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Linear Regression Model



Setup of Linear Regression Model

¢ Model Framework: \We examine a regression model where
the response variable Y is modeled as a function of kK — 1
predictor variables X1, Xo, ..., Xk_1.

e Model for n Observations: For each observation
i=1,2,...,n,

Yi = Bo+B1Xin+BoXio+- -+ Bu—1 Xik—1+€i, € i N(0,0?)



Setup of Linear Regression Model

e Matrix Formulation: The linear regression model can be
expressed as:

Y =XB+¢e, e~ MVN(0,0°l,)

where
v, 1 Xu - X1,k—1
vol|:| x- 1 X.21 X2,k717
& 1 Xm Xn k=1
- Bo
A
o Brk-1



Likelihood for Linear Regression Model

o Likelihood Function: Based on the normality assumption,
the likelihood is given by:

_n 1
L(B.0%1%,y) = (2n0%) L e (a0~ XYy - X))
e Least Squares Estimates: The least squares estimators for
B and o2 are:

(y — XB)(y — XB)

Alex—lxl A2:
B=(XX)"Xy, & ——




Likelihood for Linear Regression Model

e Likelihood Derivation:
L(B, %X, y)
1
x o "exp {_M (y’y — 268Xy + ﬂ’X’X,@)}
=0 "exp {—12 (y'y —28'X'y + BX'XB
20
—2[(X'X)TIXY X'y + 2[(X'X) Xy X X[(X'X) T IXy]) }
e Simplification Using X'y = X’'XJ3:
1 ~
— o " exp {—2 (y’y _ 28 X'XB + BX'XB
20
— 2[(X'X) "X XB]' X' X 3+
2[(x’X)—1x’xB]/x/X[(x’X)—1x’xB]) }



Likelihood for Linear Regression Model

e Likelihood Derivation:

1
L(/Bv 02|X7 y) xo " exp {_

352 (y'y —28'X'y + ﬁ’X’Xﬁ)}

where:
e y'y represents the sum of squared outcomes.
e 23X’y involves the interaction between data and
parameters.
o 3'X’'X3 is the quadratic form involving the design matrix.

e Simplification Using the Projection Matrix y = Xfi:

1 o
o "exp {—%2 (y’y -B X’y> }
1 .
= o "exp {—%2 (RSS(y.9) + ESS(X, ﬁ))}

where RSS (Residual Sum of Squares): Variance unexplained
by the model, and ESS (Explained Sum of Squares): Variance
explained by the model.



Likelihood for Linear Regression Model

o Likelihood Expression:
L(B,0%X,y)
x o "exp {_Z; (y’y - 2B/X’y +B'X'XB + 28’ X'X3
—B'X'XB - 2B XX + 28'X'XB — 28'X'XB + 5’x’x6> }
o e {0y ((v - XBY (v - XB) + XX
28’ XX + B’X’XB) }

=o "exp {_Z; (62(17 —k)+ (B — B)/X/X(ﬁ - B)) }



Bayesian Regression Model
Bayesian Regression with Vague Priors
Bayesian Regression with Conjugate Priors

Bayesian Regression with rstanarm
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Noninformative Priors for 3 and o2

¢ Independent Vague Priors:
p(ﬁ) x ]-7 /3 € (_007 Oo)k

p(0?) =

e Joint Posterior for 3 and

;o€ (0,00)

1
g
O'

p(B, %X, y) x p(B)p(c?)L(B, 7% X,y)

x o " Lexp {—%iz [&2(n —k)+ (B - B)/X/X(ﬁ - B)} }
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Noninformative Priors for 3 and o2

e Transformation: Let s = o~2 with Jacobian |J| = %5_3/2.

e Joint Posterior for 8 and s:

Pl sX,y) o (57 2) " Lexp {35 0% )
HB-BYXX(@B P} 55"

e Simplified Joint Posterior:

x sz Lexp {—;s [62(n — k) + (B - BYX'X(B - ﬁ)} }

12



Noninformative Priors for 3 and o2

e Marginal Posterior for 3: Integrate out s to obtain:

