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Regression for Binary Data

e Consider a regression framework where the response variable
Y is binary, taking exactly two values (e.g., Pass/Fail,
Survive/Die, Win/Loss), typically encoded as 0 or 1.

e Traditional models, such as the Normal or Poisson regression,
are not suitable for this type of response variable due to the
binary nature of Y.

e When Y is binary, the expected value E(Y') corresponds to
the probability P(Y = 1).

e The model will establish a relationship between E(Y) and a

predictor X, or a set of predictors Xq, X, ..., X,, to capture
the underlying dependency structure.



Review: Odds and Probability

e Recall that for an event with probability 7, the odds of the

event are defined as "~

1-7°
e Since the probability 7 ranges from 0 to 1, the odds span
values from 0 to oo.

e The odds are:
e Less than 1 if and only if 7 < 0.5.
e Equal to 1 if and only if 7 = 0.5.
e Greater than 1 if and only if 7 > 0.5.



Real Data Example: Logistic Regression Model

e Consider a dataset of senior citizens where two variables are

measured:

e A binary response variable Y.
e An (approximately) continuous predictor variable X.

e The response variable Y indicates senility status:
e Y =0: No senility present.
e Y = 1: Senility present.
e The predictor variable X represents the individual's score on a
subset of the Wechsler Adult Intelligence Scale (WAIS) exam.



Real Data Example: Logistic Regression Model

e Recall that for a binary response Y;, the expected value is
E(Y;))=P(Y;=1).

e We model E(Y;) = 7; as a function of X, the WAIS score for
the individual.

e The mean response given the predictors follows:

1

Y; | Bo, B1 ind Bernoulli(m;), where log <1 il > = Bo+51Xi.
T

e The "linear predictor” Bg + (1 X; is related to the log-odds
that Y; = 1.

e The model equation can also be expressed in terms of the
odds or probability:

. Bo+B1X;
T — ego+ﬁlx,- and = elPoTr1 -
11— 1 + ePotPrXi



General Form of the Logistic Regression Model

e For a logistic regression model with multiple predictors, the
log-odds is modeled as:

log(odds) = log <1i7r> = Bo+ B1X1+ -+ BpXp.
e Interpretation of (i:

e |et odds, be the odds that Y = 1 when X; = x, and let
odds, ;1 be the odds that Y =1 when X; = x + 1 (a one-unit
increase in Xi).

e Holding all other predictors X», ..., X, constant:

e [ represents the expected change in log-odds:

f1 = log(oddsx+1) — log(oddsy).

e &1 represents the expected multiplicative change in odds:

eﬂl _ OddSX.H
" oddsy




Priors

in the Logistic Regression Model

To perform Bayesian logistic regression, we must specify priors
on the coefficients Bo, f1, ..., Bp.

A common choice is to use normal priors for these coefficients:

/BJNN(/’L_])O-_?)7 .j:0717"‘7p'

For objective Bayesian analysis, we can set prior means p; = 0
for all coefficients.
Posterior estimation involves sampling techniques, such as:

e Implementing the Metropolis-Hastings algorithm manually.

e Using high-level tools like stan_glm in the rstanarm package.
Example: Applying “noninformative” priors in R to the WAIS
senility dataset demonstrates this approach.



Specifying Subjective Priors in the Logistic Regression Model

e A structured process for eliciting prior information can be
particularly effective when using stan_glm.
e In stan_glm, the prior is placed on the centered intercept

(B5), distinct from the Sy in the model.
e Example: Prior elicitation for senility probability.

e Assume a “typical” subject has a probability of senility
between 0.2 and 0.6.

e Corresponding log-odds range:

0.2 0.6
| — | =-14 to | — | =0.4.
Og(0.8> ° o8 (0.4) 0
e Set the prior mean for the CENTERED /3; to the midpoint:

—-14+4+04
e —0.5.
e Set the prior standard deviation to half the range:
0.4 —(-1.4)

= 0.45.

ogy = > 9



More on Specifying Subjective Priors in the Logistic Regression

Model

Example: Specifying the prior mean and standard deviation for ;.
e Belief: For a one-unit increase in WAIS score, the odds of
senility are expected to fall between 0.5 and 1 (i.e., reduced to
half or remain the same).
e Corresponding range for 31 (log-odds):
p1 € [log(0.5),log(1)] = [—0.69,0].
e Prior elicitation:
e Set the prior mean for 31 to the midpoint of the range:

