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Setup of Linear Regression Model

� Model Framework: We examine a regression model where

the response variable Y is modeled as a function of k − 1

predictor variables X1,X2, . . . ,Xk−1.

� Model for n Observations: For each observation

i = 1, 2, . . . , n,

Yi = β0+β1Xi1+β2Xi2+· · ·+βk−1Xi ,k−1+εi , εi
iid∼ N(0, σ2)
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Setup of Linear Regression Model

� Matrix Formulation: The linear regression model can be

expressed as:

Y = Xβ + ε, ε ∼ MVN(0, σ2In)

where

Y =

Y1
...

Yn

 , X =


1 X11 · · · X1,k−1

1 X21 · · · X2,k−1
...

...
. . .

...

1 Xn1 · · · Xn,k−1

 ,

ε =

ε1...
εn

 , β =


β0

β1
...

βk−1


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Likelihood for Linear Regression Model

� Likelihood Function: Based on the normality assumption,

the likelihood is given by:

L(β, σ2|X, y) = (2πσ2)−
n
2 exp

(
− 1

2σ2
(y − Xβ)′(y − Xβ)

)
� Least Squares Estimates: The least squares estimators for

β and σ2 are:

β̂ = (X′X)−1X′y, σ̂2 =
(y − Xβ̂)′(y − Xβ̂)

n − k
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Likelihood for Linear Regression Model

� Likelihood Derivation:

L(β, σ2|X, y)

∝ σ−n exp

{
− 1

2σ2

(
y′y − 2β′X′y + β′X′Xβ

)}
= σ−n exp

{
− 1

2σ2

(
y′y − 2β′X′y + β′X′Xβ

−2[(X′X)−1X′y]′X′y + 2[(X′X)−1X′y]′X′X[(X′X)−1X′y]
)}

� Simplification Using X′y = X′Xβ̂:

= σ−n exp

{
− 1

2σ2

(
y′y − 2β′X′Xβ̂ + β′X′Xβ

− 2[(X′X)−1X′Xβ̂]′X′Xβ̂+

2[(X′X)−1X′Xβ̂]′X′X[(X′X)−1X′Xβ̂]
)}
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Likelihood for Linear Regression Model

� Likelihood Derivation:

L(β, σ2|X, y) ∝ σ−n exp

{
− 1

2σ2

(
y′y − 2β′X′y + β′X′Xβ

)}
where:

� y′y represents the sum of squared outcomes.

� −2β′X′y involves the interaction between data and

parameters.

� β′X′Xβ is the quadratic form involving the design matrix.

� Simplification Using the Projection Matrix ŷ = Xβ̂:

σ−n exp

{
− 1

2σ2

(
y′y − β̂

′
X′y
)}

= σ−n exp

{
− 1

2σ2

(
RSS(y, ŷ) + ESS(X, β̂)

)}
where RSS (Residual Sum of Squares): Variance unexplained

by the model, and ESS (Explained Sum of Squares): Variance

explained by the model.
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Likelihood for Linear Regression Model

� Likelihood Expression:

L(β, σ2|X, y)

∝ σ−n exp

{
− 1

2σ2

(
y′y − 2β̂

′
X′y + β̂

′
X′Xβ̂ + 2β̂

′
X′Xβ̂

−β̂
′
X′Xβ̂ − 2β̂

′
X′Xβ̂ + 2β̂

′
X′Xβ̂ − 2β′X′Xβ̂ + β′X′Xβ

)}
= σ−n exp

{
− 1

2σ2

(
(y − Xβ̂)′(y − Xβ̂) + β̂

′
X′Xβ̂

−2β′X′Xβ̂ + β′X′Xβ
)}

= σ−n exp

{
− 1

2σ2

(
σ̂2(n − k) + (β − β̂)′X′X(β − β̂)

)}
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Noninformative Priors for β and σ2

� Independent Vague Priors:

p(β) ∝ 1, β ∈ (−∞,∞)k

p(σ2) =
1

σ
, σ ∈ (0,∞)

� Joint Posterior for β and σ2:

p(β, σ2|X, y) ∝ p(β)p(σ2)L(β, σ2|X, y)

∝ σ−n−1 exp

{
− 1

2σ2

[
σ̂2(n − k) + (β − β̂)′X′X(β − β̂)

]}
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Noninformative Priors for β and σ2

� Transformation: Let s = σ−2 with Jacobian |J| = 1
2s

−3/2.

