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Regression for Count Data

e We consider a regression model where the response variable Y
takes on count values, such as 0,1,2,3,...

e When the count values in the dataset are relatively large, the
response (conditional on predictors) may be approximately
normally distributed, allowing the application of
Normal-response models from Chapter 9.

e But, if the counts Y1, Y2,..., Y, are small to moderate, it is
inappropriate to treat the responses as normally distributed.
Small counts are highly discrete and often exhibit skewness,
requiring alternative modeling approaches.
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A Better Regression Model for Count Responses

e A suitable regression model for count-valued responses is the
Poisson regression model, which assumes:

Y | A % Pois()\,)

e This model expresses the conditional mean for the i-th
individual as:
E(Yi|Ai)= A\



Setup of Poisson Regression Model

e Recall that the Poisson mean must be strictly positive.

e To ensure E(Y; | ;) = \; remains positive, we model log()\;)

as a linear combination of predictor variables:
log(Ai) = Bo + B1Xix + BoXio + -+ + PBr—1Xi k-1

e Consequently, the model for the mean response given the

predictors is:
E(Y; | X) = exp(Bo + B1Xi1 + BaXio + - + Bk—1Xik—1)

e This model was introduced in Chapter 6 with the sparrow

offspring data.



Example of Poisson Regression Model

e Consider the dataset where the individuals are high school
students, sourced from the UCLA Advanced Research and
Computing website.

e The response variable is the number of awards a student has
received for academic performance.

e This count-valued response takes values 0,1,2,3,..., with
most values in the dataset being relatively small.

e A key predictor variable (X1) is the student’s math exam

score.



Example of Poisson Regression Model (Continued)

e Additionally, we include a categorical predictor that
identifies the track the student is on, with three categories:

General, Academic, and Vocational.

e This categorical variable is coded using two dummy variables:

1 if student is on academic track

N
I

0 otherwise

X 1 if student is on vocational track
3 p—
0 otherwise
e The general track serves as the baseline category, and the
coefficients of X, and X3 are interpreted relative to this

baseline.



Equation for the Poisson Regression Model

e The model equation is given by:
E(Yi | X) = exp(Bo + 1 Xi1 + B2Xi2 + B3Xi3)

e This expresses the expected counts as a nonlinear function
of the predictors, distinguishing it from the normal regression
model.

e With Poisson data, note that the variance of the response
equals the mean, implying that as the mean response
increases, the variability of the responses around the
regression curve also increases.

e This contrasts with the normal regression model, where
constant variance of Y | X is assumed.



Priors in the Poisson Regression Model

e In regression models with non-normal responses, such as
Poisson regression, conjugate priors for the regression
coefficients (the 's) are typically unavailable.

e However, we can still assign independent normal priors to
each 3;, j=0,1,2,...,k — 1, similar to the approach used in
the sparrow data example.

e If we have a prior belief regarding the direction of a coefficient,
we may set the prior mean to a positive or negative value
accordingly; otherwise, a mean of 0 may be appropriate.

e Specifying a large prior variance reflects less certainty about
our prior knowledge, allowing the data to have greater

influence.
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Fitting the Poisson Regression Model

e Since we do not use conjugate priors for the §'s, we rely on
MCMC methods to sample from the posterior distribution,
specifically employing the Metropolis-Hastings algorithm.

e This can be implemented in R as done previously for the
sparrow data, or alternatively, we can use the stan_glm
function from the rstanarm package to automate the
Metropolis-Hastings procedure.

e It is still crucial to perform our usual MCMC diagnostics
and, if necessary, apply remedial actions to ensure model
reliability.

e Refer to the provided R examples for details on fitting the
model.
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Interpretations of Estimated Parameters

e The posterior estimate of (3; is approximately 0.07 (this value
may vary slightly based on the choice of priors and the specific
MCMC run).

e For a fixed level of track, the expected number of awards

0.07

earned increases by a factor of e””" = 1.07 for each one-point

increase in math test score.
e The posterior estimate of (3, is around 1.03 (again, this value

may vary depending on the priors and MCMC details).

e For students on the academic track, the expected number of
awards earned is e!'03 = 2.8 times that of students on the

general track, holding math test score constant.
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Checking Model Fit

e Model fit can be assessed using metrics such as the Mean
Absolute Error (MAE).

