})$.
- **Sampling Strategy:** Instead of basing inference on $p(\beta|\hat{\tau}, \mathbf{X}, \mathbf{y})$ by plugging in a posterior estimate of τ , it is preferable to:
 1. Sample random values $\tau^{[1]}, \dots, \tau^{[J]}$ from the posterior of τ .
 2. For each $\tau^{[j]}$, sample from the conditional posterior $p(\beta|\tau^{[j]}, \mathbf{X}, \mathbf{y})$, $j = 1, \dots, J$.
- **Estimation:** Posterior point estimates and interval estimates for β can then be based on these random draws.

Prior Specification for the Conjugate Analysis

- **Hypothetical Predictor Values:** Specify a matrix $\tilde{\mathbf{X}}$ containing hypothetical predictor values.
- **Response Values:** Using expert opinion or prior knowledge, specify a corresponding vector $\tilde{\mathbf{y}}$ of reasonable response values for these predictors.
- **Requirement for Hypothetical Observations:** The number of hypothetical observations must be one more than the number of predictor variables in the model.
- **Prior Mean for β :** The prior mean for β is set to $\tilde{\mathbf{X}}^{-1}\tilde{\mathbf{y}}$.

Prior Specification for the Conjugate Analysis

- **Gamma Prior on τ :** We need to specify the shape parameter a and rate parameter b for the gamma prior on τ .
- **Choosing a :**
 - Start by selecting a based on the degree of confidence in the prior information.
 - For a given a , the prior can be viewed as having the equivalent informational “worth” of $2a$ sample observations.
- **Confidence Level:** A larger value of a reflects higher confidence in the prior (although variance tends to increase too), thus weighting prior information more heavily in the analysis.

Prior Specification for the Conjugate Analysis

- **Strategy for Specifying b :**
 - Select one of the hypothetical observations, say the first one.
 - Let \tilde{y}_1 be the prior expected response for this observation with predictor values \tilde{x}_1 .
 - Define \tilde{y}_{\max} as the maximum reasonable prior response for an observation with predictors \tilde{x}_1 .
- **Prior Estimate for σ :** - Based on a normal distribution, estimate σ as:

$$\sigma \approx \frac{\tilde{y}_{\max} - \tilde{y}_1}{1.645}$$

- Since $\tau = \frac{1}{\sigma^2}$, this provides a reasonable guess for τ .
- **Solving for b :**
 - Set this guess for τ equal to the mean a/b of the gamma prior for τ .
 - With a specified, solve for b .

- Given these results, it can be shown that, (of BIDA) ④

$$\frac{c' \hat{\beta} - c' \hat{\beta}}{\sqrt{s^* c' (X' X + X' D^{-1} X)^{-1} c}} \mid y \sim t(n+2)$$

where $c = (c_1, c_2, \dots, c_k)$, e.g. for $\beta_1 - \beta_2$, $c = (1, -1, 0, \dots, 0)$

- For predicting a new observation y_f with covariate vector X_f , we get the predictive distribution

$$\frac{y_f - x_f' \hat{\beta}}{\sqrt{s^* (s + x_f' (X' X + X' D^{-1} X)^{-1} X_f)}} \mid y \sim t(n+2)$$

- Much of the analysis can be obtained by making minor changes to the output from a weighted least squares regression code. Using partitioned matrices, and $A^{-1} b$,

$$\begin{pmatrix} y \\ \hat{y} \end{pmatrix} = \begin{pmatrix} X \\ X \end{pmatrix} \hat{\beta} + \begin{pmatrix} e \\ \hat{e} \end{pmatrix}, \quad \begin{pmatrix} e \\ \hat{e} \end{pmatrix} \sim \text{MVN} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} I_n & 0 \\ 0 & I_k \end{pmatrix} \right)$$

(one need to little more then modify the reported Cof and MSE to agree with $n+2$ & s^* , but that also involves changes to all std errors.)

Benefits of BIDA Approach - I

- **Analytical Tractability:** Conjugate priors enable analytical solutions, reducing computational burden and allowing for quick updates.
- **Incorporation of Prior Knowledge:** Embeds expert knowledge through hypothetical predictor and response values, enhancing accuracy, especially with limited data.
- **Flexible Prior Influence:** Gamma prior parameters a and b adjust confidence in prior information, balancing reliance on prior vs. data.
- **Posterior Sampling Strategy:** Efficient sampling approach that accounts for uncertainty in τ without relying on point estimates.