� Joint Posterior for β and s:

p(β, s|X, y) ∝ (s−1/2)−n−1 exp

{
−1

2
s
[
σ̂2(n − k)

+(β − β̂)′X′X(β − β̂)
]}

· 1
2
s−3/2

� Simplified Joint Posterior:

∝ s
n
2
−1 exp

{
−1

2
s
[
σ̂2(n − k) + (β − β̂)′X′X(β − β̂)

]}
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Noninformative Priors for β and σ2

� Marginal Posterior for β: Integrate out s to obtain:

p(β|X, y)

∝
∫ ∞

0
s

n
2
−1 exp

{
−1

2

[
σ̂2(n − k) + (β − β̂)′X′X(β − β̂)

]
s

}
ds

=
Γ
(
n
2

)(
1
2

[
σ̂2(n − k) + (β − β̂)′X′X(β − β̂)

]) n
2

∝
[
(n − k) + (β − β̂)′σ̂−2X′X(β − β̂)

]− n
2

�

(n − k)σ̂2(X′X)−1

n − k − 2
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Noninformative Priors for β and σ2

� Marginal Posterior for σ2: Integrate out β from the joint

posterior:
p(σ2|X, y)

∝ σ−n−1 exp

(
− 1

2σ2
σ̂2(n − k)

)
∫ ∞

−∞
exp

(
− 1

2σ2
(β − β̂)′X′X(β − β̂)

)
dβ

∝ σ−n−1 exp

(
− 1

2σ2
σ̂2(n − k)

)
(2πσ2)k/2

∝ (σ2)−
1
2
(n−k−1)−1 exp

(
−1

2

σ̂2(n − k)

σ2

)
�

σ2|X, y ∼ IG

(
n − k − 1

2
,
σ̂2(n − k)

2

)
� Example: Oxygen uptake data (available on Canvas)
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Conjugate Analysis for the Linear Model

� Conjugate priors for linear regression are not actually

recommended, because they are hard to elicit.

� Nonetheless, the mathematical results are elegant and hold

historical and practical significance.

� Practical significance emerges in Bayesian nonparametric

analysis involving Dirichlet process mixture models.

� If we have reliable prior information that can be quantified

and used to specify priors for β and σ2, then conjugate priors

may be utilized.
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Conjugate Analysis for the Linear Model

� Conjugate Priors: With strong prior knowledge, we can use

conjugate priors for β and σ2.

� Prior on Error Precision τ : Following the approach in BIDA

by Christensen, Johnson, Branscum, and Hanson (2010), we

specify a prior on the precision parameter τ = 1
σ2 :

τ ∼ Gamma(a, b)

This is analogous to using an inverse-gamma prior for σ2.

� Prior on β (Conditional on τ):

β|τ ∼ MVN
(
δ, τ−1

[
X̃−1D(X̃−1)′

])
where τ−1 = σ2.
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Conjugate Analysis for the Linear Model

� Hypothetical Observations: Specify a set of k reasonable

hypothetical observations with predictor vectors x̃1, . . . , x̃k .

These, along with a column of 1’s, form the rows of X̃.

Assume prior expected response values ỹ1, . . . , ỹk .

� Prior on X̃β: The multivariate normal prior on β translates

to a prior on X̃β:

X̃β|τ ∼ MVN(ỹ, τ−1D)

� Prior Mean and Weights:

- The prior mean of X̃β is ỹ, so the prior mean δ of β is X̃−1ỹ.

- D−1 is a diagonal matrix with diagonal elements

representing the weights of the hypothetical observations.