P(BIX,y)
o /OOO sz lexp {—; [&2(n — k) + (8- B)X'X(3 — B)} s} ds
r(3)
(s

#2000+ (8- Byxx(8-B)))*
x [(n— k) + (8- BYs2XX(8-B)]

2

(n— k)a2(X'X) "1
n—k—2
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Noninformative Priors for 3 and o2

e Marginal Posterior for o2: Integrate out 3 from the joint

posterior:
p(a*IX,y)
1
x o " lexp (—M62(n - k)>

| e (— L (8- BYX'X(8 - B)) Jp

2
oo 20

x o " Lexp (—162(n - k)> (2ra2)k/?

202
16%(n—k
-~ (02)7%(n7k71)71 exp (_20 (';2 )>
¢ 2
5 n—k—1 &%(n—k)
o’|X,y |G( I

e Example: Oxygen uptake data (available on Canvas) "
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Conjugate Analysis for the Linear Model

e Conjugate priors for linear regression are not actually
recommended, because they are hard to elicit.

e Nonetheless, the mathematical results are elegant and hold
historical and practical significance.

e Practical significance emerges in Bayesian nonparametric
analysis involving Dirichlet process mixture models.

e If we have reliable prior information that can be quantified
and used to specify priors for 8 and 2, then conjugate priors
may be utilized.
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Conjugate Analysis for the Linear Model

e Conjugate Priors: With strong prior knowledge, we can use

conjugate priors for 3 and 2.

e Prior on Error Precision 7: Following the approach in BIDA

by Christensen, Johnson, Branscum, and Hanson (2010), we

specify a prior on the precision parameter 7 = #:

T ~ Gamma(a, b)

This is analogous to using an inverse-gamma prior for o2,
e Prior on 3 (Conditional on 7):
Bl ~ MVN (5,7—1 [)”(—10()"(—1)’})

where 771 = 2.
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Conjugate Analysis for the Linear Model

e Hypothetical Observations: Specify a set of k reasonable
hypothetical observations with predictor vectors X1, ..., Xg.
These, along with a column of 1's, form the rows of X.
Assume prior expected response values y1, ..., Vk.

e Prior on )N(ﬁ: The multivariate normal prior on 3 translates

to a prior on )~(,6:
X8|t ~ MVN(y, 7 D)

e Prior Mean and Weights:
- The prior mean of X3 is §, so the prior mean 8 of 3 is X ~1y.
- D! is a diagonal matrix with diagonal elements
representing the weights of the hypothetical observations.
- Intuitively, the prior has an equivalent “worth” of tr(D~1)

observations.
18



Conjugate Analysis for the Linear Model

¢ Joint Posterior Density:
p(B.7IX,y) o< p(B | T)p(T)L(B, T|X,y)
12Dl e (1 (%6 - 5 1D) (%5 - )

« 7_a—le—bv'

1
x 7?2 x —=
exp( >

¢ Conditional Posterior for 3|:

(X3~ y) (- ) (X8 - y))

8|7, X,y ~ MVN (B, XX + )N(’D_l)"()‘1>
where
B = (X'X + X'D1X)! (x’y n )”(’D—ly)
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Conjugate Analysis for the Linear Model

e Posterior for 7:

2 2
T]X,yNGamma<nz a7 nz as*)

where

. (y—XB)(y—XB)+ (§ — XB)D~L(§ — XB) + 2b
o n-+2a

S

e Incorporation of Subjective Information:
- The estimate @ incorporates prior knowledge through X and

y.
- s* incorporates subjective parameters a and b, alongside ﬁ

20



Conjugate Analysis for the Linear Model

e Marginal Posterior for 3: The marginal posterior p(3|X,y)
is a (scaled) noncentral multivariate t-distribution,
although the conditional posterior p(3|7, X,y) is multivariate
normal.

e Inference on 3: To simplify inference on 3, it is effective to

use the conditional posterior p(3|7, X,y).

e Sampling Strategy: Instead of basing inference on
p(B|7,X,y)) by plugging in a posterior estimate of 7, it is
preferable to:

1. Sample random values 711, ... 711 from the posterior of 7.
2. For each 7U!, sample from the conditional posterior
p(BIT X, y)) j=1,....J.

e Estimation: Posterior point estimates and interval estimates
for 3 can then be based on these random draws.

