

STAT7630: Bayesian Statistics

Lecture Slides # 14

Naive Bayes Classification
Chapter 14

Elvan Ceyhan
Department of Mathematics & Statistics
Auburn University
Fall 2024,
Updated: November, 2024

Outline

Naive Bayes Classification (NBC)

NBC with One Categorical Predictor

NBC with One Continuous Predictor

NBC with Two Continuous Predictors

Goal of Classification

- The primary objective of classification is to predict the class membership of a categorical response variable Y using a set of predictor variables (X_1, X_2, \dots, X_p) .
- In logistic regression, this is achieved by modeling Y as a binary response (e.g., $Y = 1$ or $Y = 0$) and classifying new observations based on their predictor values.
- Logistic regression, however, is limited to binary outcomes.
- For data sets where the response variable Y contains more than two categories, more general classification methods are required to handle multiclass scenarios.

Example of a Multicategory Response Y

- Consider a dataset containing three species of Antarctic penguins: *Adelie*, *Chinstrap*, and *Gentoo*.
- The classification objective is to assign a given penguin observation to one of these species using the following predictor variables:
 - X_1 : Weight (binary, 1 if above average, 0 if below average)
 - X_2 : Bill length (measured in mm)
 - X_3 : Flipper length (measured in mm)
- The dataset (`penguins_bayes`) contains measurements for 344 penguins with known species labels:
 - 152 *Adelie*, 68 *Chinstrap*, and 124 *Gentoo*.

Penguin Images

Figure 1: Adelie, Chinstrap, and Gentoo penguins.

Possible Prior Specifications

- **Empirical Prior:** Assume the observed sample proportions represent the true population proportions.
 - This is a commonly used approach due to its data-driven nature.
- **Subjective Prior:** Specify prior probabilities based on expert knowledge or external information.
 - Useful when domain knowledge suggests deviations from sample proportions.
- **Noninformative Prior:** Assign equal prior probabilities to all classes.
 - Suitable only if the population proportions are expected to be roughly equal across categories.
 - May lead to suboptimal results when the true category proportions differ significantly.

Naive Bayes Classification Compared to Logistic Regression

- **Logistic Regression:**

- Effectively classifies binary response variables ($Y \in \{0, 1\}$).
- Relies on a parametric model for the relationship between predictors and the log-odds of the response.

- **Naive Bayes Classification:**

- Handles categorical response variables Y with two or more categories seamlessly.
- **Simplicity:** Based primarily on Bayes' Rule with minimal theoretical complexity.
- **Computational efficiency:** Does not require iterative procedures like MCMC simulation.

Outline

Naive Bayes Classification (NBC)

NBC with One Categorical Predictor

NBC with One Continuous Predictor

NBC with Two Continuous Predictors

Example of Naive Bayes Classification with One Categorical Predictor

- Use the categorical predictor “above average weight” (X_1) to classify a new penguin into one of three species.
- Dataset includes 342 penguins after excluding two with missing predictor values.

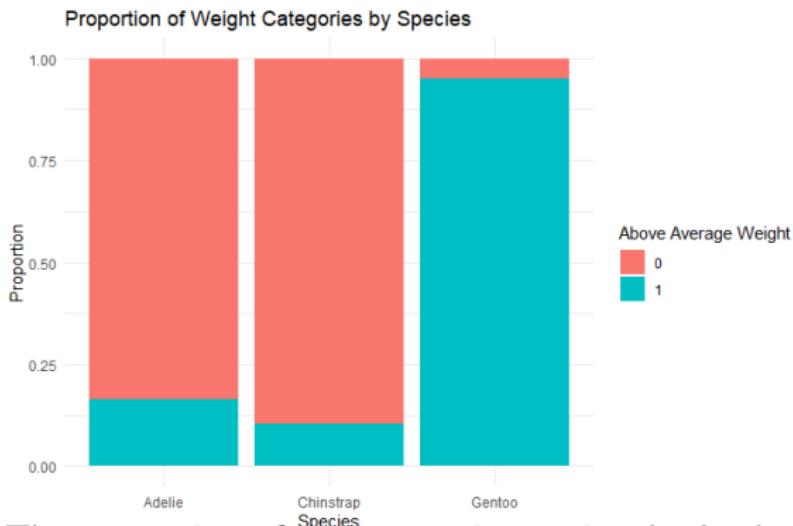


Figure 2: The proportion of each penguin species that's above average weight.

Example of Naive Bayes Classification with One Categorical Predictor

- **Preliminary Observation:** The above bar plot reveals that the most likely species for below-average weight ($X_1 = 0$) is *Chinstrap*.
- **Question:** Should we classify any penguin with $X_1 = 0$ as *Chinstrap*?
- **Caution:**
 - Despite the bar plot, *Chinstrap* is the rarest species overall in the population.
 - Prior probabilities must be carefully considered before making a final classification.