Benefits of BIDA Approach - II

- **Interpretability:** Provides a meaningful prior mean for β and allows specifying observational “weights” to clarify model assumptions.
- **Robust Inference with t -Distributions:** The marginal posterior of β is a noncentral multivariate t -distribution, which is robust to outliers and effective under uncertainty in τ .
- **Overall Advantage:** Ideal for balancing prior knowledge with data-driven insights in an analytically manageable framework.

Example of a Conjugate Analysis

- **Example in R:** Using the Automobile Data Set, we perform a conjugate analysis.
- **Estimates for τ and σ^2 :** Obtain point and interval estimates for the precision parameter τ and, consequently, for σ^2 .
- **Estimates for Elements of β :** Draw samples from the posterior distributions of τ and then from the conditional posterior of $\beta|\tau$ to obtain point and interval estimates for each element of β .

Alternative Approach to Conjugate Analysis for the Linear Model

The Approach in Bayesian Methods (BaM) by Jeff Gill:

- For conjugate priors with a sampling distribution (data model):

$$\mathbf{Y}|\boldsymbol{\beta}, \sigma^2 \sim \text{MVN}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I_n)$$

- Conditional distribution of $\boldsymbol{\beta}$ on σ^2 resembles the normal-normal model before:

$$p(\boldsymbol{\beta}|\sigma^2) = (2\pi)^{-\frac{k}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{\beta} - \mathbf{B})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{\beta} - \mathbf{B})\right)$$

- Prior for σ^2 : $p(\sigma^2) \propto \sigma^{-(a-k)} \exp\left(-\frac{b}{\sigma^2}\right)$
- Joint prior as a product of conditionals:

$$p(\boldsymbol{\beta}, \sigma^2) = p(\boldsymbol{\beta}|\sigma^2)p(\sigma^2)$$

Conjugate Analysis for the Linear Model

Joint Posterior Derivation

- Combining the data likelihood with the prior specification yields the joint posterior:

$$\begin{aligned} p(\beta, \sigma^2 | \mathbf{X}, \mathbf{y}) &\propto \sigma^{-n} \exp \left(-\frac{1}{2\sigma^2} \left(\hat{\sigma}^2(n-k) + (\beta - \hat{\beta})' \mathbf{X}' \mathbf{X} (\beta - \hat{\beta}) \right) \right) \\ &\quad \times (2\pi)^{-\frac{k}{2}} |\Sigma|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} (\beta - \mathbf{B})' \Sigma^{-1} (\beta - \mathbf{B}) \right) \sigma^{-(a-k)} \exp \left(-\frac{b}{\sigma^2} \right) \\ &\propto \sigma^{-(n+a)} \exp \left(-\frac{1}{2\sigma^2} \left(\hat{\sigma}^2(n-k) + (\beta - \hat{\beta})' \mathbf{X}' \mathbf{X} (\beta - \hat{\beta}) \right) + \right. \\ &\quad \left. 2b + (\beta - \mathbf{B})' \Sigma^{-1} (\beta - \mathbf{B}) \right) \end{aligned}$$

Conjugate Analysis for the Linear Model

Simplifying the Joint Posterior

- The form of the joint posterior can be simplified with a change of variables.
- Define:

$$\tilde{\beta} = (\Sigma^{-1} + \mathbf{X}'\mathbf{X})^{-1}(\Sigma^{-1}\mathbf{B} + \mathbf{X}'\mathbf{X}\hat{\beta})$$

$$\tilde{s} = 2b + \hat{\sigma}^2(n - k) + (\mathbf{B} - \tilde{\beta})'\Sigma^{-1}\mathbf{B} + (\hat{\beta} - \tilde{\beta})'\mathbf{X}'\mathbf{X}\hat{\beta}$$

- The joint posterior can now be re-expressed as:

$$p(\beta, \sigma^2 | \mathbf{X}, \mathbf{y}) \propto (\sigma^2)^{-\frac{n+a}{2}} \exp \left(-\frac{1}{2\sigma^2} \left(\tilde{s} + (\beta - \tilde{\beta})'(\Sigma^{-1} + \mathbf{X}'\mathbf{X})(\beta - \tilde{\beta}) \right) \right)$$