21



Prior Specification for the Conjugate Analysis

e Hypothetical Predictor Values: Specify a matrix X
containing hypothetical predictor values.

e Response Values: Using expert opinion or prior knowledge,
specify a corresponding vector y of reasonable response values
for these predictors.

e Requirement for Hypothetical Observations: The number
of hypothetical observations must be one more than the
number of predictor variables in the model.

e Prior Mean for B: The prior mean for 3 is set to X~ 1§.

22



Prior Specification for the Conjugate Analysis

e Gamma Prior on 7: We need to specify the shape parameter
a and rate parameter b for the gamma prior on 7.

e Choosing a:
- Start by selecting a based on the degree of confidence in the
prior information.
- For a given a, the prior can be viewed as having the
equivalent informational “worth” of 2a sample observations.

e Confidence Level: A larger value of a reflects higher
confidence in the prior (although variance tends to increase
too), thus weighting prior information more heavily in the

analysis.

23



Prior Specification for the Conjugate Analysis

e Strategy for Specifying b:
- Select one of the hypothetical observations, say the first one.
- Let 1 be the prior expected response for this observation
with predictor values Xj.
- Define ymax as the maximum reasonable prior response for
an observation with predictors X .

e Prior Estimate for o: - Based on a normal distribution,

estimate o as: . .
_ Ymax — Y1
1.645
- Since 7 = =, this provides a reasonable guess for 7.
o
e Solving for b:
- Set this guess for 7 equal to the mean a/b of the gamma
prior for 7.

- With a specified, solve for b. ”
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Benefits of BIDA Approach - |

o Analytical Tractability: Conjugate priors enable analytical
solutions, reducing computational burden and allowing for
quick updates.

¢ Incorporation of Prior Knowledge: Embeds expert
knowledge through hypothetical predictor and response
values, enhancing accuracy, especially with limited data.

e Flexible Prior Influence: Gamma prior parameters a and b
adjust confidence in prior information, balancing reliance on
prior vs. data.

e Posterior Sampling Strategy: Efficient sampling approach
that accounts for uncertainty in 7 without relying on point
estimates.

25



Benefits of BIDA Approach - 1l

o Interpretability: Provides a meaningful prior mean for 3 and
allows specifying observational “weights” to clarify model

assumptions.

¢ Robust Inference with t-Distributions: The marginal
posterior of 3 is a noncentral multivariate t-distribution,
which is robust to outliers and effective under uncertainty in 7.

e Overall Advantage: ldeal for balancing prior knowledge with
data-driven insights in an analytically manageable framework.

26



Example of a Conjugate Analysis

e Example in R: Using the Automobile Data Set, we perform a
conjugate analysis.

e Estimates for 7 and o2: Obtain point and interval estimates
for the precision parameter 7 and, consequently, for 2.

e Estimates for Elements of 3: Draw samples from the
posterior distributions of 7 and then from the conditional
posterior of 3|7 to obtain point and interval estimates for
each element of 3.

