
STAT7630: Bayesian Statistics

Lecture Slides # 14

Naive Bayes Classification

Chapter 14

Elvan Ceyhan

Department of Mathematics & Statistics

Auburn University

Fall 2024,

Updated: November, 2024

1



Outline

Naive Bayes Classification (NBC)

NBC with One Categorical Predictor

NBC with One Continuous Predictor

NBC with Two Continuous Predictors

2



Goal of Classification

� The primary objective of classification is to predict the class

membership of a categorical response variable Y using a set

of predictor variables (X1,X2, . . . ,Xp).

� In logistic regression, this is achieved by modeling Y as a

binary response (e.g., Y = 1 or Y = 0) and classifying new

observations based on their predictor values.

� Logistic regression, however, is limited to binary outcomes.

� For data sets where the response variable Y contains more

than two categories, more general classification methods are

required to handle multiclass scenarios.
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Example of a Multicategory Response Y

� Consider a dataset containing three species of Antarctic

penguins: Adelie, Chinstrap, and Gentoo.

� The classification objective is to assign a given penguin
observation to one of these species using the following
predictor variables:

� X1: Weight (binary, 1 if above average, 0 if below average)

� X2: Bill length (measured in mm)

� X3: Flipper length (measured in mm)

� The dataset (penguins bayes) contains measurements for
344 penguins with known species labels:

� 152 Adelie, 68 Chinstrap, and 124 Gentoo.
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Penguin Images

Figure 1: Adelie, Chinstrap, and Gentoo penguins. 5



Possible Prior Specifications

� Empirical Prior: Assume the observed sample proportions
represent the true population proportions.

� This is a commonly used approach due to its data-driven

nature.

� Subjective Prior: Specify prior probabilities based on expert
knowledge or external information.

� Useful when domain knowledge suggests deviations from

sample proportions.

� Noninformative Prior: Assign equal prior probabilities to all
classes.

� Suitable only if the population proportions are expected to be

roughly equal across categories.

� May lead to suboptimal results when the true category

proportions differ significantly.
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Naive Bayes Classification Compared to Logistic Regression

� Logistic Regression:

� Effectively classifies binary response variables (Y ∈ {0, 1}).
� Relies on a parametric model for the relationship between

predictors and the log-odds of the response.

� Naive Bayes Classification:

� Handles categorical response variables Y with two or more

categories seamlessly.

� Simplicity: Based primarily on Bayes’ Rule with minimal

theoretical complexity.

� Computational efficiency: Does not require iterative

procedures like MCMC simulation.
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Example of Naive Bayes Classification with One Categorical

Predictor

� Use the categorical predictor “above average weight” (X1) to

classify a new penguin into one of three species.

� Dataset includes 342 penguins after excluding two with

missing predictor values.

Figure 2: The proportion of each penguin species that’s above average

weight.
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Example of Naive Bayes Classification with One Categorical

Predictor

� Preliminary Observation: The above bar plot reveals that

the most likely species for below-average weight (X1 = 0) is

Chinstrap.

� Question: Should we classify any penguin with X1 = 0 as

Chinstrap?

� Caution:

� Despite the bar plot, Chinstrap is the rarest species overall in

the population.

� Prior probabilities must be carefully considered before making

a final classification.
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Bayes’ Rule for Classification with One Categorical Predictor

Bayes’ Rule: The probability that a categorical response takes

value y∗, given a particular value of the categorical predictor X1, is

computed as:

p(y∗ | x1) =
prior× likelihood

normalizing constant
=

p(y∗)L(y∗ | x1)
p(x1)

Normalizing Constant: The denominator p(x1) is given by:

p(x1) =
∑
all y

p(y)L(y | x1)
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Bayes’ Rule for Classification with One Categorical Predictor

Expanded Form:

p(x1) = p(y = A)L(y = A | x1) + p(y = C )L(y = C | x1)
+ p(y = G )L(y = G | x1)

Interpretation:

� p(y∗): Prior probability of the class y∗.

� L(y∗ | x1): Likelihood of observing x1 given class y∗.

� p(x1): Overall probability of observing x1 across all classes.
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Examples of Calculations for Naive Bayes Classification

Example: Probability Calculation for Adelie Penguins

� Below is a table from R output with counts broken down by

species and weight category.