Conjugate Analysis for the Linear Model

Posterior Distribution of $\beta|X, y$

- By applying the marginalization trick, we obtain the posterior distribution of $\beta|X, y$:

$$p(\beta|X, y) \propto \left(\tilde{s} + (\beta - \tilde{\beta})' (\Sigma^{-1} + X'X) (\beta - \tilde{\beta}) \right)^{-\frac{n+a}{2} + 1}$$

- This is the kernel of a multivariate-t distribution with $\nu = n + a - k - 2$ degrees of freedom.
- The mean and covariance of the posterior distribution for β are:

$$\mathbf{E}(\beta|X, y) = \tilde{\beta}$$

$$\text{Cov}(\beta|X, y) = \frac{\tilde{s}(\Sigma^{-1} + X'X)^{-1}}{n + a - k - 3}$$

Conjugate Analysis for the Linear Model

Marginal Distribution of σ^2

- The marginal distribution of σ^2 is derived similarly to the case with an uninformed prior:

$$p(\sigma^2 | \mathbf{X}, \mathbf{y}) \propto (\sigma^2)^{-\frac{n+a-k-1}{2}} \exp\left(-\frac{1}{2\sigma^2} \hat{\sigma}^2(n+a-k)\right)$$

- This corresponds to the kernel of an Inverse-Gamma distribution:

$$\text{IG}\left(\frac{n+a-k-2}{2}, \frac{1}{2}\hat{\sigma}^2(n+a-k)\right)$$

Conjugate Analysis for the Linear Model

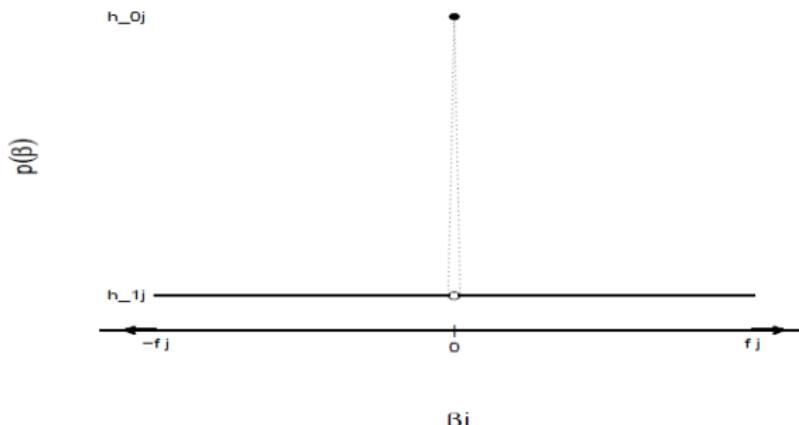
Comparison of Informative Conjugate and Noninformative Models

Setup	Prior	Posterior
Noninf.	$p(\beta) \propto c$ on $(-\infty, \infty)$ $p(\sigma^2) \propto \frac{1}{\sigma}$ on $(0, \infty)$	$\beta \mathbf{X}, \mathbf{y} \sim MVt(n - k)$ $\sigma^2 \mathbf{X}, \mathbf{y} \sim IG\left(\frac{n-k-1}{2}, \frac{\hat{\sigma}^2(n-k)}{2}\right)$
Conj.	$\beta \sigma^2 \sim MVN(\mathbf{B}, \sigma^2 I_n)$ $\sigma^2 \sim IG\left(\frac{a-k-2}{2}, b\right)$	$\beta \mathbf{X}, \mathbf{y} \sim MVt(n + a - k - 2)$ $\sigma^2 \mathbf{X}, \mathbf{y} \sim IG\left(\frac{n+a-k-2}{2}, \frac{\hat{\sigma}^2(n+a-k)}{2}\right)$

This table summarizes the priors and posterior distributions for both the vague and informative conjugate models in linear regression.

Spike-and-Slab Priors for Linear Models

- In regression, the priors on the regression coefficients are crucial.
- Whether or not $\beta_j = 0$ defines whether X_j is “important” in the regression.
- For any j , a useful prior for β_j is a “spike-and-slab” prior, which allows for a mixture of values concentrated around zero (spike) and a broader range (slab).