27



Alternative Approach to Conjugate Analysis for the Linear

Model

The Approach in Bayesian Methods (BaM) by Jeff Gill:

e For conjugate priors with a sampling distribution (data
model):
Y|3,0% ~ MVN(XB, o?1,)

2

e Conditional distribution of B on o“ resembles the

normal-normal model before:

kel 1 P
plBI0%) = (2n) £ = Fexp (18- BYT (5 - B))

2
g
e Joint prior as a product of conditionals:

p(B,0°) = p(Blo*)p(c?)

e Prior for 62: p(c?) o< 0~ (@7F) exp (—b>

28



Conjugate Analysis for the Linear Model

Joint Posterior Derivation

e Combining the data likelihood with the prior specification
yields the joint posterior:

p(B. %X, y)
x o™ exp< oz (&2( K)+ (B — BYX'X(8 ﬁ)))
<(2) 4 e (58 - BYE B B)) o e (- )

X o ("+a)exp< @(52( k)+ (8- IB)/XX(ﬁ /3))

2hHB—&TIW—BO

29



Conjugate Analysis for the Linear Model

Simplifying the Joint Posterior

e The form of the joint posterior can be simplified with a
change of variables.

e Define:
B=(Z '+ XX)"YZIB + X'X3)

§=2b+6%(n—k)+ (B—-B)L B+ (3 —B)XX3
e The joint posterior can now be re-expressed as:

p(B,0%|X,y)

n+a

(@)% exp (505 (54 (8- BYE +XX)(8 - B))

30



Conjugate Analysis for the Linear Model

Posterior Distribution of 5|X, y
e By applying the marginalization trick, we obtain the posterior
distribution of B|X,y:
~ N e —1 / -\~ L
p(BIX.y)  (5+(B—B) (! +X'X)(8-B))
e This is the kernel of a multivariate-t distribution with
v =n+ a— k — 2 degrees of freedom.

e The mean and covariance of the posterior distribution for 3

are:
E(8X,y) =
= z—l + X'X -1
Cou(pix,y) = 2= _TIX)

31



Conjugate Analysis for the Linear Model

Marginal Distribution of o

e The marginal distribution of o2 is derived similarly to the case
with an uninformed prior:

n+a—K— ].
p(o?X,y) o (07)" "7 exp <—2232(”+ a- k)>
g

e This corresponds to the kernel of an Inverse-Gamma
distribution:

n+a_k_2 ]-,\2
IG <2,2O' (n+a—k)>
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Conjugate Analysis for the Linear Model

Comparison of Informative Conjugate and Noninformative Models

Setup Prior Posterior
Noninf. | p(3) x ¢ on (—oo, ) BIX,y ~ MVt(n— k)

1 n—k—1 &%(n—k)
p(0?) o Lon (0,00) | 02X,y ~IG (2=h=L, 2R
Conj. | Blo? ~ MVN(B,c?l,) BIX,y ~MVt(n+a—k—2)
o2 ~1G (afk72 b) 02|X y ~ G <n+agk72 52("+3*k))

2 2

This table summarizes the priors and posterior distributions for both the
vague and informative conjugate models in linear regression.
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Spike-and-Slab Priors for Linear Models

e In regression, the priors on the regression coefficients are
crucial.

e Whether or not 3; = 0 defines whether X; is “important” in
the regression.

e For any j, a useful prior for 3; is a “spike-and-slab” prior,
which allows for a mixture of values concentrated around zero
(spike) and a broader range (slab).

Bi 34



Spike-and-Slab Priors for Linear Models

Here P(3; = 0) = hoj, which represents the prior probability
that X; is not needed in the model.

P(Bj # 0) = 1 = hoj = hj(f; — (=1})) = 2fj;
where [—f;, f;] contains all “reasonable” values for ;.
To include X in the model with certainty, set hg; = 0.

To increase the doubt that X; should be in the model,
increase the ratio:

hoj _ hoj _op_ o
hy (1= hoj)/2f; "7 1— hy

Recently, “nonparametric priors” have become popular, often
involving a mixture of Dirichlet processes.

35



Linear Regression Model

Bayesian Regression Model

Bayesian Regression with rstanarm
Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian
Regression

36



Bayesian Regression with rstanarm

e - The rstanarm package in R enables Bayesian regression
modeling by simulating parameter values from their posterior
distributions.