� For a penguin with below average weight (X1 = 0), the

probability that it is an Adelie (y = A) is:

p(y = A | x1 = 0) =
126

193
≈ 0.6528

Table 1: Species Counts by Group

Species \ X1 0 1 Total

Adelie 126 25 151

Chinstrap 61 7 68

Gentoo 6 117 123

Total 193 149 342
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Examples of Calculations (continued)

Bayes’ Rule Components:

p(y = A) =
151

342
, p(y = C ) =

68

342
, p(y = G ) =

123

342

L(y = A | x1 = 0) =
126

151
≈ 0.8344,

L(y = C | x1 = 0) =
61

68
≈ 0.8971

L(y = G | x1 = 0) =
6

123
≈ 0.0488

Normalizing Constant:

p(x1 = 0) =
151

342
· 126
151

+
68

342
· 61
68

+
123

342
· 6

123
=

193

342
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Examples of Calculations (continued)

Posterior Probability for Adelie Penguins:

p(y = A | x1 = 0) =
p(y = A) · L(y = A | x1 = 0)

p(x1 = 0)
=(

151
342

)
×
(
126
151

)
193
342

≈ 0.6528

Conclusion: These calculations confirm Bayes’ Rule:

p(y∗ | x1) =
p(y∗)L(y∗ | x1)

p(x1)

Other Posterior Probabilities:

p(y = C | x1 = 0) ≈ 0.3161

p(y = G | x1 = 0) ≈ 0.0311

Conclusion: These results illustrate the application of Bayes’ Rule

for calculating posterior probabilities using a categorical predictor. 15



Conclusions

� Highest Posterior Probability: The category with the

highest posterior probability is “Adelie”.

� Even though the proportion of Chinstraps below average

weight exceeds that of Adelies, the prevalence of Adelies in

the population makes it more likely that a random

below-average-weight penguin is an Adelie.

� This outcome reflects the prior probabilities set to match

species proportions in the sample:

p(y = A), p(y = C ), p(y = G ).

� Alternative Priors: Using different priors, such as

p(y = A) = p(y = C ) = p(y = G ) = 1
3 , would yield different

posterior probabilities.

� The current approach, using sample proportions as priors, is

likely the most reasonable choice for this analysis. 16
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Example of Naive Bayes Classification with One Continuous

Predictor

� Now consider classification based on a continuous predictor.

� For instance, let X2 =bill length (in mm) be the predictor

used to classify penguin species.

� Suppose an observed penguin has a bill length of 50 mm.

� Observation: The below plot indicates that this bill length

would be extremely uncommon for an Adelie.

Figure 3: Density

plots of the bill

lengths (mm)

observed among

three penguin

species.
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Naive Bayes Classification with One Continuous Predictor

� For a continuous predictor, the Naive Bayes approach

assumes:

X2|(Y = A) ∼ N(µA, σ
2
A),

X2|(Y = C ) ∼ N(µC , σ
2
C ),

X2|(Y = G ) ∼ N(µG , σ
2
G )

� This assumption implies the predictor follows a separate

conditional normal distribution for each response category.

� While this approach is somewhat restrictive, it is appropriate

here, as suggested by the estimated density plots for bill

length.

� The means and variances of these normal distributions are

typically set to the sample means and variances for each

species in the data.
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Using Bayes’ Rule to Get Posterior Probabilities for Each Cat-

egory

� To calculate the posterior probability of an observation

belonging to a category y∗, we use Bayes’ Rule:

p(y∗|x2) =
p(y∗)L(y∗|x2)

p(x2)
=

p(y∗)L(y∗|x2)∑
all y

p(y)L(y |x2)

� Example calculations for x2 = 50 mm (see R code for normal

density values):

p(x2 = 50) =
151

342
·0.0000212+ 68

342
·0.112+123

342
·0.09317 ≈ 0.05579

� Posterior probabilities:

p(y = A|x2 = 50) =
151
342 · 0.0000212

0.05579
≈ 0.0002

p(y = C |x2 = 50) ≈ 0.3992, p(y = G |x2 = 50) ≈ 0.600

� Conclusion: The observation is most likely to belong to the

category G (Gentoo).
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Conclusions

� For a penguin with a bill length of 50 mm, the category with

the highest posterior probability is “Gentoo”.