Spike-and-Slab Priors for Linear Models

- Here $P(\beta_j = 0) = h_{0j}$, which represents the prior probability that X_j is not needed in the model.

-

$$P(\beta_j \neq 0) = 1 - h_{0j} = h_{1j}(f_j - (-f_j)) = 2f_j h_{1j}$$

where $[-f_j, f_j]$ contains all “reasonable” values for β_j .

- To include X_j in the model with certainty, set $h_{0j} = 0$.
- To increase the doubt that X_j should be in the model, increase the ratio:

$$\frac{h_{0j}}{h_{1j}} = \frac{h_{0j}}{(1 - h_{0j})/2f_j} = 2f_j \frac{h_{0j}}{1 - h_{0j}}$$

- Recently, “nonparametric priors” have become popular, often involving a mixture of Dirichlet processes.

Outline

Linear Regression Model

Bayesian Regression Model

 Bayesian Regression with Vague Priors

 Bayesian Regression with Conjugate Priors

 Bayesian Regression with `rstanarm`

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian Regression

 Posterior Predictive Distribution in Bayesian Regression

 Measures of Predictive Accuracy

Bayesian Regression with `rstanarm`

- - The `rstanarm` package in R enables Bayesian regression modeling by simulating parameter values from their posterior distributions.
 - This approach circumvents the need to derive the posterior distribution explicitly.
- For normal regression models, we can derive the posterior analytically as shown in our approach.
- - For models with non-normal responses, conjugate priors for regression coefficients may not exist.
 - Simulating from the posterior is often the only viable method for estimation.
- `rstanarm` leverages `rstan` to estimate several standard Bayesian regression models efficiently.

Parts of the `stan_glm` Function Call

- **Overview of `stan_glm`:** The `stan_glm` function in the `rstanarm` package performs Bayesian regression model estimation via simulation.
- **Specifying the Model Type:** For normal responses, specify `method = "gaussian"` in the `stan_glm` call.
- **Priors on Model Parameters:**
 - Set hyperparameters for priors, typically normal priors on the intercept β_0 and coefficients β_1, β_2, \dots
 - An exponential prior is often recommended for the unknown standard deviation σ of the response.
- **MCMC Specifications:** Configure MCMC details, including the number of iterations and the number of chains, to ensure adequate diagnostic assessment.

Output of the `stan_glm` Function

- **MCMC Diagnostics:** Functions in `rstanarm` provide diagnostic plots, including trace plots, autocorrelation plots, and density plots, to assess MCMC convergence.
- **Summarizing Posterior Estimates:** The `tidy` function displays a summary of the Bayesian posterior estimates for the regression coefficients.
- **Prediction and Intervals:** - `posterior_predict` provides point predictions for the response, given specific predictor values.
- `posterior_interval` generates posterior prediction intervals for the response.
- **Posterior Predictive Density:** Plot the density function of the posterior predictive distribution to visualize the model's predictive spread.
- **Example:** See the R example using the “cars” dataset.

Outline

Linear Regression Model

Bayesian Regression Model

 Bayesian Regression with Vague Priors

 Bayesian Regression with Conjugate Priors

 Bayesian Regression with `rstanarm`

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian Regression

 Posterior Predictive Distribution in Bayesian Regression

 Measures of Predictive Accuracy

A Bayesian Approach to Model Selection

- **Model Selection in Regression:** In exploratory regression, selecting the optimal subset of predictor variables is essential for identifying the “best model.”
- **Bayesian Comparison of Models:** A Bayesian approach involves evaluating candidate models based on their posterior probabilities.
- **Inclusion of Predictor Variables:**
 - If the coefficient $\beta_j = 0$, the variable X_j is unnecessary in the model.
 - Define $\beta_j = z_j b_j$ for each j , where $z_j = 0$ or 1 and $b_j \in (-\infty, \infty)$.
- **Model Specification:**

$$Y_i = z_0 b_0 + z_1 b_1 X_{i1} + z_2 b_2 X_{i2} + \cdots + z_{k-1} b_{k-1} X_{i,k-1} + \varepsilon_i, \quad i = 1, \dots, n$$

where any $z_j = 0$ indicates that the corresponding predictor variable is excluded from the model.