- This approach circumvents the need to derive the posterior
distribution explicitly.

e For normal regression models, we can derive the posterior
analytically as shown in our approach.

e - For models with non-normal responses, conjugate priors for
regression coefficients may not exist.

- Simulating from the posterior is often the only viable
method for estimation.

e rstanarm leverages rstan to estimate several standard
Bayesian regression models efficiently.

37



Parts of the stan glm Function Call

e Overview of stan_glm: The stan_glm function in the
rstanarm package performs Bayesian regression model
estimation via simulation.

e Specifying the Model Type: For normal responses, specify
method = "gaussian" in the stan_glm call.

¢ Priors on Model Parameters: - Set hyperparameters for
priors, typically normal priors on the intercept 5y and
coefficients (1, 3o, .. ..

- An exponential prior is often recommended for the unknown
standard deviation ¢ of the response.

e MCMC Specifications: Configure MCMC details, including
the number of iterations and the number of chains, to ensure
adequate diagnostic assessment.

38



Output of the stan glm Function

e MCMC Diagnostics: Functions in rstanarm provide
diagnostic plots, including trace plots, autocorrelation plots,
and density plots, to assess MCMC convergence.

e Summarizing Posterior Estimates: The tidy function
displays a summary of the Bayesian posterior estimates for the
regression coefficients.

e Prediction and Intervals: - posterior_predict provides
point predictions for the response, given specific predictor
values.

- posterior_interval generates posterior prediction
intervals for the response.

e Posterior Predictive Density: Plot the density function of
the posterior predictive distribution to visualize the model's
predictive spread.

e Example: See the R example using the “cars” dataset. 39



Bayesian Model Selection
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A Bayesian Approach to Model Selection

e Model Selection in Regression: In exploratory regression,
selecting the optimal subset of predictor variables is essential
for identifying the “best model.”

e Bayesian Comparison of Models: A Bayesian approach
involves evaluating candidate models based on their posterior
probabilities.

o Inclusion of Predictor Variables:

- If the coefficient 3; = 0, the variable X; is unnecessary in the
model.
- Define ; = z;b; for each j, where z; =0 or 1 and
bj € (—o0, 00).
¢ Model Specification:

Yi = z2obg+z1 b1 Xjn+ 2200 Xjo 4+ - -4z 1 b1 Xj —1+ei, i =1,...,n

where any z; = 0 indicates that the corresponding predictor
41
variable is excluded from the model.



A Bayesian Approach to Model Selection: Example

e Oxygen Uptake Example: Consider predictor variables
X1 = group, X, = age, and X3 = group X age.
¢ Indicator Vector for Model Inclusion: Define
z = (29, z1, 22, z3) to specify the inclusion of each variable in
the model. The true conditional expectation E[Y|x, b, z] for
each configuration of z is:
z True E[Y|x, b, z]
bo

( )

( ) | bo + b1 group

(1,0,1,0) by + by age

( ) | bo + b1 group + by age

( ) | bo + b1 group + by age + bz group X age

42



A Bayesian Approach to Model Selection

e Calculating Posterior Probabilities:
- For each possible configuration of the vector z, calculate the
posterior probability for that model.
- For a specific configuration z*:

) — p(z%)p(y|X, z¥)
p(z*|X,y) = >, p(2)p(yX. 2)

e Model Priors:
- A prior p(-) is assigned to each potential model.
- For a noninformative approach, assign equal prior
probabilities across all models.

e Handling Many Predictors: With a large number of
predictors, employ Gibbs sampling to efficiently search across
the model space.
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Example of Bayesian Model Selection

e Example in R: Analyze the Oxygen Data Set to perform
Bayesian model selection.

e Exploring Subsets of Predictors:
- Consider all possible subsets of the predictor variables.
- Result: The model excluding the interaction term has the

highest posterior probability.