e The bayesrules package provides convenient functions for
calculating MAE and other goodness-of-fit measures for both
in-sample and out-of-sample (cross-validation) prediction

performance.

e Model fit measures indicate that the Poisson model is a good
fit for the awards data.

e |t is often beneficial to fit multiple models with different sets
of predictor variables and compare them using model-fit

criteria to identify the most suitable model.
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Count Regression for Overdispersed Data

e In some cases, the response variable is a count, but the
Poisson regression model may not provide an adequate fit.

e Example: The pulse dataset in the bayesrules package
includes various variables measured on over 900 individuals.
We focus here on three specific variables:

e Y: Number of books read in the past year.

e Xi: Age in years.

e X,: Categorical variable where X, = 1 if the person would
prefer to be “wise but unhappy,” and X, = 0 if they would
prefer to be “happy but unwise.”
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Problems with Poisson Regression for Overdispersed Data

e An initial attempt at fitting a Poisson regression model of Y
on X1 and X5 can be conducted.

e However, posterior predictive analysis reveals that this
model provides a poor fit, as the posterior predictive
distribution does not align with the observed data.

e Summary calculations indicate that the variance is much
greater than the mean for this dataset.

e The Poisson regression model assumes that, given a set of
predictor values, the mean of Y should equal its variance.

e For the “books” data, within subsets with similar predictor
values, the variance significantly exceeds the mean,
indicating overdispersion.
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Overdispersion in Data

e When the variance of a count variable exceeds the mean, this
is commonly referred to as overdispersion.

e The textbook provides a broader definition related to model
fit: A random variable Y is overdispersed if the observed
variability in Y exceeds the variability anticipated by the
assumed probability model of Y.
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Using the Negative Binomial to Account for Overdispersion

e The Negative Binomial probability model is a common
alternative to the Poisson model when Y is overdispersed.

o Like the Poisson, the Negative Binomial distribution is
well-suited for count data, as it is defined over y =0,1,2,.. .,
but it relaxes the assumption that E(Y') = Var(Y).

e For the Negative Binomial distribution, it holds that
E(Y) < Var(Y'), accommodating scenarios where variance
exceeds the mean.
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Form of the Negative Binomial Probability Function

e The Negative Binomial distribution has several
parametrizations. One common form uses i for the mean and
r as the “reciprocal dispersion” parameter:

y+r—1 ro\' Y
f(ymr):( ) ><u+r> (;ﬁr) fory=0,1,2,...

o Under this parametrization:

2
E(Y |p,r)=p and Var(Y\uvr)=u+u7-

e When ris large, E(Y) = Var(Y), closely resembling the
Poisson distribution. For small r, however, Var(Y) can greatly
exceed E(Y), allowing for overdispersion.
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Fitting a Negative Binomial Regression Model

e The negative binomial regression model can be easily
fitted using the stan_glm function in the rstanarm package
by specifying family = neg binomial 2.

e Similar to Poisson regression, we model the expected counts
as:

E(Y; | X) = exp(Bo + B1Xi1 + B2Xi2),
ensuring nonnegative expected counts.

e Prior distributions for the coefficients are set up similarly to
the Poisson regression example.

e Model fit diagnostics, such as plots and numerical statistics,
are obtained in the same manner as with Poisson regression.

e Posterior predictions of the response variable can be
generated for one or more individuals.

20



Substantive Conclusions from the Pulse Regression Analysis

e Refer to the R examples for the Negative Binomial regression
analysis of the “books” dataset.

e Note that the exact values of the estimated (5's will vary
slightly with each MCMC run.

e Age does not appear to be a significant predictor of the
number of books read.

e The estimated coefficient for the wise vs. unwise preference
variable is approximately 0.265, suggesting that individuals
who prefer to be “wise but unhappy” read 1.3 times more
books than those who prefer to be “happy but unwise”
(holding age constant), as %205 = 1.3,

e The 95% credible interval for 3, lies entirely above 0,
indicating a strong positive association between a preference

for wisdom over happiness and the number of books read.
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A Quick Model Comparison

e We may consider alternative models, such as:
e A model without age as a predictor.
e A model with age, wise vs. unwise preference, and their
interaction term.
e The loo function can be used to calculate the Expected Log
Predictive Density (ELPD) criterion for each model.

e According to the code provided on Canvas, the model
including both predictors and their interaction achieves the
highest ELPD, suggesting it as the best among these three
models (though the ELPD values are quite close).
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