A Bayesian Approach to Model Selection: Example

- **Oxygen Uptake Example:** Consider predictor variables $X_1 = \text{group}$, $X_2 = \text{age}$, and $X_3 = \text{group} \times \text{age}$.
- **Indicator Vector for Model Inclusion:** Define $\mathbf{z} = (z_0, z_1, z_2, z_3)$ to specify the inclusion of each variable in the model. The true conditional expectation $\mathbf{E}[Y|\mathbf{x}, \mathbf{b}, \mathbf{z}]$ for each configuration of \mathbf{z} is:

\mathbf{z}	True $\mathbf{E}[Y \mathbf{x}, \mathbf{b}, \mathbf{z}]$
$(1, 0, 0, 0)$	b_0
$(1, 1, 0, 0)$	$b_0 + b_1 \text{ group}$
$(1, 0, 1, 0)$	$b_0 + b_2 \text{ age}$
$(1, 1, 1, 0)$	$b_0 + b_1 \text{ group} + b_2 \text{ age}$
$(1, 1, 1, 1)$	$b_0 + b_1 \text{ group} + b_2 \text{ age} + b_3 \text{ group} \times \text{age}$

A Bayesian Approach to Model Selection

- **Calculating Posterior Probabilities:**
 - For each possible configuration of the vector \mathbf{z} , calculate the posterior probability for that model.
 - For a specific configuration \mathbf{z}^* :

$$p(\mathbf{z}^* | \mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{z}^*)p(\mathbf{y}|\mathbf{X}, \mathbf{z}^*)}{\sum_{\mathbf{z}} p(\mathbf{z})p(\mathbf{y}|\mathbf{X}, \mathbf{z})}$$

- **Model Priors:**
 - A prior $p(\cdot)$ is assigned to each potential model.
 - For a noninformative approach, assign equal prior probabilities across all models.
- **Handling Many Predictors:** With a large number of predictors, employ Gibbs sampling to efficiently search across the model space.

Example of Bayesian Model Selection

- **Example in R:** Analyze the Oxygen Data Set to perform Bayesian model selection.
- **Exploring Subsets of Predictors:**
 - Consider all possible subsets of the predictor variables.
 - **Result:** The model excluding the interaction term has the highest posterior probability.
- **Restricted Subset Consideration:**
 - Restrict to certain subsets, such as only including the interaction term when both first-order terms are present.
 - **Result:** The model without the interaction term again shows the highest posterior probability, with an even greater margin.

A Bayesian Approach to Model Selection - Technical Aside for the Details

- Bayesian model selection uses posterior probabilities to evaluate model configurations.
- Here, we assess the likelihood of observing the data \mathbf{y} given the design matrix \mathbf{X} for various subsets of predictors.
- Each configuration of predictors, represented by \mathbf{z} , is treated as a potential model with a specific probability.

Model Prior Specification

- **Prior Probability on Models $p(z)$:**
 - A prior $p(z)$ is assigned to each subset configuration z , which indicates which predictors are included in the model.
 - In a noninformative setting, each model can have equal prior probability, i.e., $p(z) = \frac{1}{M}$ for M possible models.
- **Parameter Priors:**
 - Hyperparameters are used: g controls variance scaling, and ν_0 influences prior degrees of freedom.
 - s_0^2 represents a prior guess for the residual variance, often calculated from an initial ordinary least squares (OLS) model.

Model Prior Specification: Prior on Configurations $p(\mathbf{z})$

- Each subset configuration \mathbf{z} represents a unique model by specifying which predictors are included.
- **Noninformative Prior:** Assign equal probability to each model configuration:

$$p(\mathbf{z}) = \frac{1}{M}$$

where M is the total number of possible configurations.

- **Informative Prior:** If we have prior knowledge or prefer simpler models, we can assign higher probabilities to specific configurations (e.g., those with fewer predictors).

Model Prior Specification: Prior on Coefficients β

- For each model configuration \mathbf{z} , we define a multivariate normal prior on the coefficients β of the included predictors:

$$\beta \sim MVN \left(\tilde{\beta}, \sigma^2 (g \mathbf{X}' \mathbf{X})^{-1} \right)$$

- Components of the Prior:**

- $\tilde{\beta}$: Prior mean, often calculated as $\tilde{\beta} = (\tilde{\mathbf{X}}' \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}' \tilde{\mathbf{y}}$, based on OLS solution of hypothetical predictor values $\tilde{\mathbf{X}}$ and responses $\tilde{\mathbf{y}}$.
- σ^2 : Residual variance, representing uncertainty in predictions.
- g : Variance scaling factor; larger g reduces the influence of the prior mean.