e Restricted Subset Consideration:
- Restrict to certain subsets, such as only including the
interaction term when both first-order terms are present.
- Result: The model without the interaction term again shows

the highest posterior probability, with an even greater margin.
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A Bayesian Approach to Model Selection - Technical Aside for

the Details

e Bayesian model selection uses posterior probabilities to
evaluate model configurations.

e Here, we assess the likelihood of observing the data y given
the design matrix X for various subsets of predictors.

e Each configuration of predictors, represented by z, is treated

as a potential model with a specific probability.
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Model Prior Specification

e Prior Probability on Models p(z):
- A prior p(z) is assigned to each subset configuration z,
which indicates which predictors are included in the model.
- In a noninformative setting, each model can have equal prior
probability, i.e., p(z) = % for M possible models.

e Parameter Priors:
- Hyperparameters are used: g controls variance scaling, and
vg influences prior degrees of freedom.
- sg represents a prior guess for the residual variance, often

calculated from an initial ordinary least squares (OLS) model.

46



Prior Specification: Prior on Configurations p(z)

Each subset configuration z represents a unique model by
specifying which predictors are included.

Noninformative Prior: Assign equal probability to each
model configuration:

where M is the total number of possible configurations.

Informative Prior: If we have prior knowledge or prefer
simpler models, we can assign higher probabilities to specific
configurations (e.g., those with fewer predictors).
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Model Prior Specification: Prior on Coefficients 3

e For each model configuration z, we define a multivariate

normal prior on the coefficients 3 of the included predictors:
B ~ MVN ([3, az(gX'X)_l)

e Components of the Prior:

e [3: Prior mean, often calculated as 3 = (X’X)~1X'y, based on
OLS solution of hypothetical predictor values X and responses
y.

e 02: Residual variance, representing uncertainty in predictions.

e g: Variance scaling factor; larger g reduces the influence of the

prior mean.
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Model Prior Specification: Prior on Variance o

e The residual variance 02 has a conjugate gamma prior on its

precision T = 0%

T ~ Gamma(a, b)

e Parameters of the Gamma Prior:

e Shape a and rate b parameters are selected to reflect prior
beliefs on variance.

a

e Mean: E[r] = 7 Variance: Var(7) =

b2
e A typical choice for a and b is:

2
10} oS
a=—, b=-—-2

2’ 2
where 1 is the prior degrees of freedom and sg is a prior

estimate of residual variance.
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Data Model and Likelihood

Likelihood of Observing y Given X:
- The goal of Bayesian model selection is to calculate the
probability of observing the data y given a particular model
configuration, represented by a subset of predictors in X.
- For each subset model, the function log Py x in R code
calculates the marginal log-likelihood log p(y|X, z), which measures
the fit of the data under that model.
- This marginal likelihood incorporates a projection of y onto the
predictor space defined by X, which is captured by the “hat
matrix” Hg, which is defined as:
g Ine\—1y/

Hg = ﬁX(X X)X

- This matrix projects y onto the subspace spanned by X and

scales it by g, a hyperparameter that controls the variance scaling.
50



Data Model and Likelihood

Likelihood of Observing y Given X:
- The fit of the model is evaluated by calculating the sum of
squared residuals SSRg, which measures the unexplained variation

in y after projection:
SSRg =y'(I — Hg)y

- Here, | — Hg is a matrix that projects y onto the orthogonal
complement of the space spanned by X, capturing the residuals
that are not explained by the model.