- Intuitively, the prior has an equivalent “worth” of tr(D−1)

observations.
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Conjugate Analysis for the Linear Model

� Joint Posterior Density:

p(β, τ |X, y) ∝ p(β | τ)p(τ)L(β, τ |X, y)

∝ τn/2|D|−1/2 exp

(
−1

2
(X̃β − ỹ)′(τ−1D)−1(X̃β − ỹ)

)
× τ a−1e−bτ

× τn/2 × exp

(
−1

2
(Xβ − y)′(τ−1I)−1(Xβ − y)

)
� Conditional Posterior for β|τ :

β|τ,X, y ∼ MVN
(
β̂, τ−1(X′X+ X̃′D−1X̃)−1

)
where

β̂ = (X′X+ X̃′D−1X̃)−1
(
X′y + X̃′D−1ỹ

)
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Conjugate Analysis for the Linear Model

� Posterior for τ :

τ |X, y ∼ Gamma

(
n + 2a

2
,
n + 2a

2
s∗
)

where

s∗ =
(y − Xβ̂)′(y − Xβ̂) + (ỹ − X̃β̂)′D−1(ỹ − X̃β̂) + 2b

n + 2a

� Incorporation of Subjective Information:

- The estimate β̂ incorporates prior knowledge through X̃ and

ỹ.

- s∗ incorporates subjective parameters a and b, alongside β̂.
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Conjugate Analysis for the Linear Model

� Marginal Posterior for β: The marginal posterior p(β|X, y)
is a (scaled) noncentral multivariate t-distribution,

although the conditional posterior p(β|τ,X, y) is multivariate

normal.

� Inference on β: To simplify inference on β, it is effective to

use the conditional posterior p(β|τ,X, y).
� Sampling Strategy: Instead of basing inference on
p(β|τ̂ ,X, y)) by plugging in a posterior estimate of τ , it is
preferable to:

1. Sample random values τ [1], . . . , τ [J] from the posterior of τ .

2. For each τ [j], sample from the conditional posterior

p(β|τ [j],X, y)), j = 1, . . . , J.

� Estimation: Posterior point estimates and interval estimates

for β can then be based on these random draws.

21



Prior Specification for the Conjugate Analysis

� Hypothetical Predictor Values: Specify a matrix X̃

containing hypothetical predictor values.

� Response Values: Using expert opinion or prior knowledge,

specify a corresponding vector ỹ of reasonable response values

for these predictors.

� Requirement for Hypothetical Observations: The number

of hypothetical observations must be one more than the

number of predictor variables in the model.

� Prior Mean for β: The prior mean for β is set to X̃−1ỹ.
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Prior Specification for the Conjugate Analysis

� Gamma Prior on τ : We need to specify the shape parameter

a and rate parameter b for the gamma prior on τ .

� Choosing a:

- Start by selecting a based on the degree of confidence in the

prior information.

- For a given a, the prior can be viewed as having the

equivalent informational “worth” of 2a sample observations.

� Confidence Level: A larger value of a reflects higher

confidence in the prior (although variance tends to increase

too), thus weighting prior information more heavily in the

analysis.
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Prior Specification for the Conjugate Analysis

� Strategy for Specifying b:

- Select one of the hypothetical observations, say the first one.

- Let ỹ1 be the prior expected response for this observation

with predictor values x̃1.

- Define ỹmax as the maximum reasonable prior response for

an observation with predictors x̃1.

� Prior Estimate for σ: - Based on a normal distribution,

estimate σ as:

σ ≈ ỹmax − ỹ1
1.645

- Since τ = 1
σ2 , this provides a reasonable guess for τ .

� Solving for b:

- Set this guess for τ equal to the mean a/b of the gamma

prior for τ .

- With a specified, solve for b.
24
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Benefits of BIDA Approach - I

� Analytical Tractability: Conjugate priors enable analytical

solutions, reducing computational burden and allowing for

quick updates.

� Incorporation of Prior Knowledge: Embeds expert

knowledge through hypothetical predictor and response

values, enhancing accuracy, especially with limited data.

� Flexible Prior Influence: Gamma prior parameters a and b

adjust confidence in prior information, balancing reliance on

prior vs. data.

� Posterior Sampling Strategy: Efficient sampling approach

that accounts for uncertainty in τ without relying on point

estimates.
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Benefits of BIDA Approach - II

� Interpretability: Provides a meaningful prior mean for β and

allows specifying observational “weights” to clarify model

assumptions.

� Robust Inference with t-Distributions: The marginal

posterior of β is a noncentral multivariate t-distribution,

which is robust to outliers and effective under uncertainty in τ .

� Overall Advantage: Ideal for balancing prior knowledge with

data-driven insights in an analytically manageable framework.
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Example of a Conjugate Analysis

� Example in R: Using the Automobile Data Set, we perform a

conjugate analysis.

