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Regression for Count Data

� We consider a regression model where the response variable Y

takes on count values, such as 0, 1, 2, 3, . . .

� When the count values in the dataset are relatively large, the

response (conditional on predictors) may be approximately

normally distributed, allowing the application of

Normal-response models from Chapter 9.

� But, if the counts Y1,Y2, . . . ,Yn are small to moderate, it is

inappropriate to treat the responses as normally distributed.

Small counts are highly discrete and often exhibit skewness,

requiring alternative modeling approaches.
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A Better Regression Model for Count Responses

� A suitable regression model for count-valued responses is the

Poisson regression model, which assumes:

Yi | λi
ind∼ Pois(λi )

� This model expresses the conditional mean for the i-th

individual as:

E(Yi | λi ) = λi
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Setup of Poisson Regression Model

� Recall that the Poisson mean must be strictly positive.

� To ensure E(Yi | λi ) = λi remains positive, we model log(λi )

as a linear combination of predictor variables:

log(λi ) = β0 + β1Xi1 + β2Xi2 + · · ·+ βk−1Xi ,k−1

� Consequently, the model for the mean response given the

predictors is:

E(Yi | X) = exp(β0 + β1Xi1 + β2Xi2 + · · ·+ βk−1Xi ,k−1)

� This model was introduced in Chapter 6 with the sparrow

offspring data.

6



Example of Poisson Regression Model

� Consider the dataset where the individuals are high school

students, sourced from the UCLA Advanced Research and

Computing website.

� The response variable is the number of awards a student has

received for academic performance.

� This count-valued response takes values 0, 1, 2, 3, . . ., with

most values in the dataset being relatively small.

� A key predictor variable (X1) is the student’s math exam

score.
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Example of Poisson Regression Model (Continued)

� Additionally, we include a categorical predictor that

identifies the track the student is on, with three categories:

General, Academic, and Vocational.

� This categorical variable is coded using two dummy variables:

X2 =

1 if student is on academic track

0 otherwise

X3 =

1 if student is on vocational track

0 otherwise

� The general track serves as the baseline category, and the

coefficients of X2 and X3 are interpreted relative to this

baseline.
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Equation for the Poisson Regression Model

� The model equation is given by:

E(Yi | X) = exp(β0 + β1Xi1 + β2Xi2 + β3Xi3)

� This expresses the expected counts as a nonlinear function

of the predictors, distinguishing it from the normal regression

model.

� With Poisson data, note that the variance of the response

equals the mean, implying that as the mean response

increases, the variability of the responses around the

regression curve also increases.

� This contrasts with the normal regression model, where

constant variance of Y | X is assumed.
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Priors in the Poisson Regression Model

� In regression models with non-normal responses, such as

Poisson regression, conjugate priors for the regression

coefficients (the β’s) are typically unavailable.

� However, we can still assign independent normal priors to

each βj , j = 0, 1, 2, . . . , k − 1, similar to the approach used in

the sparrow data example.

� If we have a prior belief regarding the direction of a coefficient,

we may set the prior mean to a positive or negative value

accordingly; otherwise, a mean of 0 may be appropriate.

� Specifying a large prior variance reflects less certainty about

our prior knowledge, allowing the data to have greater

influence.
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Fitting the Poisson Regression Model

� Since we do not use conjugate priors for the β’s, we rely on

MCMC methods to sample from the posterior distribution,

specifically employing the Metropolis-Hastings algorithm.

� This can be implemented in R as done previously for the

sparrow data, or alternatively, we can use the stan glm

function from the rstanarm package to automate the

Metropolis-Hastings procedure.

� It is still crucial to perform our usual MCMC diagnostics

and, if necessary, apply remedial actions to ensure model

reliability.

� Refer to the provided R examples for details on fitting the

model.
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Interpretations of Estimated Parameters

� The posterior estimate of β1 is approximately 0.07 (this value

may vary slightly based on the choice of priors and the specific

MCMC run).

� For a fixed level of track, the expected number of awards

earned increases by a factor of e0.07 = 1.07 for each one-point

increase in math test score.

� The posterior estimate of β2 is around 1.03 (again, this value

may vary depending on the priors and MCMC details).

� For students on the academic track, the expected number of

awards earned is e1.03 = 2.8 times that of students on the

general track, holding math test score constant.
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Checking Model Fit

� Model fit can be assessed using metrics such as the Mean

Absolute Error (MAE).