Bayes' Rule for Classification with One Categorical Predictor

Bayes' Rule: The probability that a categorical response takes value y^* , given a particular value of the categorical predictor X_1 , is computed as:

$$p(y^* | x_1) = \frac{\text{prior} \times \text{likelihood}}{\text{normalizing constant}} = \frac{p(y^*)L(y^* | x_1)}{p(x_1)}$$

Normalizing Constant: The denominator $p(x_1)$ is given by:

$$p(x_1) = \sum_{\text{all } y} p(y)L(y | x_1)$$

Bayes' Rule for Classification with One Categorical Predictor

Expanded Form:

$$p(x_1) = p(y = A)L(y = A \mid x_1) + p(y = C)L(y = C \mid x_1) + p(y = G)L(y = G \mid x_1)$$

Interpretation:

- $p(y^*)$: Prior probability of the class y^* .
- $L(y^* \mid x_1)$: Likelihood of observing x_1 given class y^* .
- $p(x_1)$: Overall probability of observing x_1 across all classes.

Examples of Calculations for Naive Bayes Classification

Example: Probability Calculation for Adelie Penguins

- Below is a table from R output with counts broken down by species and weight category.
- For a penguin with below average weight ($X_1 = 0$), the probability that it is an Adelie ($y = A$) is:

$$p(y = A \mid x_1 = 0) = \frac{126}{193} \approx 0.6528$$

Table 1: Species Counts by Group

Species \ X_1	0	1	Total
Adelie	126	25	151
Chinstrap	61	7	68
Gentoo	6	117	123
Total	193	149	342

Examples of Calculations (continued)

Bayes' Rule Components:

$$p(y = A) = \frac{151}{342}, \quad p(y = C) = \frac{68}{342}, \quad p(y = G) = \frac{123}{342}$$

$$L(y = A \mid x_1 = 0) = \frac{126}{151} \approx 0.8344,$$

$$L(y = C \mid x_1 = 0) = \frac{61}{68} \approx 0.8971$$

$$L(y = G \mid x_1 = 0) = \frac{6}{123} \approx 0.0488$$

Normalizing Constant:

$$p(x_1 = 0) = \frac{151}{342} \cdot \frac{126}{151} + \frac{68}{342} \cdot \frac{61}{68} + \frac{123}{342} \cdot \frac{6}{123} = \frac{193}{342}$$

Examples of Calculations (continued)

Posterior Probability for Adelie Penguins:

$$p(y = A | x_1 = 0) = \frac{p(y = A) \cdot L(y = A | x_1 = 0)}{p(x_1 = 0)} =$$
$$\frac{\left(\frac{151}{342}\right) \times \left(\frac{126}{151}\right)}{\frac{193}{342}} \approx 0.6528$$

Conclusion: These calculations confirm Bayes' Rule:

$$p(y^* | x_1) = \frac{p(y^*)L(y^* | x_1)}{p(x_1)}$$

Other Posterior Probabilities:

$$p(y = C | x_1 = 0) \approx 0.3161$$

$$p(y = G | x_1 = 0) \approx 0.0311$$

Conclusion: These results illustrate the application of Bayes' Rule for calculating posterior probabilities using a categorical predictor.

Conclusions

- **Highest Posterior Probability:** The category with the highest posterior probability is “**Adelie**”.
- Even though the proportion of Chinstraps below average weight exceeds that of Adelies, the prevalence of Adelies in the population makes it more likely that a random below-average-weight penguin is an Adelie.
- This outcome reflects the prior probabilities set to match species proportions in the sample:

$$p(y = A), p(y = C), p(y = G).$$

- **Alternative Priors:** Using different priors, such as $p(y = A) = p(y = C) = p(y = G) = \frac{1}{3}$, would yield different posterior probabilities.
- The current approach, using sample proportions as priors, is likely the most reasonable choice for this analysis.

Outline

Naive Bayes Classification (NBC)

NBC with One Categorical Predictor

NBC with One Continuous Predictor

NBC with Two Continuous Predictors

Example of Naive Bayes Classification with One Continuous Predictor

- Now consider classification based on a **continuous predictor**.
- For instance, let $X_2 = \text{bill length (in mm)}$ be the predictor used to classify penguin species.
- Suppose an observed penguin has a **bill length of 50 mm**.
- Observation:** The below plot indicates that this bill length would be *extremely uncommon* for an Adelie.