� Estimates for τ and σ2: Obtain point and interval estimates

for the precision parameter τ and, consequently, for σ2.

� Estimates for Elements of β: Draw samples from the

posterior distributions of τ and then from the conditional

posterior of β|τ to obtain point and interval estimates for

each element of β.
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Alternative Approach to Conjugate Analysis for the Linear

Model

The Approach in Bayesian Methods (BaM) by Jeff Gill:

� For conjugate priors with a sampling distribution (data

model):

Y|β, σ2 ∼ MVN(Xβ, σ2In)

� Conditional distribution of β on σ2 resembles the

normal-normal model before:

p(β|σ2) = (2π)−
k
2 |Σ|−

1
2 exp

(
−1

2
(β − B)′Σ−1(β − B)

)
� Prior for σ2: p(σ2) ∝ σ−(a−k) exp

(
− b

σ2

)
� Joint prior as a product of conditionals:

p(β, σ2) = p(β|σ2)p(σ2)
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Conjugate Analysis for the Linear Model

Joint Posterior Derivation

� Combining the data likelihood with the prior specification

yields the joint posterior:

p(β, σ2|X, y)

∝ σ−n exp

(
− 1

2σ2

(
σ̂2(n − k) + (β − β̂)′X′X(β − β̂)

))
×(2π)−

k
2 |Σ|−

1
2 exp

(
−1

2
(β − B)′Σ−1(β − B)

)
σ−(a−k) exp

(
− b

σ2

)
∝ σ−(n+a) exp

(
− 1

2σ2

(
σ̂2(n − k) + (β − β̂)′X′X(β − β̂)

)
+

2b + (β − B)′Σ−1(β − B)

)
29



Conjugate Analysis for the Linear Model

Simplifying the Joint Posterior

� The form of the joint posterior can be simplified with a

change of variables.

� Define:

β̃ = (Σ−1 + X′X)−1(Σ−1B+ X′Xβ̂)

s̃ = 2b + σ̂2(n − k) + (B− β̃)′Σ−1B+ (β̂ − β̃)′X′Xβ̂

� The joint posterior can now be re-expressed as:

p(β, σ2|X, y) ∝

(σ2)−
n+a
2 exp

(
− 1

2σ2

(
s̃ + (β − β̃)′(Σ−1 + X′X)(β − β̃)

))
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Conjugate Analysis for the Linear Model

Posterior Distribution of β|X , y

� By applying the marginalization trick, we obtain the posterior

distribution of β|X, y:

p(β|X, y) ∝
(
s̃ + (β − β̃)′(Σ−1 + X′X)(β − β̃)

)− n+a
2

+1

� This is the kernel of a multivariate-t distribution with

ν = n + a− k − 2 degrees of freedom.

� The mean and covariance of the posterior distribution for β

are:

E(β|X, y) = β̃

Cov(β|X, y) = s̃(Σ−1 + X′X)−1

n + a− k − 3
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Conjugate Analysis for the Linear Model

Marginal Distribution of σ2

� The marginal distribution of σ2 is derived similarly to the case

with an uninformed prior:

p(σ2|X, y) ∝ (σ2)−
n+a−k−1

2 exp

(
− 1

2σ2
σ̂2(n + a− k)

)
� This corresponds to the kernel of an Inverse-Gamma

distribution:

IG

(
n + a− k − 2

2
,
1

2
σ̂2(n + a− k)

)
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Conjugate Analysis for the Linear Model

Comparison of Informative Conjugate and Noninformative Models

Setup Prior Posterior

Noninf. p(β) ∝ c on (−∞,∞) β|X, y ∼ MVt(n − k)

p(σ2) ∝ 1
σ on (0,∞) σ2|X, y ∼ IG

(
n−k−1

2 , σ̂2(n−k)
2

)
Conj. β|σ2 ∼ MVN(B, σ2In) β|X, y ∼ MVt(n + a− k − 2)

σ2 ∼ IG
(
a−k−2

2 , b
)

σ2|X, y ∼ IG
(

n+a−k−2
2 , σ̂2(n+a−k)

2

)
This table summarizes the priors and posterior distributions for both the

vague and informative conjugate models in linear regression.
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Spike-and-Slab Priors for Linear Models

� In regression, the priors on the regression coefficients are

crucial.

� Whether or not βj = 0 defines whether Xj is “important” in

the regression.