Model Prior Specification: Prior on Variance σ^2

- The residual variance σ^2 has a conjugate gamma prior on its precision $\tau = \sigma^{-2}$:

$$\tau \sim \text{Gamma}(a, b)$$

- **Parameters of the Gamma Prior:**

- Shape a and rate b parameters are selected to reflect prior beliefs on variance.
- **Mean:** $\mathbf{E}[\tau] = \frac{a}{b}$ **Variance:** $\text{Var}(\tau) = \frac{a}{b^2}$
- A typical choice for a and b is:

$$a = \frac{\nu_0}{2}, \quad b = \frac{\nu_0 s_0^2}{2}$$

where ν_0 is the prior degrees of freedom and s_0^2 is a prior estimate of residual variance.

Likelihood of Observing \mathbf{y} Given \mathbf{X} :

- The goal of Bayesian model selection is to calculate the probability of observing the data \mathbf{y} given a particular model configuration, represented by a subset of predictors in \mathbf{X} .
- For each subset model, the function `log_Py_x` in R code calculates the marginal log-likelihood $\log p(\mathbf{y}|\mathbf{X}, \mathbf{z})$, which measures the fit of the data under that model.
- This marginal likelihood incorporates a projection of \mathbf{y} onto the predictor space defined by \mathbf{X} , which is captured by the “hat matrix” Hg , which is defined as:

$$Hg = \frac{g}{g+1} \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

- This matrix projects \mathbf{y} onto the subspace spanned by \mathbf{X} and scales it by g , a hyperparameter that controls the variance scaling.

Likelihood of Observing \mathbf{y} Given \mathbf{X} :

- The fit of the model is evaluated by calculating the sum of squared residuals $SSRg$, which measures the unexplained variation in \mathbf{y} after projection:

$$SSRg = \mathbf{y}'(I - Hg)\mathbf{y}$$

- Here, $I - Hg$ is a matrix that projects \mathbf{y} onto the orthogonal complement of the space spanned by \mathbf{X} , capturing the residuals that are not explained by the model.

Marginal Likelihood Computation:

- The marginal likelihood $p(\mathbf{y}|\mathbf{X}, \mathbf{z})$ is a key element in Bayesian model selection, as it indicates the probability of observing \mathbf{y} for a given model configuration \mathbf{z} .
- This likelihood combines the residual sum of squares $SSRg$ with prior parameters:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{z}) = -\frac{1}{2} \times \left(n \log(\pi) + p \log(1 + g) + (\nu_0 + n) \log(\nu_0 s_0^2 + SSRg) - \nu_0 \log(\nu_0 s_0^2) \right)$$

Data Model and Likelihood

In the above expression:

- $n \log(\pi)$: A normalization term, adjusting for the dimensionality of \mathbf{y} .
- $p \log(1 + g)$: Adjusts for the number of predictors p included in the model, scaled by g , impacting how model complexity is penalized.
- $(\nu_0 + n) \log(\nu_0 s_0^2 + SSRg)$: Combines the prior information (through ν_0 and s_0^2) with the residual variance $SSRg$.
- $-\nu_0 \log(\nu_0 s_0^2)$: A prior adjustment term, providing a reference for the variance under the prior alone.

- The value of $\log p(\mathbf{y}|\mathbf{X}, \mathbf{z})$ provides a measure of how well each subset model explains the data, balancing model fit and complexity.
- Models with higher marginal likelihood values are considered better explanations of the data.

Posterior Calculation and Posterior Probabilities

- **Posterior Probability for Model z :**
 - Given prior $p(z)$ and marginal likelihood $p(y|\mathbf{X}, z)$, the posterior for model z^* is:
- $$p(z^*|\mathbf{X}, y) = \frac{p(z^*)p(y|\mathbf{X}, z^*)}{\sum_z p(z)p(y|\mathbf{X}, z)}$$
- The numerator captures the joint probability of z^* and data given z^* , while the denominator sums this over all model configurations.