—0.69+0
fip, = % = —0.35.
e Set the prior standard deviation to half the range:
0—(—0.69

e This prior reflects expert knowledge about the expected effect

of WAIS scores on senility odds. 10



Fitting the Logistic Regression Model

e Priors can be specified, and the stan_glm function in the
rstanarm package automates the Metropolis-Hastings
algorithm for posterior sampling.

e Perform standard MCMC diagnostics to ensure model
convergence and reliability:

e Check trace plots, R-hat statistics, and effective sample sizes.
e Take remedial actions if diagnostics indicate convergence
issues.

e Summaries of the posterior distributions for model coefficients
can be obtained using:

e The summary () function for detailed statistical summaries.
e The tidy () function for a cleaner, formatted output.

e Refer to R examples for implementing and fitting the logistic

regression model using Bayesian methods.

11



Interpretations of Estimated Parameters

e Posterior estimate for [31:
e Approximate value: B\l ~ —0.3.
e The exact estimate may vary slightly depending on the choice
of priors and the specifics of the MCMC run.
e Interpretation of (i:
e The odds of senility decrease by a factor of e=%3 a 0.74 for
each one-point increase in WAIS score.
e This corresponds to a 26% reduction in the odds of senility per
unit increase in WAIS score.
e Credible interval for Sy:
e 95% credible interval: (—0.498, —0.142).
e High posterior probability exists that higher WAIS scores are
associated with lower odds of senility.

12



Bayesian Logistic Regression

Prediction and Classification
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Using the Logistic Regression Model for Prediction

e A primary application of the logistic regression model is

predicting the binary response Y for new observations.
e Example:

e For a new senior citizen with a WAIS score of X = 10, predict
whether the individual is senile.
e Prediction approach:

e Plug X =10 into the estimated logistic regression model to
compute:

E(Y | X = 10),

which is the estimated probability 7 that the person is senile.
e Decision rule:

e If 7> 0.5, predict Y =1 (senile).
e If 7 < 0.5, predict Y = 0 (not senile).

e Note: A cutoff ¢ # 0.5 can be used to adjust the sensitivity
and specificity of the predictions.

14



Defining a Classification Rule

e Logistic regression can be used to classify an individual into
one of two groups: Y =0o0r Y =1.
e Classification rule:
e For a given predictor value x (or a set of predictors

X1,X2,...,Xp), generate a large number of posterior predictions
for Y.

e Let p denote the proportion of posterior predictions where
Y =1.

e Select a classification cutoff value ¢ € [0, 1].

e Decision rule:
e If p > ¢, classify the individual into the Y = 1 group.
e If p < c, classify the individual into the Y = 0 group.

e This approach allows for flexible classification thresholds
based on the specific context or desired trade-off between
sensitivity and specificity.
15



Choice of Classification Cutoff Value

e The default classification cutoff value is ¢ = 0.5, which is

commonly used.
e However, in certain scenarios, a different cutoff value may be
more appropriate:
e Especially when the cost of one type of misclassification error
significantly outweighs the cost of the other.
e Example from the book:
e Y = 1: Predicting rain (carry an umbrella).
e Y = 0: Predicting no rain (no umbrella).
Decision trade-off:
e |s it worse to carry an umbrella unnecessarily or to forgo the

umbrella and get wet?
e To minimize the risk of getting wet, we might choose a smaller
cutoff, such as ¢ = 0.25, thereby predicting rain more often
and playing it safe.

e Adjusting c¢ allows for flexibility to match the classification 1

strategy to the specific context and error costs.



Bayesian Logistic Regression

Evaluating Model Performance
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Assessing Model Quality

e The posterior predictive distribution can be used to evaluate
model quality.
e Approach:
e Use the pp_check function as a shortcut to generate numerous
posterior-simulated datasets.
e For each simulated dataset, calculate the count of Y =1
values.
e Visualize these counts using a histogram.
e Model evaluation:
e Compare the actual count of Y =1 values from the observed
data to the distribution of simulated counts.
o If the observed count falls near the center of the simulated
distribution, it indicates that the model fits well.

e Example: See R implementation for the WAIS dataset.