� For any j , a useful prior for βj is a “spike-and-slab” prior,

which allows for a mixture of values concentrated around zero

(spike) and a broader range (slab).

Figure 1: Illustration of spike-and-slab prior.
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Spike-and-Slab Priors for Linear Models

� Here P(βj = 0) = h0j , which represents the prior probability

that Xj is not needed in the model.

�

P(βj ̸= 0) = 1− h0j = h1j(fj − (−fj)) = 2fjh1j

where [−fj , fj ] contains all “reasonable” values for βj .

� To include Xj in the model with certainty, set h0j = 0.

� To increase the doubt that Xj should be in the model,

increase the ratio:

h0j
h1j

=
h0j

(1− h0j)/2fj
= 2fj

h0j
1− h0j

� Recently, “nonparametric priors” have become popular, often

involving a mixture of Dirichlet processes.
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Bayesian Regression with rstanarm

� - The rstanarm package in R enables Bayesian regression

modeling by simulating parameter values from their posterior

distributions.

- This approach circumvents the need to derive the posterior

distribution explicitly.

� For normal regression models, we can derive the posterior

analytically as shown in our approach.

� - For models with non-normal responses, conjugate priors for

regression coefficients may not exist.

- Simulating from the posterior is often the only viable

method for estimation.

� rstanarm leverages rstan to estimate several standard

Bayesian regression models efficiently.
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Parts of the stan glm Function Call

� Overview of stan glm: The stan glm function in the

rstanarm package performs Bayesian regression model

estimation via simulation.

� Specifying the Model Type: For normal responses, specify

method = "gaussian" in the stan glm call.

� Priors on Model Parameters: - Set hyperparameters for

priors, typically normal priors on the intercept β0 and

coefficients β1, β2, . . ..

- An exponential prior is often recommended for the unknown

standard deviation σ of the response.

� MCMC Specifications: Configure MCMC details, including

the number of iterations and the number of chains, to ensure

adequate diagnostic assessment.
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Output of the stan glm Function

� MCMC Diagnostics: Functions in rstanarm provide

diagnostic plots, including trace plots, autocorrelation plots,

and density plots, to assess MCMC convergence.

� Summarizing Posterior Estimates: The tidy function

displays a summary of the Bayesian posterior estimates for the

regression coefficients.

� Prediction and Intervals: - posterior predict provides

point predictions for the response, given specific predictor

values.

- posterior interval generates posterior prediction

intervals for the response.

� Posterior Predictive Density: Plot the density function of

the posterior predictive distribution to visualize the model’s

predictive spread.

� Example: See the R example using the “cars” dataset. 39
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A Bayesian Approach to Model Selection

� Model Selection in Regression: In exploratory regression,

selecting the optimal subset of predictor variables is essential

for identifying the “best model.”

� Bayesian Comparison of Models: A Bayesian approach

involves evaluating candidate models based on their posterior

probabilities.

� Inclusion of Predictor Variables:

- If the coefficient βj = 0, the variable Xj is unnecessary in the

model.

- Define βj = zjbj for each j , where zj = 0 or 1 and

bj ∈ (−∞,∞).

� Model Specification:

Yi = z0b0+z1b1Xi1+z2b2Xi2+· · ·+zk−1bk−1Xi ,k−1+εi , i = 1, . . . , n

where any zj = 0 indicates that the corresponding predictor

variable is excluded from the model.
41



A Bayesian Approach to Model Selection: Example

� Oxygen Uptake Example: Consider predictor variables

X1 = group, X2 = age, and X3 = group× age.

� Indicator Vector for Model Inclusion: Define

z = (z0, z1, z2, z3) to specify the inclusion of each variable in

the model. The true conditional expectation E[Y |x,b, z] for
each configuration of z is:

z True E[Y |x,b, z]
(1, 0, 0, 0) b0

(1, 1, 0, 0) b0 + b1 group

(1, 0, 1, 0) b0 + b2 age

(1, 1, 1, 0) b0 + b1 group + b2 age

(1, 1, 1, 1) b0 + b1 group + b2 age + b3 group× age

42



A Bayesian Approach to Model Selection

� Calculating Posterior Probabilities:

- For each possible configuration of the vector z, calculate the

posterior probability for that model.

