

STAT7630: Bayesian Statistics

Lecture Slides # 15

Hierarchical Models and Pooling

Chapter 15 Hierarchical Models are Exciting

Elvan Ceyhan

Department of Mathematics & Statistics

Auburn University

Fall 2024,

Updated: November, 2024

Outline

Hierarchical Models

Hierarchical (Grouped) Data

Modeling with Completely Pooling

Modeling with No Pooling

Modeling with Partial Pooling - Hierarchical Models

Outline

Hierarchical Models

Hierarchical (Grouped) Data

Modeling with Completely Pooling

Modeling with No Pooling

Modeling with Partial Pooling - Hierarchical Models

Hierarchical (Grouped) Data

- **Hierarchical models** are utilized for data exhibiting a **grouping structure**.
- **Examples from the literature:**
 - A sampled set of schools with data Y collected on multiple individual students within each school (*clustered data*).
 - A sampled set of laboratories with data Y gathered from multiple experiments conducted within each lab (*clustered data*).
 - A sampled set of individuals with repeated measurements of a variable Y recorded over time (*longitudinal data*).
- **Dependency structure:**
 - Observations within the same school, lab, or individual are **not independent** and exhibit **intra-group correlation**.
 - Ignoring the grouped nature of the data may result in **biased estimates** and **misleading inferences**.

Terminology

- **Hierarchical models** are often referred to by other names depending on context and complexity:
 - **Multilevel models**
 - **Mixed-effects models**
 - **Random-effects models**
- **Panel data:** A specific case of *longitudinal data* where the same set of subjects is observed at each time point.
- In general, with longitudinal data, the set of subjects at each time point may vary across time.

Example of Grouped Data

- **Cherry Blossom Race Data:**

- Dataset includes race times (in minutes) for runners aged in their 50s or 60s, recorded over multiple years.
- Many runners appear **multiple times** in the dataset, as they participated in multiple races across different years.

- **Grouping structure:**

- Data are **grouped by runner**, as multiple observations are associated with each individual.
- Race times from the same runner are **not independent** but exhibit **intra-runner correlation**.

Visualizing the Cherry Blossom Race Data

- **Visualization:**

- Side-by-side boxplots (see next slide) display the distribution of race times for 36 runners who participated in multiple Cherry Blossom races.

- **Observations:**

- Runner 10: **Slow performance.**
- Runner 29: **Fast and consistent performance.**
- Runner 17: **High variability in performance.**

- **Research Question:**

- What is the **relationship between a runner's age and their race time?**

Visualizing the Cherry Blossom Race Data

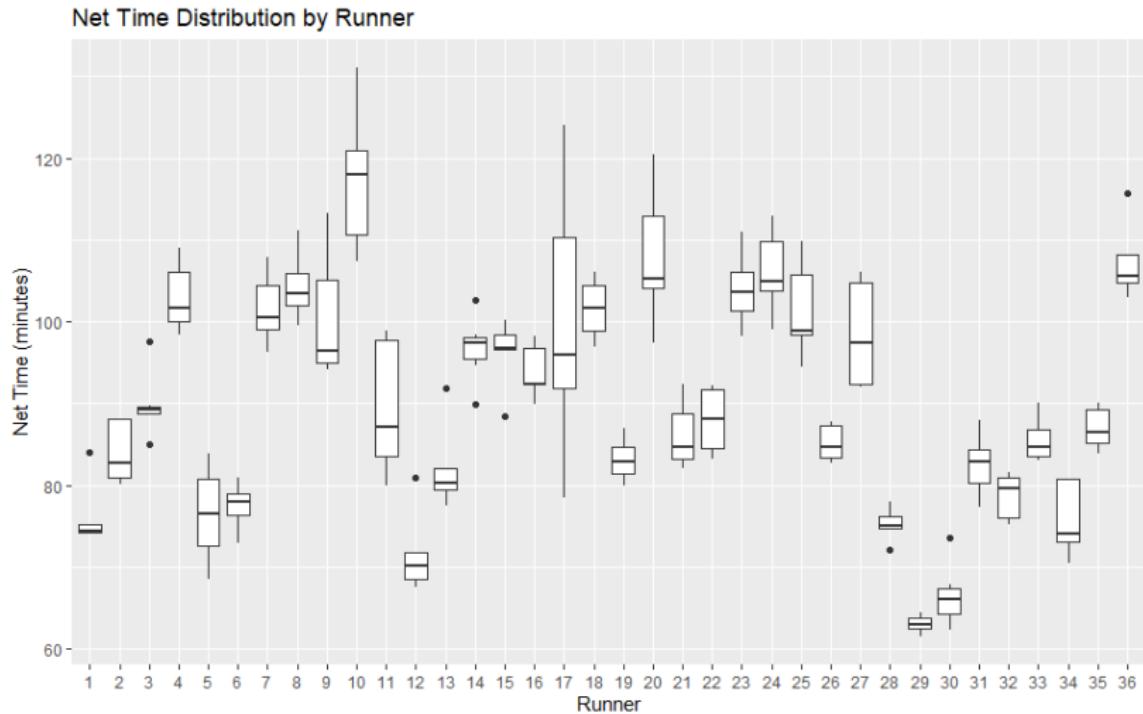


Figure 1: Boxplots of net running times (in minutes) for 36 runners that entered the Cherry Blossom race in multiple years.