Gibbs Sampling for Model Space Exploration

- **Purpose:** With a large number of predictors, direct computation of posteriors for all subsets is computationally expensive.
- **Sampling Approach:** Gibbs sampling iteratively samples predictor inclusion/exclusion, toggling each predictor in/out of the model.
- **Sampling Probability:** For each predictor:
 - Calculate posterior difference for inclusion vs. exclusion.
 - Accept inclusion/exclusion based on a probability proportional to the calculated difference.

Model Comparison and Bayes Factors

- **Bayes Factors:** For comparing two models z_1 and z_2 :
Compute the ratio of marginal likelihoods (likelihood of data under each model):

$$BF_{12} = \frac{p(\mathbf{y}|\mathbf{X}, z_1)}{p(\mathbf{y}|\mathbf{X}, z_2)}$$

- **Interpretation:**
 - $BF > 1$ suggests model z_1 is more supported by the data than z_2 .
 - Posterior probabilities also incorporate these Bayes factors, favoring models with higher likelihood.

Posterior Summary for Model Selection

- The final output ranks model configurations by posterior probability.
- Constraints can be applied (e.g., include interaction terms only when main effects are present).
- Gibbs sampling results are used to estimate probabilities for each model, selecting the model with the highest posterior.

Outline

Linear Regression Model

Bayesian Regression Model

 Bayesian Regression with Vague Priors

 Bayesian Regression with Conjugate Priors

 Bayesian Regression with `rstanarm`

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian Regression

 Posterior Predictive Distribution in Bayesian Regression

 Measures of Predictive Accuracy

Outline

Linear Regression Model

Bayesian Regression Model

 Bayesian Regression with Vague Priors

 Bayesian Regression with Conjugate Priors

 Bayesian Regression with `rstanarm`

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian Regression

Posterior Predictive Distribution in Bayesian Regression

Measures of Predictive Accuracy

The Posterior Predictive Distribution of the Data

- **Bayesian Model Setup:** We have built a Bayesian regression model using response data \mathbf{y} and explanatory data matrix \mathbf{X} .
- **Future Observations:**
 - Consider future observations with explanatory variable values in matrix \mathbf{X}^* .
 - **The question:** What is the marginal distribution of the corresponding future response values \mathbf{Y}^* ?
- **Posterior Predictive Distribution:**

The distribution $p(\mathbf{y}^*|\mathbf{y}, \mathbf{X}^*, \mathbf{X})$ represents the posterior predictive distribution of \mathbf{y}^* .
- **Application:** This distribution serves as a tool for assessing the fit of our regression model, allowing for model validation with future data.

The Posterior Predictive Distribution of the Data

- **Joint Posterior Distribution:** With noninformative priors, the joint distribution is:

$$p(\mathbf{y}^*, \boldsymbol{\beta}, \sigma^2 | \mathbf{y}, \mathbf{X}^*, \mathbf{X}) = p(\mathbf{y}^* | \boldsymbol{\beta}, \sigma^2, \mathbf{X}^*) p(\boldsymbol{\beta}, \sigma^2 | \mathbf{X}, \mathbf{y})$$

- **Posterior Predictive Distribution:** Integrating out $\boldsymbol{\beta}$ and σ^2 , the posterior predictive distribution of \mathbf{Y}^* is multivariate- t with $(n - k)$ degrees of freedom:

$$\mathbf{E}(\mathbf{Y}^* | \mathbf{y}, \mathbf{X}^*, \mathbf{X}) = \mathbf{X}^* \hat{\boldsymbol{\beta}}$$

$$\text{Cov}(\mathbf{Y}^* | \mathbf{y}, \mathbf{X}^*, \mathbf{X}) = \frac{(n - k) \hat{\sigma}^2}{n - k - 2} \left(\mathbf{I} + \mathbf{X}^* (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}^{*\prime} \right)$$

- **Intuition:**
 - Given the model, our original data are multivariate normal.
 - Future predictions follow a multivariate- t distribution, which accounts for additional uncertainty about the model.

Posterior Prediction of Response Values in Regression

Ex 3: Posterior Predictive Distribution in Regression:

- **Model Fit Check:**
 - Generate samples from the posterior predictive distribution, using $\mathbf{X}^* = \mathbf{X}$ (the observed sample predictors).
 - Plot the predicted values against the actual y -values from the original sample.
- **Identifying Outliers:**
 - If an observed y_i lies far from the center of the posterior predictive distribution, then this i -th observation may be an outlier.
 - A high number of outliers would indicate a potential misfit of the model.
- See R example with a small automobile dataset.