18



Measuring Classification Accuracy

o Classification accuracy evaluates the performance of the
logistic regression model in correctly classifying binary
observations.

e A common approach is to use a confusion matrix: Compare
the actual binary values (Y) with the predicted binary values

~

(Y) based on the chosen classification rule.
e For a sample of n individuals:
e Let Y; denote the actual binary outcome for observation i/,
where i=1,...,n.
e Compute \A/, the predicted binary outcome, using the fitted
logistic regression model and the chosen classification cutoff.
e The confusion matrix summarizes the counts of:
o True Positives (correctly predicted Y =1, Y = 1)
True Negatives (correctly predicted Y =0, Y = 0).
1

False Positives (incorrectly predicted Y = 0, Y = )
False Negatives (incorrectly predicted Y =1, Y =0). 19



Confusion Matrix

e The confusion matrix summarizes the classification results in a
2% 2 format with entries a, b, ¢, and d:

\?:o\?zl

e a: True Negatives (correctly predicted Y = 0, Y=0
e b: False Positives (incorrectly predicted Y = 0, Y = ).
e c: False Negatives (incorrectly predicted Y =1, \A/
e d: True Positives (correctly predicted Y =1, Y =

Y =0
Y=1

L

(9}
Q o

e Definitions:

20



Confusion Matrix

e This framework provides metrics such as accuracy, precision,
recall, and F1-score to assess classification performance.
e Metrics for model performance:

e Overall Accuracy: Proportion of all observations correctly

lassified:
classifie st d

at+b+c+d
e Misclassification Rate: Proportion of incorrectly classified

Accuracy =

observations:

b+c

Misclassification Rate = 1 — Accuracy = ——.
at+b+c+d

21



Sensitivity and Specificity

Sensitivity (True Positive Rate): Proportion of Y =1
observations correctly classified.
Sensitivity = ——.
itivity = —d
e Specificity (True Negative Rate): Proportion of Y =0
observations correctly classified.

Specificity =

atb
e Interpretation:
e Sensitivity measures how well the model identifies true
positives.
e Specificity measures how well the model identifies true
negatives.
e These metrics are crucial for evaluating model performance,

especially when the costs of false positives and false negatives
differ.



Aims of Sensitivity and Specificity

e Ideally, both sensitivity and specificity should be high to
ensure robust model performance.
e However, practical applications often dictate prioritizing one

over the other.
e Example: Medical testing for a potentially deadly disease
(e.g., breast cancer).
e High Sensitivity:
e Ensures that most true cases of the disease (Y = 1) are
detected.
e Reduces the risk of a true cancer going undiagnosed,
preventing untreated conditions.
e Lower Specificity:
e May result in some healthy individuals (Y = 0) being
misclassified as sick.
e This could lead to wasted time and resources but does not

) carry deadly consequences. o
e In this context, high sensitivity is often more critical to
S . 23
minimize life-threatening errors.



Tuning the Classification Rule Based on Sensitivity and Speci-

ficity

The classification rule is determined by the cutoff value c.

To optimize the model’s performance:
e Experiment with various values of c.
e For each ¢, compute the in-sample sensitivity and specificity
using the resulting confusion matrix.
e Alternatively, use cross-validation to estimate sensitivity and
specificity for out-of-sample predictions.
Trade-off between sensitivity and specificity:
e Lower c: Increases sensitivity but decreases specificity.

e Higher c: Increases specificity but decreases sensitivity.

This trade-off should be considered in the context of the
application to balance the costs of false positives and false
negatives.

24



Bayesian Logistic Regression

Bayesian Logistic Regression with Multiple Predictors
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Bayesian Logistic Regression with Multiple Predictors

e The logistic regression model can be extended to include
multiple predictors X1, Xa, ..., Xp.
e Example: Predicting whether it rains tomorrow in Perth,
Australia (Y is binary).
e Predictors:
e Xi: Humidity at 9 a.m. today.
e X5: Humidity at 3 p.m. today.
e X3: Whether it rains today (binary).

e Model equation for the mean response:

= E(Y; | %) = exp(fo + F1Xin + FoXio + f3Xi3)
1+ exp(Bo + B1Xi1 + BaXio + B3Xi3)
e Bayesian framework:
e Priors are specified for g, 51, 32, 5.
e Posterior inference is conducted to estimate parameters and
make predictions.