Outline

Hierarchical Models

Hierarchical (Grouped) Data

Modeling with Completely Pooling

Modeling with No Pooling

Modeling with Partial Pooling - Hierarchical Models

Complete Pooling Analysis

- **Approach:**
 - Pool all data together, disregarding the grouping by runner.
 - Create a scatterplot of **race time** (Y) against **age** (X) (see next slide).
- **Observations:**
 - The scatterplot suggests a **weak relationship** between age and race time.
- **Simple Linear Regression:**
 - Model: $Y = \text{net race time}$, $X = \text{age}$.
 - Results: Age does not appear to be a **significant predictor** of race time.
- **Key Question:**
 - Does it make sense to ignore the grouping structure and conclude age has no significant effect?

Scatter Plot of Completely Pooled Data

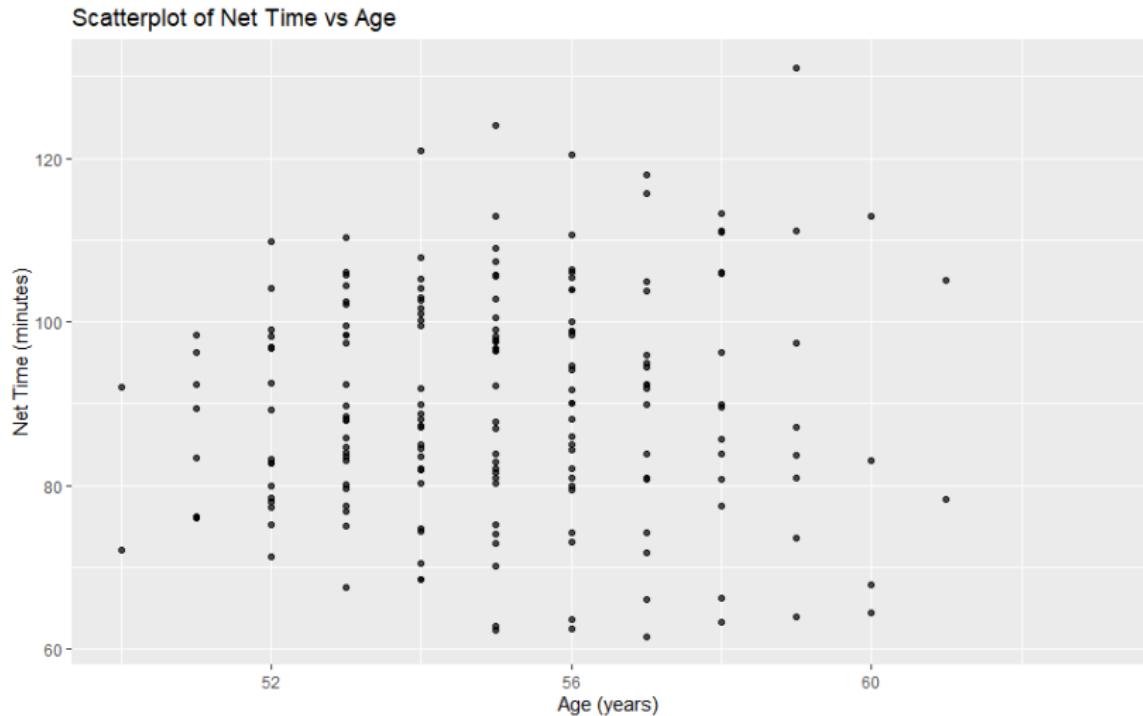


Figure 2: A scatterplot of net running time versus age for every race result.

Looking Further: Regression Analysis by Group

- **Exploring Regression Lines:**
 - Use the **posterior median values** of β_0 and β_1 to plot the pooled regression line (see next slide).
 - Overlay **individual regression lines** (in gray) for each runner, modeling race time against age separately.
- **Key Observations:**
 - The pooled regression line is **almost flat**, indicating a weak relationship overall.
 - Individual regression lines are **steeper**, showing that race times worsen with age.
- **Detailed Examination:**
 - Focus on three runners: 1, 20, and 22 (see two slides ahead).
 - Their aging trends are **highly variable**, illustrating how poorly the pooled regression line captures individual differences.
- **Visual Insight:**
 - R plots highlight the discrepancies between the pooled regression and the individual trends.