51



Data Model and Likelihood

Marginal Likelihood Computation:
- The marginal likelihood p(y|X,z) is a key element in Bayesian
model selection, as it indicates the probability of observing y for a

given model configuration z.
- This likelihood combines the residual sum of squares SSRg with

prior parameters:
1
log p(y|X,z) = —7 > { nlog(m) + plog(1 + g)+

(vo + n)log(ross + SSRg) — vo Iog(yos§)>
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Data Model and Likelihood

In the above expression:
e nlog(m): A normalization term, adjusting for the

dimensionality of y.

e plog(1l+ g): Adjusts for the number of predictors p included
in the model, scaled by g, impacting how model complexity is
penalized.

e (vo + n)log(rvosi + SSRg): Combines the prior information
(through vo and s2) with the residual variance SSRg.

e —1) Iog(yosg): A prior adjustment term, providing a reference

for the variance under the prior alone.

- The value of log p(y|X, z) provides a measure of how well each
subset model explains the data, balancing model fit and complexity.
- Models with higher marginal likelihood values are considered

better explanations of the data.
53



Posterior Calculation and Posterior Probabilities

e Posterior Probability for Model z:
- Given prior p(z) and marginal likelihood p(y|X, z), the
posterior for model z* is:

. _ p(@)plylX, z%)
PEXY) = S~ plyIX 2)

- The numerator captures the joint probability of z* and data
given z*, while the denominator sums this over all model

configurations.
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Gibbs Sampling for Model Space Exploration

e Purpose: With a large number of predictors, direct
computation of posteriors for all subsets is computationally
expensive.

e Sampling Approach: Gibbs sampling iteratively samples
predictor inclusion/exclusion, toggling each predictor in/out of
the model.

¢ Sampling Probability: For each predictor:

- Calculate posterior difference for inclusion vs. exclusion.
- Accept inclusion /exclusion based on a probability
proportional to the calculated difference.
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Model Comparison and Bayes Factors

e Bayes Factors: For comparing two models z; and z;:
Compute the ratio of marginal likelihoods (likelihood of data

under each model):

p(y|X,z1)

BFi, =
2 p(y[X, z2)

e Interpretation:
- BF > 1 suggests model z; is more supported by the data
than z5.
- Posterior probabilities also incorporate these Bayes factors,
favoring models with higher likelihood.
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Posterior Summary for Model Selection

e The final output ranks model configurations by posterior
probability.
e Constraints can be applied (e.g., include interaction terms

only when main effects are present).

e Gibbs sampling results are used to estimate probabilities for
each model, selecting the model with the highest posterior.
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Assessing Model Fit and Predictive Performance in Bayesian
Regression

Posterior Predictive Distribution in Bayesian Regression

Measures of Predictive Accuracy
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Posterior Predictive Distribution in Bayesian Regression
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The Posterior Predictive Distribution of the Data

e Bayesian Model Setup: We have built a Bayesian regression
model using response data y and explanatory data matrix X.

e Future Observations:
- Consider future observations with explanatory variable values
in matrix X*.
- The question: What is the marginal distribution of the
corresponding future response values Y*?

e Posterior Predictive Distribution:
The distribution p(y*|y, X*, X) represents the posterior
predictive distribution of y*.

e Application: This distribution serves as a tool for assessing
the fit of our regression model, allowing for model validation

with future data.
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The Posterior Predictive Distribution of the Data

e Joint Posterior Distribution: With noninformative priors,
the joint distribution is:

p(y*, B,0%y, X*,X) = p(y*|8, 0%, X*)p(B, %X, y)

e Posterior Predictive Distribution: Integrating out 3 and
o2, the posterior predictive distribution of Y* is multivariate-t
with (n — k) degrees of freedom:

A

E(Y*y,X*,X) = X*3
(n— k)62

Cov(Y"|y, X", X) = P——1

(l n x*(x’X)—lx*’)

e Intuition:
- Given the model, our original data are multivariate normal.
- Future predictions follow a multivariate-t distribution, which

accounts for additional uncertainty about the model.
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Posterior Prediction of Response Values in Regression

Ex 3: Posterior Predictive Distribution in Regression:

¢ Model Fit Check:
- Generate samples from the posterior predictive distribution,
using X* = X (the observed sample predictors).
- Plot the predicted values against the actual y-values from
the original sample.