� The bayesrules package provides convenient functions for

calculating MAE and other goodness-of-fit measures for both

in-sample and out-of-sample (cross-validation) prediction

performance.

� Model fit measures indicate that the Poisson model is a good

fit for the awards data.

� It is often beneficial to fit multiple models with different sets

of predictor variables and compare them using model-fit

criteria to identify the most suitable model.
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Count Regression for Overdispersed Data

� In some cases, the response variable is a count, but the

Poisson regression model may not provide an adequate fit.

� Example: The pulse dataset in the bayesrules package
includes various variables measured on over 900 individuals.
We focus here on three specific variables:

� Y : Number of books read in the past year.

� X1: Age in years.

� X2: Categorical variable where X2 = 1 if the person would

prefer to be “wise but unhappy,” and X2 = 0 if they would

prefer to be “happy but unwise.”
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Problems with Poisson Regression for Overdispersed Data

� An initial attempt at fitting a Poisson regression model of Y

on X1 and X2 can be conducted.

� However, posterior predictive analysis reveals that this

model provides a poor fit, as the posterior predictive

distribution does not align with the observed data.

� Summary calculations indicate that the variance is much

greater than the mean for this dataset.

� The Poisson regression model assumes that, given a set of

predictor values, the mean of Y should equal its variance.

� For the “books” data, within subsets with similar predictor

values, the variance significantly exceeds the mean,

indicating overdispersion.
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Overdispersion in Data

� When the variance of a count variable exceeds the mean, this

is commonly referred to as overdispersion.

� The textbook provides a broader definition related to model

fit: A random variable Y is overdispersed if the observed

variability in Y exceeds the variability anticipated by the

assumed probability model of Y .
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Using the Negative Binomial to Account for Overdispersion

� The Negative Binomial probability model is a common

alternative to the Poisson model when Y is overdispersed.

� Like the Poisson, the Negative Binomial distribution is

well-suited for count data, as it is defined over y = 0, 1, 2, . . .,

but it relaxes the assumption that E(Y ) = Var(Y ).

� For the Negative Binomial distribution, it holds that

E(Y ) < Var(Y ), accommodating scenarios where variance

exceeds the mean.

18



Form of the Negative Binomial Probability Function

� The Negative Binomial distribution has several

parametrizations. One common form uses µ for the mean and

r as the “reciprocal dispersion” parameter:

f (y | µ, r) =
(
y + r − 1

y

)(
r

µ+ r

)r ( µ

µ+ r

)y

, for y = 0, 1, 2, . . .

� Under this parametrization:

E(Y | µ, r) = µ and Var(Y | µ, r) = µ+
µ2

r
.

� When r is large, E(Y ) ≈ Var(Y ), closely resembling the

Poisson distribution. For small r , however, Var(Y) can greatly

exceed E(Y ), allowing for overdispersion.
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Fitting a Negative Binomial Regression Model

� The negative binomial regression model can be easily

fitted using the stan glm function in the rstanarm package

by specifying family = neg binomial 2.

� Similar to Poisson regression, we model the expected counts

as:

E(Yi | X) = exp(β0 + β1Xi1 + β2Xi2),

ensuring nonnegative expected counts.

� Prior distributions for the coefficients are set up similarly to

the Poisson regression example.

� Model fit diagnostics, such as plots and numerical statistics,

are obtained in the same manner as with Poisson regression.

� Posterior predictions of the response variable can be

generated for one or more individuals.
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Substantive Conclusions from the Pulse Regression Analysis

� Refer to the R examples for the Negative Binomial regression

analysis of the “books” dataset.

� Note that the exact values of the estimated β’s will vary

slightly with each MCMC run.

� Age does not appear to be a significant predictor of the

number of books read.

� The estimated coefficient for the wise vs. unwise preference

variable is approximately 0.265, suggesting that individuals

who prefer to be “wise but unhappy” read 1.3 times more

books than those who prefer to be “happy but unwise”

(holding age constant), as e0.265 = 1.3.

� The 95% credible interval for β2 lies entirely above 0,

indicating a strong positive association between a preference

for wisdom over happiness and the number of books read.
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A Quick Model Comparison

� We may consider alternative models, such as:

� A model without age as a predictor.

� A model with age, wise vs. unwise preference, and their

interaction term.

� The loo function can be used to calculate the Expected Log

Predictive Density (ELPD) criterion for each model.

� According to the code provided on Canvas, the model

including both predictors and their interaction achieves the

highest ELPD, suggesting it as the best among these three

models (though the ELPD values are quite close).
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