26



Fitting Bayesian Multiple Logistic Regression

e Priors: Normal priors for the coefficients (g, 51, 32, 33 are
specified as usual.
e Posterior simulation conducted via:
e Direct Metropolis-Hastings.
e Automated tools like stan_glm from the rstanarm package.
e Example of estimated coefficients:
Bl = —0.007, 32 = 0.08, 33 = 1.15. (Estimates may vary
depending on prior specifications and MCMC runs.)
¢ Inference:

e The 95% credible interval for 31 includes 0 suggesting that
“humidity at 9 a.m. today” may not be necessary as a
predictor.

e Strong association between predictors (X1, X2, X3) might
explain why not all predictors are required.

e Interpretation: Model refinement can be based on credible
intervals and collinearity considerations. 27



Model Selection in Bayesian Multiple Logistic Regression

e Model selection involves comparing different sets of predictors
using standard criteria:

e Cross-Validation (CV) Accuracy: Measures prediction
performance on held-out data.

e Expected Log Predictive Density (ELPD): Reflects the
model’s fit to future data.

e Bayesian Information Criterion (BIC): Balances model fit
and complexity.

28



Model Selection in Bayesian Multiple Logistic Regression

e Example: Predicting rain with multiple predictors.
e Compare:
e Model with 3 predictors (Xi, Xz, X3).
e Model with only Xj.
e Results:
e The 3-predictor model shows better CV accuracy, higher
ELPD, and lower BIC.
e Therefore, the 3-predictor model is preferred over the
single-predictor model.
e Refinement:
e A model with only X5 and X3 (excluding X1) slightly
outperforms the 3-predictor model based on these criteria.
e Conclusion:
e Model selection criteria help identify a balance between
complexity and predictive performance.

29



confusion <- matrix(0, nrow = 2, ncol = 2, dimnames = list(c("0", "1"), c("0", "1")))

}

# Compute accuracy
accuracy <- sum(diag(confusion)) / sum(confusion)
return(accuracy)

library(rstanarm)
library(tidyverse)

# Perform k-fold cross-validation
CV_acc_vals <- sapply(
folds,
function(test_ind) {
train_ind <- setdiff(seq_len(nrow(wais_data)), test_ind)
comp_CV_acc(train_ind, test_ind, wais_mod, wais_data, cutoff = 0.5)
+
)

# Calculate mean cross-validated accuracy
CV_acc <- mean(CV_acc_vals)
cat ("Cross-Validated Classification Accuracy:", CV_acc, "\n")

## Cross-Validated Classification Accuracy: 0.8266667

Bayesian Logistic Regression with Multiple Predictors

# Rain example from the book

# Load required libraries

library(rstanarm) # For Bayesian logistic regression
library(tidyverse) # For data manipulation and visualization
library(broom.mixed) # For tidy summarties of Bayestian models
library(bayesrules) # For Bayestan tools

library(caret) # For stratified cross-validation

# Load and process the data
data(weather_perth) # Assuming ‘weather_perth’ is preloaded
weather <- weather_perth 7>%
select(day_of_year, raintomorrow, humidity9am, humidity3pm, raintoday)

Prior belief for logistic regression: On a “typical” day, the chance of rain is 20% (0.2). The prior mean
on the CENTERED beta_ 0 (intercept) is log(0.2/(1 - 0.2)) = -1.4. A prior SD of 0.7 implies a 95% chance
the log-odds are between -2.8 and 0. This corresponds to odds of 0.06 to 1, or probabilities between 0.057
and 0.5.