� The predominance of Gentoos in the population contributes

to their higher posterior probability, even though bill length

values of 50 mm are less common among Gentoos compared

to Chinstraps.

� This highlights the importance of incorporating prior

probabilities in Bayesian classification to account for

population-level proportions.
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Naive Bayes Classification with Two Continuous Predictors

� The Naive Bayes Classification framework can accommodate

multiple predictors.

� For the penguin example, incorporating both X2 = bill length

and X3 = flipper length may improve classification accuracy.

Figure 4: Density plots of the bill lengths (mm) and flipper lengths

(mm) among our three penguin species. 23



Naive Bayes Classification with Two Continuous Predictors

� Using Bayes’ Rule, the likelihood component L(y |x2, x3) is
simplified with the naive assumption of (conditional)

independence:

L(y |x2, x3) = f (x2, x3|y) = f (x2|y)f (x3|y).

� This assumption, however, may not hold in practice. For

example, in the penguin dataset, X2 and X3 exhibit a positive

association (as seen in the scatterplot), indicating

dependence.
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Calculations for Naive Bayes Classification with Two Continu-

ous Predictors

� Consider a new penguin with bill length X2 = 50 and flipper

length X3 = 195.

� Compute the posterior probabilities for each category:

p(y = A)L(y = A|x2 = 50, x3 = 195) =
151

342
·0.0000212·0.04554

p(y = C )L(y = C |x2 = 50, x3 = 195) =
68

342
· 0.112 · 0.05541

p(y = G )L(y = G |x2 = 50, x3 = 195) =
123

342
·0.09317·0.0001934

� Compute the normalizing constant:∑
all y

p(y)L(y |x2 = 50, x3 = 195) ≈ 0.001241
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Continued Calculations for Naive Bayes Classification

� Posterior probability for y = A:

p(y = A|x2 = 50, x3 = 195) =

151
342 · 0.0000212 · 0.04554

0.001241
≈ 0.0003

� Similarly, compute the posterior probabilities for the remaining

categories:

p(y = C |x2 = 50, x3 = 195) ≈ 0.9944

p(y = G |x2 = 50, x3 = 195) ≈ 0.0052

� Observations:
� The category with the highest posterior probability is y = C

(Chinstrap).

� The classification reflects the contribution of both predictors,

X2 (bill length) and X3 (flipper length), weighted by their

respective likelihoods and prior probabilities. 26



Conclusions

� This penguin is almost certainly classified as a Chinstrap.

� The combination of bill length and flipper length aligns

strongly with the characteristics of Chinstrap penguins for this

set of variables.

� The Naive Bayes classifier effectively integrates multiple

predictors to enhance classification accuracy, even under the

assumption of independence.
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Doing It the Easy Way: The naiveBayes Function

� To streamline the process and avoid tedious calculations, we

can leverage the naiveBayes function from the e1071

package in R.

� This function:

� Automatically computes prior category probabilities based on

observed category proportions in the sample (the preferred

approach).

� Efficiently predicts the class of a “new” observation with

specified predictor values.

� See the R example for practical implementation and

predictions for new penguin data.
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Assessing the Performance of Naive Bayes Classification

� Tools for evaluating classification accuracy are similar to those
covered in Chapter 13:

� Confusion Matrix: Provides a summary of prediction

outcomes (e.g., true positives, false positives).

� Cross-Validation: Offers robust estimates of classification

accuracy by splitting the data into training and validation sets.

� For multiple potential predictor variables:

� Develop several classification models.

� Compare performance using confusion matrices and

cross-validation metrics.

� Practical Implementation: See R examples for applying

these techniques on the penguins dataset.
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Naive Bayes vs. Logistic Regression

� For categorical responses with more than two categories:

� Logistic regression is not applicable.

� Other generalized linear models exist but are beyond the scope

of this class.

� When the response is binary (two categories):

� Advantages of Logistic Regression:

� Provides insights via regression coefficients about the

relationship between the response and predictors.

� Simplifying Assumptions of Naive Bayes:

� Predictors are normally distributed.

� Predictors are independent of one another.

� These assumptions may not hold in reality.

� Knowing both tools equips us to handle various classification

scenarios effectively.
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