The Fitted Regression Lines, Pooled and for Each Runner

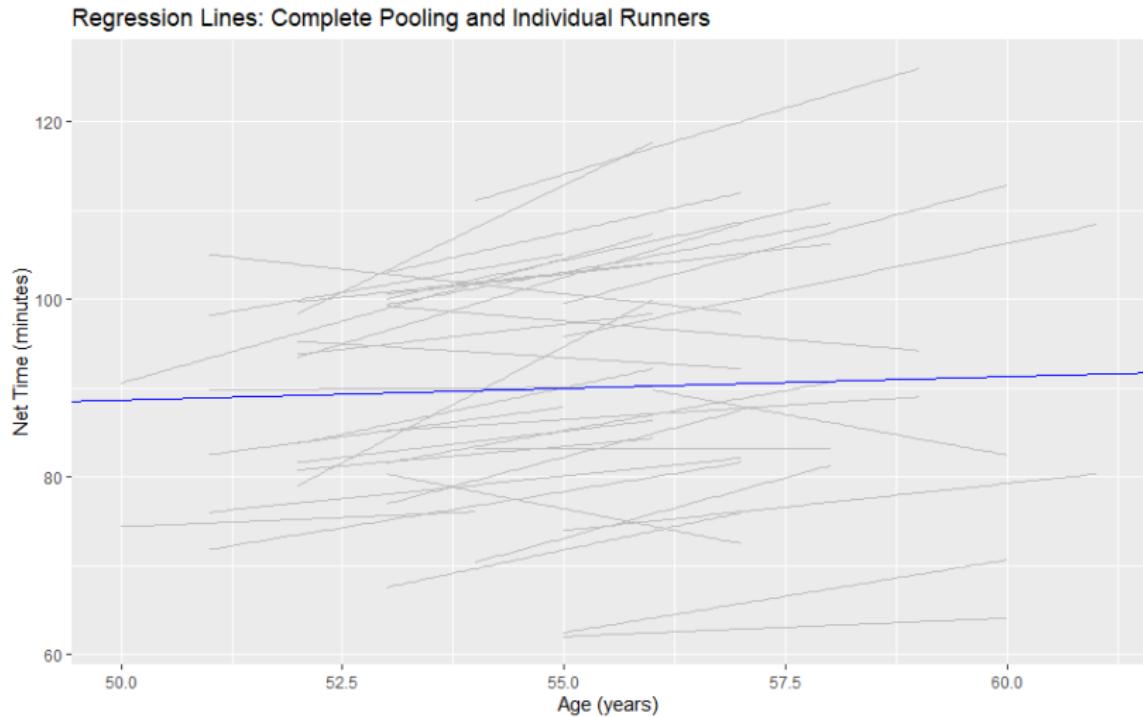


Figure 3: Observed trends in running time versus age for the 36 subjects (gray) along with the posterior median model (blue).

The Fitted Regression Lines, Pooled and for Three Specific Runners

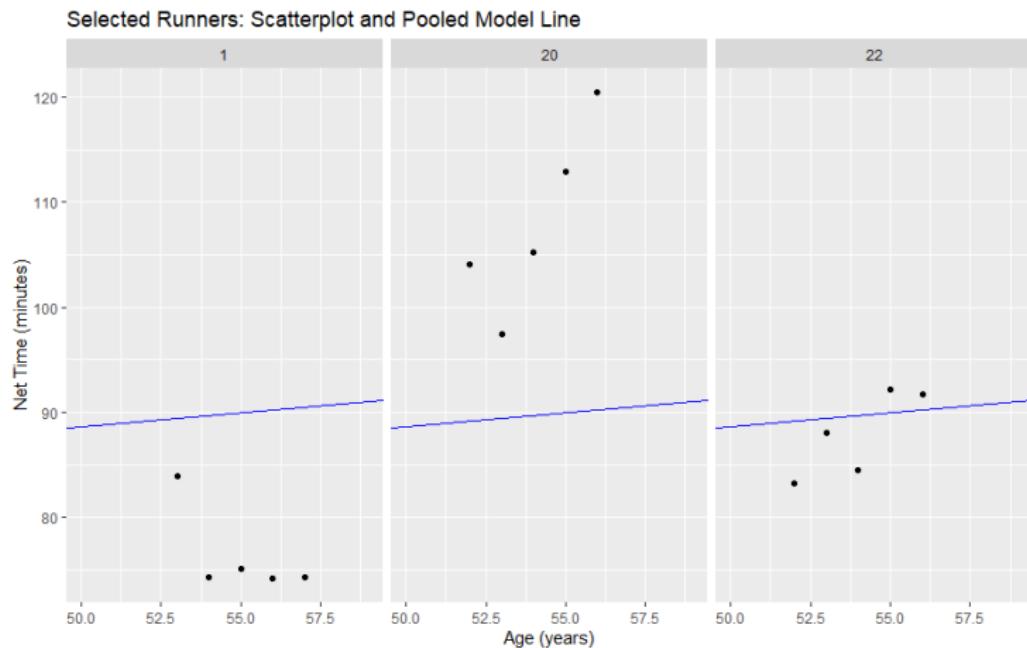


Figure 4: Scatterplots of running time versus age for 3 subjects, along with the posterior median model (blue).