# Fit a Bayesian logistic regression model with multiple predictors
rain_stanglm2 <- stan_glm(

13



raintomorrow ~ humidity9am + humidity3pm + raintoday,
data = weather,

family = binomial, # Logtistic regression

prior_intercept = normal(-1.4, 0.7), # Prior for intercept

prior = normal(0, 2.5, autoscale = TRUE), # Weakly informative prior for coefficients

chains = 4, # Number of MCMC chains

iter = 10000 # Number of iterations (post-warmup = 5000)
)

# Summarize posterior estimates with confidence intervals
rain_stanglm2_summ <- tidy(rain_stanglm2, effects = "fixed", conf.int = TRUE, conf.level = 0.95)
print(rain_stanglm2_summ)

# Model comparison: Fit a simpler model with a single predictor
rain_stanglml <- stan_glm(
raintomorrow ~ humidity9am,
data = weather,
family = binomial,
prior_intercept = normal(-1.4, 0.7), # Same prior for intercept
prior = normal(0.07, 0.035), # Prior for slope (adjusted based on context)
chains = 4,
iter = 10000,
prior_PD = FALSE # Use posterior data

# Compare classification accuracy using k-fold cross-validation
# The book suggests c = 0.2 as a reasonable cutoff, but feel free to explore others
set.seed(123) # For reproducibility

# Cross-validation for rain_stanglml
CV_acc_1 <- classification_summary_cv(
model = rain_stanglml,
data = weather,
cutoff = 0.2,
k =10 # 10-fold cross-valtidation

# Cross-validation for rain_stanglm2
CV_acc_2 <- classification_summary_cv(
model = rain_stanglm2,
data = weather,
cutoff = 0.2,
k =10

# Print cross-validated classification accuracy for both models
cat("Cross-Validated Accuracy for Model 1 (Single Predictor):\n")

## Cross-Validated Accuracy for Model 1 (Single Predictor):

CV_acc_1$cv
##  sensitivity specificity overall_accuracy

14



## 1 0.6353766  0.7156357 0.701

cat("Cross-Validated Accuracy for Model 2 (Multiple Predictors):\n")

## Cross-Validated Accuracy for Model 2 (Multiple Predictors):

CV_acc_2%cv

##  sensitivity specificity overall_accuracy
## 1 0.7555544  0.8143257 0.802

# One approach to model selection:
# LOO for rain_stanglml (Single Predictor)

lool <- loo(rain_stanglml)
cat("LOO Estimates for Model 1 (Single Predictor):\n")

## LO0 Estimates for Model 1 (Single Predictor):

print(lool$estimates)

## Estimate SE
## elpd_loo -437.076458 19.0039708
## p_loo 2.217106 0.1798331
## looic 874.152915 38.0079416

# LOO for rain_stanglm2 (Multiple Predictors)
loo2 <- loo(rain_stanglm2)
cat("LOO Estimates for Model 2 (Multiple Predictors):\n")

## LO0 Estimates for Model 2 (Multiple Predictors):

print (loo2$estimates)

## Estimate SE
## elpd_loo -356.91119 20.8083907
## p_loo 4.23658 0.3494051
## looic 713.82239 41.6167814

# Comparing LOO-CV:
cat ("\nModel Comparison using L0OO:\n")

##
## Model Comparison using L0OO:

loo_comp <- loo_compare(lool, loo2)
print (loo_comp)

## elpd_diff se_diff
## rain_stanglm2 0.0 0.0
## rain_stanglml -80.2 13.5

15



# Frequentist approach: Use Bayesian Information Criterion (BIC)
# BIC does mot incorporate prior information, allowing direct comparison of models

# Fit frequentist logistic regression models
rain_glml <- glm(

raintomorrow ~ humidityQam,

data = weather,

family = binomial(logit)
)

rain_glm2 <- glm(

raintomorrow ~ humidity9am + humidity3pm + raintoday,

data = weather,
family = binomial(logit)
)

# Calculate BIC for both models
BIC1 <- BIC(rain_glml)
BIC2 <- BIC(rain_glm2)

cat ("\nBIC Comparison:\n")

#i#
## BIC Comparison:

cat("Model 1 (Single Predictor): BIC =", BIC1, "\an")

## Model 1 (Single Predictor): BIC = 883.721

9

cat("Model 2 (Multiple Predictors): BIC =", BIC2, "\n")

## Model 2 (Multiple Predictors): BIC = 733.167

# Interpretation:

# Lower BIC indicates better model fit while penalizing for model complezity.
# Compare BIC wvalues to decide which model is more appropriate.