Posterior Prediction Intervals in Regression

- **Prediction for New Responses:**

Make predictions and construct “prediction intervals” for new responses given specified predictor values.

- **Example Setup:**

- For a new observation with predictor values

$$\mathbf{x}^* = (1, x_1^*, x_2^*, \dots, x_{k-1}^*).$$

- Alternatively, predictor values for multiple new observations can be stored in matrix \mathbf{X}^* .

- **Posterior Predictive Distribution:**

- Generate the posterior predictive distribution using \mathbf{X}^* .

- Use the posterior median for point predictions and posterior quantiles to create prediction intervals.

- See R example for implementation.

Posterior Prediction Using bayesrules Package

- **Overview of bayesrules Package:**

The `bayesrules` package provides useful functions for posterior predictions and diagnostics for models fitted with `stan_glm`.

- **ppc_intervals Function:**

The `ppc_intervals` function generates prediction intervals for observations in the sample or for hypothetical future observations.

- **Model Fit Assessment:**

- For 95% prediction intervals on sample observations, model fit can be checked by counting how many observed y -values fall within their 95% prediction intervals.
- Ideally, around 95% of the sample y -values should lie within their respective intervals.

Outline

Linear Regression Model

Bayesian Regression Model

 Bayesian Regression with Vague Priors

 Bayesian Regression with Conjugate Priors

 Bayesian Regression with `rstanarm`

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian Regression

 Posterior Predictive Distribution in Bayesian Regression

 Measures of Predictive Accuracy

Measures of Predictive Accuracy

- **Prediction Summary Function:**

Provides several numerical measures to assess predictive accuracy.

- **Key Measures:**

- **Median Absolute Error (MAE):** Reflects the typical difference between observed responses and their posterior predictive means.

- **Scaled Median Absolute Error:** Indicates the typical number of standard deviations by which observed responses deviate from their posterior predictive means.

- **Within 50 Statistic:** Proportion of observed responses that lie within their 50% posterior prediction interval.

- **Within 95 Statistic:** Proportion of observed responses that lie within their 95% posterior prediction interval.

Concerns with Measures of Predictive Accuracy

- **Sample-Based Prediction Accuracy:**

These measures evaluate how accurately the model predicts observations within the sample (i.e., those used for model fitting).

- **Potential Overestimation:**

Predictive accuracy measures based on sample data may overstate the model's performance for predicting response values of new, out-of-sample observations.

Measures of Out-of-Sample Predictive Accuracy

- **Cross-Validation for Out-of-Sample Prediction:** To evaluate predictive accuracy on out-of-sample data, we use cross-validation.
- **Cross-Validation Process:**
 - Split the data into subsets.
 - Use a portion of these subsets as “training” data to fit the model (estimate parameters).
 - The remaining data are “test” data, held out to assess the model’s predictive performance.
- **Predictive Accuracy Assessment:**
 - Using the fitted model, predict the response values for the “test” data.
 - Since true response values of held-out observations are known, we can directly compare predictions to actual values.
- **Evaluating Models:**
 - Compute cross-validation metrics, such as MAE and scaled MAE, for each model.
 - Select the model with a lower cross-validation MAE to ensure robust out-of-sample performance.

Expected Log Predictive Density (ELPD)

- **ELPD for Model Comparison:** The expected log-predictive density (ELPD) is a tool for comparing Bayesian regression models based on predictive performance.
- **Interpretation of Posterior Predictive Density:** A high posterior predictive density value at Y_{new} indicates that the new data point y_{new} aligns well with the model.
- **Definition of ELPD:** The ELPD is defined as $E(\log f(Y_{\text{new}}|\mathbf{X}, \mathbf{y}))$, the log posterior predictive density at Y_{new} , averaged over all possible values of Y_{new} .
- **Model Selection:**
 - A model with a *higher ELPD indicates better posterior predictive accuracy* for new data points.
 - The Bayesian Information Criterion (BIC) is another common tool for model selection, related to Bayes Factors (see Chapter 8 notes).