¢ ldentifying Outliers:
- If an observed y; lies far from the center of the posterior
predictive distribution, then this i-th observation may be an
outlier.
- A high number of outliers would indicate a potential misfit
of the model.

e See R example with a small automobile dataset.
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Posterior Prediction Intervals in Regression

e Prediction for New Responses:
Make predictions and construct “prediction intervals” for new
responses given specified predictor values.

e Example Setup:
- For a new observation with predictor values
X = (1,x{,x3,.. ., X4_1)-
- Alternatively, predictor values for multiple new observations
can be stored in matrix X*.

e Posterior Predictive Distribution:
- Generate the posterior predictive distribution using X*.
- Use the posterior median for point predictions and posterior
quantiles to create prediction intervals.

e See R example for implementation.
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Posterior Prediction Using bayesrules Package

e Overview of bayesrules Package:
The bayesrules package provides useful functions for
posterior predictions and diagnostics for models fitted with
stan_glm.

e ppc_intervals Function:
The ppc_intervals function generates prediction intervals
for observations in the sample or for hypothetical future
observations.

¢ Model Fit Assessment:
- For 95% prediction intervals on sample observations, model
fit can be checked by counting how many observed y-values
fall within their 95% prediction intervals.
- Ideally, around 95% of the sample y-values should lie within

their respective intervals.
64



Linear Regression Model

Bayesian Regression Model

Bayesian Model Selection

Assessing Model Fit and Predictive Performance in Bayesian
Regression

Measures of Predictive Accuracy
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Measures of Predictive Accuracy

e Prediction Summary Function:
Provides several numerical measures to assess predictive
accuracy.

o Key Measures:
- Median Absolute Error (MAE): Reflects the typical
difference between observed responses and their posterior
predictive means.
- Scaled Median Absolute Error: Indicates the typical
number of standard deviations by which observed responses
deviate from their posterior predictive means.
- Within 50 Statistic: Proportion of observed responses that
lie within their 50% posterior prediction interval.
- Within 95 Statistic: Proportion of observed responses that

lie within their 95% posterior prediction interval.
66



Concerns with Measures of Predictive Accuracy

e Sample-Based Prediction Accuracy:
These measures evaluate how accurately the model predicts
observations within the sample (i.e., those used for model
fitting).

¢ Potential Overestimation:
Predictive accuracy measures based on sample data may
overstate the model's performance for predicting response
values of new, out-of-sample observations.
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Measures of Out-of-Sample Predictive Accuracy

e Cross-Validation for Out-of-Sample Prediction: To evaluate
predictive accuracy on out-of-sample data, we use cross-validation.

e Cross-Validation Process: - Split the data into subsets. - Use a
portion of these subsets as “training” data to fit the model
(estimate parameters).

- The remaining data are “test” data, held out to assess the model’s
predictive performance.

e Predictive Accuracy Assessment: - Using the fitted model,
predict the response values for the “test” data.
- Since true response values of held-out observations are known, we
can directly compare predictions to actual values.

e Evaluating Models: - Compute cross-validation metrics, such as
MAE and scaled MAE, for each model.
- Select the model with a lower cross-validation MAE to ensure

robust out-of-sample performance. o8



Expected Log Predictive Density (ELPD)

e ELPD for Model Comparison: The expected log-predictive
density (ELPD) is a tool for comparing Bayesian regression
models based on predictive performance.

e Interpretation of Posterior Predictive Density: A high
posterior predictive density value at Yy indicates that the
new data point yhew aligns well with the model.

e Definition of ELPD: The ELPD is defined as
E(log f( Ynew|X,y)), the log posterior predictive density at
Yhew, averaged over all possible values of Ypew.

e Model Selection: - A model with a higher ELPD indicates
better posterior predictive accuracy for new data points.

- The Bayesian Information Criterion (BIC) is another
common tool for model selection, related to Bayes Factors

(see Chapter 8 notes).
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