- For a specific configuration z∗:

p(z∗|X, y) = p(z∗)p(y|X, z∗)∑
z p(z)p(y|X, z)

� Model Priors:

- A prior p(·) is assigned to each potential model.

- For a noninformative approach, assign equal prior

probabilities across all models.

� Handling Many Predictors: With a large number of

predictors, employ Gibbs sampling to efficiently search across

the model space.
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Example of Bayesian Model Selection

� Example in R: Analyze the Oxygen Data Set to perform

Bayesian model selection.

� Exploring Subsets of Predictors:

- Consider all possible subsets of the predictor variables.

- Result: The model excluding the interaction term has the

highest posterior probability.

� Restricted Subset Consideration:

- Restrict to certain subsets, such as only including the

interaction term when both first-order terms are present.

- Result: The model without the interaction term again shows

the highest posterior probability, with an even greater margin.
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A Bayesian Approach to Model Selection - Technical Aside for

the Details

� Bayesian model selection uses posterior probabilities to

evaluate model configurations.

� Here, we assess the likelihood of observing the data y given

the design matrix X for various subsets of predictors.

� Each configuration of predictors, represented by z, is treated

as a potential model with a specific probability.
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Model Prior Specification

� Prior Probability on Models p(z):

- A prior p(z) is assigned to each subset configuration z,

which indicates which predictors are included in the model.

- In a noninformative setting, each model can have equal prior

probability, i.e., p(z) = 1
M for M possible models.

� Parameter Priors:

- Hyperparameters are used: g controls variance scaling, and

ν0 influences prior degrees of freedom.

- s20 represents a prior guess for the residual variance, often

calculated from an initial ordinary least squares (OLS) model.
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Model Prior Specification: Prior on Configurations p(z)

� Each subset configuration z represents a unique model by

specifying which predictors are included.

� Noninformative Prior: Assign equal probability to each

model configuration:

p(z) =
1

M

where M is the total number of possible configurations.

� Informative Prior: If we have prior knowledge or prefer

simpler models, we can assign higher probabilities to specific

configurations (e.g., those with fewer predictors).
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Model Prior Specification: Prior on Coefficients β

� For each model configuration z, we define a multivariate

normal prior on the coefficients β of the included predictors:

β ∼ MVN
(
β̃, σ2(gX′X)−1

)
� Components of the Prior:

� β̃: Prior mean, often calculated as β̃ = (X̃′X̃)−1X̃′ỹ, based on

OLS solution of hypothetical predictor values X̃ and responses

ỹ.

� σ2: Residual variance, representing uncertainty in predictions.

� g : Variance scaling factor; larger g reduces the influence of the

prior mean.
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Model Prior Specification: Prior on Variance σ2

� The residual variance σ2 has a conjugate gamma prior on its

precision τ = σ−2:

τ ∼ Gamma(a, b)

� Parameters of the Gamma Prior:

� Shape a and rate b parameters are selected to reflect prior

beliefs on variance.

� Mean: E[τ ] = a
b Variance: Var(τ) = a

b2

� A typical choice for a and b is:

a =
ν0
2
, b =

ν0s
2
0

2

where ν0 is the prior degrees of freedom and s20 is a prior

estimate of residual variance.
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Data Model and Likelihood

Likelihood of Observing y Given X:

- The goal of Bayesian model selection is to calculate the

probability of observing the data y given a particular model

configuration, represented by a subset of predictors in X.

- For each subset model, the function log Py x in R code

calculates the marginal log-likelihood log p(y|X, z), which measures

the fit of the data under that model.

- This marginal likelihood incorporates a projection of y onto the

predictor space defined by X, which is captured by the “hat

matrix” Hg , which is defined as:

Hg =
g

g + 1
X(X′X)−1X′

- This matrix projects y onto the subspace spanned by X and

scales it by g , a hyperparameter that controls the variance scaling.
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Data Model and Likelihood

Likelihood of Observing y Given X:

- The fit of the model is evaluated by calculating the sum of

squared residuals SSRg , which measures the unexplained variation

in y after projection:

SSRg = y′(I − Hg)y

- Here, I − Hg is a matrix that projects y onto the orthogonal

complement of the space spanned by X, capturing the residuals

that are not explained by the model.
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Data Model and Likelihood

Marginal Likelihood Computation:

- The marginal likelihood p(y|X, z) is a key element in Bayesian

model selection, as it indicates the probability of observing y for a

given model configuration z.