Bayesian Logistic Regression Model with Simplified Predictors — only humid-

ity3pm & raintoday as Predictors

rain_stanglm_simp <- stan_glm(
raintomorrow ~ humidity3pm + raintoday,
data = weather,
family = binomial,
prior_intercept = normal(-1.4, 0.7),
prior = normal(0, 2.5, autoscale = TRUE),
chains =1,
iter = 10000

16

# Logistic regression

# Prior for intercept

# Weakly informative priors

# Single MCMC chain for simplicity

# Total iterations (post-warmup = 5000)



# Cross-validated classification accuracy (cutoff = 0.2, 10-fold CV)
CV_acc_simp <- classification_summary_cv(

model = rain_stanglm_simp,

data = weather,

cutoff = 0.2,

k = 10

# Print cross—validated accuracy
cat("Cross-Validated Classification Accuracy (Simplified Model) :\n")

## Cross-Validated Classification Accuracy (Simplified Model):

print(CV_acc_simp$cv)

##  sensitivity specificity overall_accuracy
## 1 0.759782  0.8097739 0.8

# Evaluate model using Leave-One-Out Cross-Validation (LOO)

loo_simp <- loo(rain_stanglm_simp)
cat ("\nL0OO Estimates for Simplified Model:\n")

##
## L0O0 Estimates for Simplified Model:

print (loo_simp$estimates)

## Estimate SE
## elpd_loo -356.229479 20.7998838
## p_loo 3.122271 0.2752114
## looic 712.458958 41.5997676

# Frequentist logistic regression model with the same predictors
rain_glm_simp <- glm(

raintomorrow ~ humidity3pm + raintoday,

data = weather,

family = binomial(logit)
)

# Calculate BIC for the simplified model
BIC_simp <- BIC(rain_glm_simp)
cat("\nBIC for Simplified Model (Frequentist):\n", BIC_simp, "\n")

##
## BIC for Simplified Model (Frequentist):
## 727.1193

# Comparison Notes:
# - LOO: Lower “elpd_loo’ wvalues indicate a better Bayesian model fit.
# — BIC: Lower BIC indicates a better frequentist model fit while penalizing complexity.

17



Multiple Logistic Regression Model using Base R

# Load required package
library(mvtnorm) # For multivariate normal distributions

# Extract variables from the weather dataset
rain_tom <- weather$raintomorrow
humid9am <- weather$humidity9am
humid3pm <- weather$humidity3pm
rain_today <- weather$raintoday

# Convert wvariables to numeric for calculations
rain_tom <- as.numeric(rain_tom) - 1 # Convert rain_tom to O0's and 1's
rain_today <- as.numeric(rain_today) # Ensure rain_today 1S numeric

# Construct the design matriz (X) with an intercept
X <- cbind(rep(1, times = length(humid9am)), humid9am, humid3pm, rain_today)

# Prior specifications

beta_pri_mean <- c(0, -0.35, -0.2, 0.5) # Prior means for beta parameters

# Prior reflects:

# - No specific belief about beta_0 (intercept)

# - Moderate beliefs about the slopes for humid9am, humid3pm, and rain_today
beta_pri_cov <- diag(c(100, 40, 40, 40)) # Prior covartance matriz

# Scaling factor for proposal covariance matriz (can be tuned for MCMC acceptance rates)
k<-1

# Frequentist Logistic Regression Model (using glm)
log_reg_out <- glm(rain_tom ~ humid9am + humid3pm + rain_today, family = binomial(logit))

# Summary of the logistic regression model
cat ("\nSummary of the Logistic Regression Model:\n")

##
## Summary of the Logistic Regression Model:

summary (log_reg_out)

##

## Call:

## glm(formula = rain_tom ~ humid9am + humid3pm + rain_today, family = binomial(logit))
##

## Coefficients:

#it Estimate Std. Error z value Pr(>|z|)

## (Intercept) -6.639653  0.488528 -13.591 < 2e-16 ***

## humid9am -0.006850 0.007407 -0.925 0.355

## humid3pm 0.079831 0.008576 9.309 < 2e-16 ***

## rain_today 1.155394  0.216950 5.326 1.01e-07 *x*x*

#H# ——-

## Signif. codes: O ’**x> 0.001 ’*x> 0.01 ’%’ 0.05 >.” 0.1 7 > 1
##

18



## (Dispersion parameter for binomial family taken to be 1)
##

#i# Null deviance: 960.74 on 999 degrees of freedom
## Residual deviance: 705.54 on 996 degrees of freedom
## AIC: 713.54