Conditional Distribution of Bill Length by Species

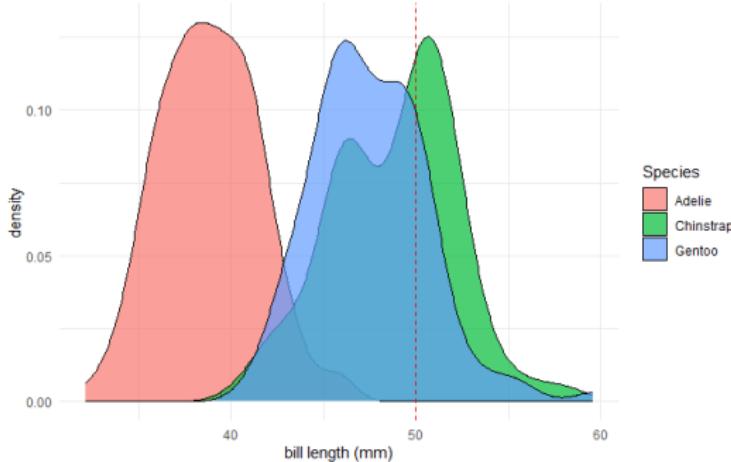


Figure 3: Density plots of the bill lengths (mm) observed among three penguin species.

Naive Bayes Classification with One Continuous Predictor

- For a **continuous predictor**, the Naive Bayes approach assumes:

$$X_2 | (Y = A) \sim N(\mu_A, \sigma_A^2),$$

$$X_2 | (Y = C) \sim N(\mu_C, \sigma_C^2),$$

$$X_2 | (Y = G) \sim N(\mu_G, \sigma_G^2)$$

- This assumption implies the predictor follows a separate **conditional normal distribution** for each response category.
- While this approach is somewhat restrictive, it is appropriate here, as suggested by the estimated density plots for **bill length**.
- The **means** and **variances** of these normal distributions are typically set to the **sample means and variances** for each species in the data.

Using Bayes' Rule to Get Posterior Probabilities for Each Category

- To calculate the posterior probability of an observation belonging to a category y^* , we use Bayes' Rule:

$$p(y^*|x_2) = \frac{p(y^*)L(y^*|x_2)}{p(x_2)} = \frac{p(y^*)L(y^*|x_2)}{\sum_{\text{all } y} p(y)L(y|x_2)}$$

- Example calculations for $x_2 = 50$ mm (see R code for normal density values):

$$p(x_2 = 50) = \frac{151}{342} \cdot 0.0000212 + \frac{68}{342} \cdot 0.112 + \frac{123}{342} \cdot 0.09317 \approx 0.05579$$

- Posterior probabilities:**

$$p(y = A|x_2 = 50) = \frac{\frac{151}{342} \cdot 0.0000212}{0.05579} \approx 0.0002$$

$$p(y = C|x_2 = 50) \approx 0.3992, \quad p(y = G|x_2 = 50) \approx 0.600$$

- Conclusion:** The observation is most likely to belong to the category G (Gentoo).

Conclusions

- For a penguin with a bill length of 50 mm, the category with the highest posterior probability is “**Gentoo**”.
- The predominance of Gentoos in the population contributes to their higher posterior probability, even though bill length values of 50 mm are less common among Gentoos compared to Chinstraps.
- This highlights the importance of incorporating prior probabilities in Bayesian classification to account for population-level proportions.

Outline

Naive Bayes Classification (NBC)

NBC with One Categorical Predictor

NBC with One Continuous Predictor

NBC with Two Continuous Predictors

Naive Bayes Classification with Two Continuous Predictors

- The Naive Bayes Classification framework can accommodate multiple predictors.
- For the penguin example, incorporating both $X_2 = \text{bill length}$ and $X_3 = \text{flipper length}$ may improve classification accuracy.