- This likelihood combines the residual sum of squares SSRg with

prior parameters:

log p(y|X, z) = −1

2
×

(
n log(π) + p log(1 + g)+

(ν0 + n) log(ν0s
2
0 + SSRg)− ν0 log(ν0s

2
0 )

)
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Data Model and Likelihood

In the above expression:

� n log(π): A normalization term, adjusting for the

dimensionality of y.

� p log(1 + g): Adjusts for the number of predictors p included

in the model, scaled by g , impacting how model complexity is

penalized.

� (ν0 + n) log(ν0s
2
0 + SSRg): Combines the prior information

(through ν0 and s20 ) with the residual variance SSRg .

� −ν0 log(ν0s
2
0 ): A prior adjustment term, providing a reference

for the variance under the prior alone.

- The value of log p(y|X, z) provides a measure of how well each

subset model explains the data, balancing model fit and complexity.

- Models with higher marginal likelihood values are considered

better explanations of the data.
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Posterior Calculation and Posterior Probabilities

� Posterior Probability for Model z:

- Given prior p(z) and marginal likelihood p(y|X, z), the
posterior for model z∗ is:

p(z∗|X, y) = p(z∗)p(y|X, z∗)∑
z p(z)p(y|X, z)

- The numerator captures the joint probability of z∗ and data

given z∗, while the denominator sums this over all model

configurations.
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Gibbs Sampling for Model Space Exploration

� Purpose: With a large number of predictors, direct

computation of posteriors for all subsets is computationally

expensive.

� Sampling Approach: Gibbs sampling iteratively samples

predictor inclusion/exclusion, toggling each predictor in/out of

the model.

� Sampling Probability: For each predictor:

- Calculate posterior difference for inclusion vs. exclusion.

- Accept inclusion/exclusion based on a probability

proportional to the calculated difference.

55



Model Comparison and Bayes Factors

� Bayes Factors: For comparing two models z1 and z2:

Compute the ratio of marginal likelihoods (likelihood of data

under each model):

BF12 =
p(y|X, z1)
p(y|X, z2)

� Interpretation:

- BF > 1 suggests model z1 is more supported by the data

than z2.

- Posterior probabilities also incorporate these Bayes factors,

favoring models with higher likelihood.
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Posterior Summary for Model Selection

� The final output ranks model configurations by posterior

probability.

� Constraints can be applied (e.g., include interaction terms

only when main effects are present).

� Gibbs sampling results are used to estimate probabilities for

each model, selecting the model with the highest posterior.

57



Outline

Linear Regression Model

Bayesian Regression Model

Bayesian Regression with Vague Priors

Bayesian Regression with Conjugate Priors

Bayesian Regression with rstanarm

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian

Regression

Posterior Predictive Distribution in Bayesian Regression

Measures of Predictive Accuracy

58



Outline

Linear Regression Model

Bayesian Regression Model

Bayesian Regression with Vague Priors

Bayesian Regression with Conjugate Priors

Bayesian Regression with rstanarm

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian

Regression

Posterior Predictive Distribution in Bayesian Regression

Measures of Predictive Accuracy

59



The Posterior Predictive Distribution of the Data

� Bayesian Model Setup: We have built a Bayesian regression

model using response data y and explanatory data matrix X.

� Future Observations:

- Consider future observations with explanatory variable values

in matrix X∗.

- The question: What is the marginal distribution of the

corresponding future response values Y∗?

� Posterior Predictive Distribution:

The distribution p(y∗|y,X∗,X) represents the posterior

predictive distribution of y∗.

� Application: This distribution serves as a tool for assessing

the fit of our regression model, allowing for model validation

with future data.
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The Posterior Predictive Distribution of the Data

� Joint Posterior Distribution: With noninformative priors,

the joint distribution is:

p(y∗,β, σ2|y,X∗,X) = p(y∗|β, σ2,X∗)p(β, σ2|X, y)

� Posterior Predictive Distribution: Integrating out β and

σ2, the posterior predictive distribution of Y∗ is multivariate-t

with (n − k) degrees of freedom:

E(Y∗|y,X∗,X) = X∗β̂

Cov(Y∗|y,X∗,X) =
(n − k)σ̂2

n − k − 2

(
I+ X∗(X′X)−1X∗′

)
� Intuition:

- Given the model, our original data are multivariate normal.