##

## Number of Fisher Scoring iterations: 5

# Set up the proposal covariance matriz

pro_cov_mat <- k * solve(t(X) %xJ diag(fitted(log_reg_out)) %*% X)
# Alternative option for proposal covariance matric:

# pro_cov_mat <- k * diag(ncol (X))

# Initialize MCMC parameters

betas_curr <- beta_pri_mean # Initial parameter estimates

V <- pro_cov_mat # Proposal covartance matrizT

mu <- beta_pri_mean # Prior mean vector

Sig_inv <- solve(beta_pri_cov) # Inverse of prior covariance matriz

# MCMC settings

j<=0 # Counter for accepted proposals
burn <- 1000 # Number of burn-in iterations
Niter <- 50000 # Total number of iterations

mcmc_res <- matrix(0, nrow = Niter, ncol = length(beta_pri_mean)) # Storage for MCMC samples

# MCMC sampling loop

for (i in 1:Niter) {
# Generate candidate beta from proposal distribution
betas_pro <- rmvnorm(l, betas_curr, V)
betas_pro <- as.vector(betas_pro)

# Calculate the Metropolis ratio
log_ratio <- (
-k * sum(log(l + exp(X %*/, betas_pro))) + sum(rain_tom * X %xJ, betas_pro) -
0.5 * t(betas_pro - mu) %+*% Sig_inv %xJ (betas_pro - mu)
) - «(
-k * sum(log(l + exp(X %*) betas_curr))) + sum(rain_tom * X %*J betas_curr) -
0.5 * t(betas_curr - mu) %*% Sig_inv %*J, (betas_curr - mu)

# Accept/reject step
if (runif(1) < exp(log_ratio)) {
betas_curr <- betas_pro # Accept candidate
j<-j+1 # Increment acceptance counter

}

# Save the current beta values
mcmc_res[i, ] <- betas_curr

# Calculate acceptance rate
acc_rate <- j / Niter
cat("Acceptance Rate:", acc_rate, "\n")
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## Acceptance Rate: 0.49968

# Thinning (everrain_tom 5th value)
thin <- 5
beta_vals_thin <- mcmc_res[seq(l, Niter, by = thin), ]

# Remove burn—in samples
beta_vals_thin_b <- beta_vals_thin[-(1:burn), ]

# Diagnostic plots: Autocorrelation for each parameter
par(mfrow = c(2, 2)) # Set up a 2humid3pm plotting grid
for (i in 1:ncol(beta_vals_thin_b)) {

acf (beta_vals_thin_b[, i], main = bquote("ACF of " ~ betal.(i - 1)1) )
}
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par(mfrow = c(1, 1)) # Reset plotting grid

# Diagnostic plots: Trace plots for each parameter
par(mfrow = c(2, 2)) # Set up a 2humid3pm plotting grid
for (i in 1:ncol(beta_vals_thin_b)) {
plot(beta_vals_thin_b[, i], type = '1',
main = bquote("Trace Plot of " ~ betal.(i - 1)]1),
xlab = "Iteration", ylab = "value")
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par(mfrow = c(1, 1)) # Reset plotting grid

# Posterior summaries

-0.03

2.0

0.5

post_meds <- apply(beta_vals_thin_b, 2, median)
post_low <- apply(beta_vals_thin_b, 2, quantile, probs = 0.025)
post_up <- apply(beta_vals_thin_b, 2, quantile, probs = 0.975)
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# Posterior medians

# Combine posterior summaries into a tidrain_tom data frame

names_preds <- c("humid9am", "humid3pm", "rain_today")

beta_post_summ <- data.frame(
“0.025 Quantile” = post_low,
0.5 Quantile” = post_meds,
“0.975 Quantile” = post_up,
row.names = c("Intercept", names_preds)

# Print the posterior Summary
cat ("Posterior Summary:\n")

## Posterior Summary:

print (beta_post_summ)

## X0.025.Quantile X0.5.Quantile XO.
## Intercept -7.66201004 -6.66399335
## humid9am -0.02158058 -0.00704039
## humid3pm 0.06356771 0.08053736
## rain_today 0.72117530 1.15555140
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975.Quantile
-5.758651522
0.007749144
0.098286821
1.583379383

# 2.5/ quantile

# 97.5) quantile

# Predictor mames
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