Drawbacks of the Complete Pooling Model

- **Key Limitations:**

- Assumes **independence of observations**, ignoring the fact that data from the same individual are **correlated**.
- Imposes a **uniform aging trend** across all runners, disregarding potential **individual variability**.

- **Consequences:**

- Leads to **misleading conclusions** about the regression relationship between Y (race time) and X (age).
- Fails to accurately assess the **significance** of the relationship.

Outline

Hierarchical Models

Hierarchical (Grouped) Data

Modeling with Completely Pooling

Modeling with No Pooling

Modeling with Partial Pooling - Hierarchical Models

The No-Pooling Model

- **Approach:**

- No pooling: Fit separate regressions for each runner in the dataset.
- Model specification:

$$Y_{ij} \mid \beta_{0j}, \beta_{1j}, \sigma \sim N(\mu_{ij}, \sigma^2)$$

where $\mu_{ij} = \beta_{0j} + \beta_{1j}X_{ij}$, allowing each runner ($j = 1, \dots, n$) to have their own **intercept** β_{0j} and **slope** β_{1j} .

- **Complexity:**

- This model introduces significantly more parameters:

Instead of 2 regression coefficients, we estimate $2n$ coefficients.

- **Performance:**

- R plots for 3 example runners demonstrate that this model captures individual trends **exceptionally well**.

Drawbacks of the No-Pooling Model

- **Key Issues:**
 - The model is **runner-specific**:
 - Predictions are only valid for the runners the model was fit for.
 - It cannot generalize to predict race times for **new runners**.
 - Lacks **population-level insight**:
 - The model cannot make general statements about the effect of **age on race time** across the population.
 - Individual slopes vary for each runner, making it impossible to derive a **single population-level trend**.

Additional Drawbacks of the No-Pooling Model

- **Limited Generalizability:**
 - Group-specific (runner-specific) models cannot be reliably **generalized** to groups (runners) outside the sample.
- **Information Loss:**
 - Assumes that one group contains **no relevant information** about another.
 - Ignores **shared patterns or trends**, potentially discarding valuable insights that could improve predictions or inferences.

Outline

Hierarchical Models

Hierarchical (Grouped) Data

Modeling with Completely Pooling

Modeling with No Pooling

Modeling with Partial Pooling - Hierarchical Models

Other Examples of Hierarchical Data

- Recall earlier examples of multilevel data:
 - Students in multiple schools taking the same achievement test.
 - **Dependency structure:** Test scores of students within the same school are likely to be **correlated**.
- **Grouping:**
 - Schools act as **groups**, analogous to runner-specific models.
 - School-specific models would face similar **drawbacks**, such as limited generalizability.
- **Complex Hierarchical Structures:**
 - Students grouped within classrooms → schools → districts → states.
 - Such nested structures can become highly **complex**.
- **Practicality:**
 - In practice, the number of hierarchical levels is typically limited to **2 or 3 levels**.

Why Use Hierarchical Data?

- **Practical Advantages:**
 - Collecting hierarchical data can be more **feasible** and **efficient** in practice.
- **Example 1: pH Levels in Rainfall**
 - Option 1: Take **1 measurement** from each of 30 rainfalls (*independent data*).
 - Option 2: Take **6 measurements** from each of 5 rainfalls (*correlated data within rainfall*).
- **Example 2: Soil Measurements**
 - Collect **10 measurements per field** at 8 fields (*correlated within field*) vs.
 - Collect **1 measurement from each of 80 fields** (*independent data*).
- **Key Consideration:**
 - Statistical models must account for **correlation** within groups.
 - Ignoring correlation and treating data as independent leads to **biased estimates and invalid inferences**.

A Happy Medium: Partial Pooling

- **Partial Pooling in Hierarchical Models:**
 - Balances between complete pooling and no pooling.
 - Results are **partially influenced** by both individual group information and shared information across groups.
- **Core Idea:**
 - Each group is **unique**, so retain group-specific information.
 - Borrow **shared information** across groups to improve parameter estimation.
- **Advantages:**
 - Allows for assessment of:
 - **Within-group variability:** How similar are observations within a group?
 - **Between-group variability:** How different are the groups?
- **Bayesian Suitability:**
 - The **Bayesian framework** is particularly effective for modeling hierarchical structures, leveraging priors to account for variability across levels.