- Future predictions follow a multivariate-t distribution, which

accounts for additional uncertainty about the model.
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Posterior Prediction of Response Values in Regression

Ex 3: Posterior Predictive Distribution in Regression:

� Model Fit Check:

- Generate samples from the posterior predictive distribution,

using X∗ = X (the observed sample predictors).

- Plot the predicted values against the actual y -values from

the original sample.

� Identifying Outliers:

- If an observed yi lies far from the center of the posterior

predictive distribution, then this i-th observation may be an

outlier.

- A high number of outliers would indicate a potential misfit

of the model.

� See R example with a small automobile dataset.
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Posterior Prediction Intervals in Regression

� Prediction for New Responses:

Make predictions and construct “prediction intervals” for new

responses given specified predictor values.

� Example Setup:

- For a new observation with predictor values

x∗ = (1, x∗1 , x
∗
2 , . . . , x

∗
k−1).

- Alternatively, predictor values for multiple new observations

can be stored in matrix X∗.

� Posterior Predictive Distribution:

- Generate the posterior predictive distribution using X∗.

- Use the posterior median for point predictions and posterior

quantiles to create prediction intervals.

� See R example for implementation.
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Posterior Prediction Using bayesrules Package

� Overview of bayesrules Package:

The bayesrules package provides useful functions for

posterior predictions and diagnostics for models fitted with

stan glm.

� ppc intervals Function:

The ppc intervals function generates prediction intervals

for observations in the sample or for hypothetical future

observations.

� Model Fit Assessment:

- For 95% prediction intervals on sample observations, model

fit can be checked by counting how many observed y -values

fall within their 95% prediction intervals.

- Ideally, around 95% of the sample y -values should lie within

their respective intervals.
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Measures of Predictive Accuracy

� Prediction Summary Function:

Provides several numerical measures to assess predictive

accuracy.

� Key Measures:

- Median Absolute Error (MAE): Reflects the typical

difference between observed responses and their posterior

predictive means.

- Scaled Median Absolute Error: Indicates the typical

number of standard deviations by which observed responses

deviate from their posterior predictive means.

- Within 50 Statistic: Proportion of observed responses that

lie within their 50% posterior prediction interval.

- Within 95 Statistic: Proportion of observed responses that

lie within their 95% posterior prediction interval.
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Concerns with Measures of Predictive Accuracy

� Sample-Based Prediction Accuracy:

These measures evaluate how accurately the model predicts

observations within the sample (i.e., those used for model

fitting).

� Potential Overestimation:

Predictive accuracy measures based on sample data may

overstate the model’s performance for predicting response

values of new, out-of-sample observations.
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Measures of Out-of-Sample Predictive Accuracy

� Cross-Validation for Out-of-Sample Prediction: To evaluate

predictive accuracy on out-of-sample data, we use cross-validation.

� Cross-Validation Process: - Split the data into subsets. - Use a

portion of these subsets as “training” data to fit the model

(estimate parameters).

- The remaining data are “test” data, held out to assess the model’s

predictive performance.

� Predictive Accuracy Assessment: - Using the fitted model,

predict the response values for the “test” data.

- Since true response values of held-out observations are known, we

can directly compare predictions to actual values.

� Evaluating Models: - Compute cross-validation metrics, such as

MAE and scaled MAE, for each model.

- Select the model with a lower cross-validation MAE to ensure

robust out-of-sample performance.
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Expected Log Predictive Density (ELPD)

� ELPD for Model Comparison: The expected log-predictive

density (ELPD) is a tool for comparing Bayesian regression

models based on predictive performance.

� Interpretation of Posterior Predictive Density: A high

posterior predictive density value at Ynew indicates that the

new data point ynew aligns well with the model.

� Definition of ELPD: The ELPD is defined as

E(log f (Ynew|X, y)), the log posterior predictive density at

Ynew, averaged over all possible values of Ynew.

� Model Selection: - A model with a higher ELPD indicates

better posterior predictive accuracy for new data points.

- The Bayesian Information Criterion (BIC) is another

common tool for model selection, related to Bayes Factors

(see Chapter 8 notes).
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