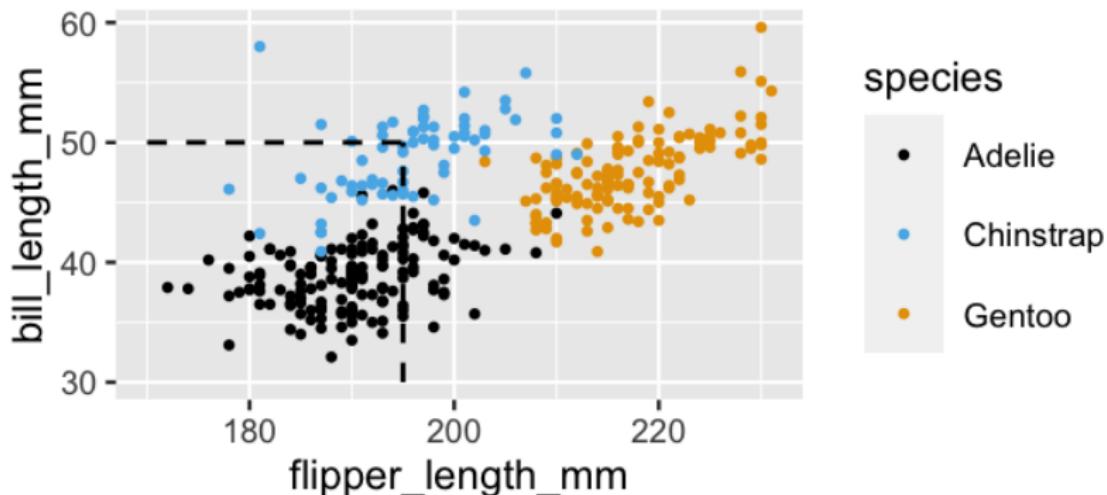


Figure 4: Density plots of the bill lengths (mm) and flipper lengths (mm) among our three penguin species.

Naive Bayes Classification with Two Continuous Predictors

- Using Bayes' Rule, the likelihood component $L(y|x_2, x_3)$ is simplified with the naive assumption of (conditional) independence:

$$L(y|x_2, x_3) = f(x_2, x_3|y) = f(x_2|y)f(x_3|y).$$

- This assumption, however, may not hold in practice. For example, in the penguin dataset, X_2 and X_3 exhibit a **positive association** (as seen in the scatterplot), indicating dependence.

Calculations for Naive Bayes Classification with Two Continuous Predictors

- Consider a new penguin with bill length $X_2 = 50$ and flipper length $X_3 = 195$.
- Compute the posterior probabilities for each category:

$$p(y = A)L(y = A|x_2 = 50, x_3 = 195) = \frac{151}{342} \cdot 0.0000212 \cdot 0.04554$$

$$p(y = C)L(y = C|x_2 = 50, x_3 = 195) = \frac{68}{342} \cdot 0.112 \cdot 0.05541$$

$$p(y = G)L(y = G|x_2 = 50, x_3 = 195) = \frac{123}{342} \cdot 0.09317 \cdot 0.0001934$$

- Compute the normalizing constant:

$$\sum_{\text{all } y} p(y)L(y|x_2 = 50, x_3 = 195) \approx 0.001241$$

Continued Calculations for Naive Bayes Classification

- Posterior probability for $y = A$:

$$p(y = A|x_2 = 50, x_3 = 195) =$$

$$\frac{\frac{151}{342} \cdot 0.0000212 \cdot 0.04554}{0.001241} \approx 0.0003$$

- Similarly, compute the posterior probabilities for the remaining categories:

$$p(y = C|x_2 = 50, x_3 = 195) \approx 0.9944$$

$$p(y = G|x_2 = 50, x_3 = 195) \approx 0.0052$$

- Observations:**

- The category with the highest posterior probability is $y = C$ (Chinstrap).
- The classification reflects the contribution of both predictors, X_2 (bill length) and X_3 (flipper length), weighted by their respective likelihoods and prior probabilities.

Conclusions

- This penguin is almost certainly classified as a **Chinstrap**.
- The combination of **bill length** and **flipper length** aligns strongly with the characteristics of Chinstrap penguins for this set of variables.
- The Naive Bayes classifier effectively integrates multiple predictors to enhance classification accuracy, even under the assumption of independence.

Doing It the Easy Way: The `naiveBayes` Function

- To streamline the process and avoid tedious calculations, we can leverage the `naiveBayes` function from the `e1071` package in R.
- This function:
 - Automatically computes prior category probabilities based on observed category proportions in the sample (the preferred approach).
 - Efficiently predicts the class of a “new” observation with specified predictor values.
- See the R example for practical implementation and predictions for new penguin data.

Assessing the Performance of Naive Bayes Classification

- Tools for evaluating classification accuracy are similar to those covered in Chapter 13:
 - **Confusion Matrix:** Provides a summary of prediction outcomes (e.g., true positives, false positives).
 - **Cross-Validation:** Offers robust estimates of classification accuracy by splitting the data into training and validation sets.
- For multiple potential predictor variables:
 - Develop several classification models.
 - Compare performance using confusion matrices and cross-validation metrics.
- **Practical Implementation:** See R examples for applying these techniques on the penguins dataset.

Naive Bayes vs. Logistic Regression

- For **categorical responses with more than two categories**:
 - Logistic regression is not applicable.
 - Other generalized linear models exist but are beyond the scope of this class.
- When the response is **binary** (two categories):
 - **Advantages of Logistic Regression:**
 - Provides insights via regression coefficients about the relationship between the response and predictors.
 - **Simplifying Assumptions of Naive Bayes:**
 - Predictors are normally distributed.
 - Predictors are independent of one another.
 - These assumptions may not hold in reality.
- Knowing both tools equips us to handle various classification scenarios effectively.