

STAT7630: Bayesian Statistics

Lecture Slides # 16

Normal Hierarchical Models & Bayesian Version of ANOVA

Chapter 16 (Normal) Hierarchical Models without Predictors

Elvan Ceyhan

Department of Mathematics & Statistics

Auburn University

Fall 2024,

Updated: November, 2024

Outline

Normal Hierarchical Models

To Pool or Not To Pool

Bayesian Version of ANOVA

Posterior Inference and Prediction

Shrinkage

Outline

Normal Hierarchical Models

To Pool or Not To Pool

Bayesian Version of ANOVA

Posterior Inference and Prediction

Shrinkage

An Example of Hierarchical Data

- This section focuses on the `spotify` dataset available in the `bayesrules` R package.
- The dataset is a subset of a comprehensive collection of Spotify songs compiled by Kaylin Pavlik in 2019.
- The response variable of interest is the *popularity* score of 350 songs.
- Songs are grouped by artist (bands or solo performers), creating a hierarchical (clustered) data structure.
- Popularity scores for songs by the same artist exhibit potential intra-group correlation, reflecting shared characteristics or fanbase influence.

Complete Pooled Approach

- Initially, we analyze the data under the **complete pooling** assumption, disregarding the hierarchical grouping structure.
- Notation:**
 - Y_{ij} represents the popularity of the i -th song for the j -th artist.
 - n_j denotes the number of songs attributed to artist j in the dataset.
- For example, the first artist, Mia X, has 4 songs, implying $n_1 = 4$.
- The total sample size is computed as:

$$n = \sum_{j=1}^{44} n_j = n_1 + n_2 + \cdots + n_{44} = 350.$$

Complete Pooled Data Model

- Ignoring the grouping structure, we assume the popularity values follow a normal distribution:

$$Y_{ij} \mid \mu, \sigma^2 \sim N(\mu, \sigma^2).$$

- To assess the assumption of normality, we examine the estimated density of the popularity variable (see next slide).
- Formal Bayesian Normal-Normal model specification:

$$\mu \sim N(50, 52^2), \quad \sigma \sim \text{Exp}(0.048).$$

- Key assumptions:
 - The prior for μ centers around 50, reflecting the plausible range of popularity values (0 to 100).
 - A weakly informative prior is imposed on σ to allow flexibility in variance estimation.

Estimated Density of Popularity

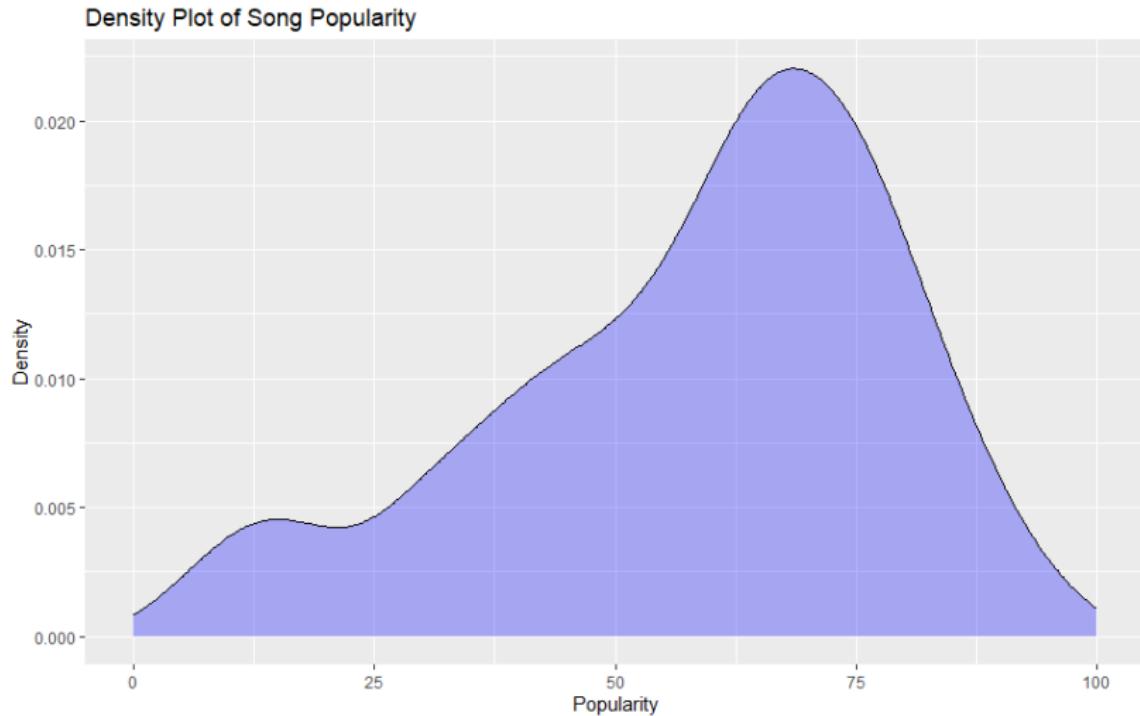


Figure 1: A density plot of the variability in popularity from song to song (with artists pooled).

Meaning of Model Parameters

- In this model, the parameters μ and σ are **global parameters**:
 - They remain constant across all artists in the dataset.
- Interpretation of the parameters:
 - μ : Global mean popularity.
 - σ : Global standard deviation in popularity across songs.
- This model is mathematically equivalent to a normal regression model without predictors:

$$Y_{ij} = \beta_0 + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim N(0, \sigma^2).$$

- Estimation can be performed using `stan_glm` with the formula:

`popularity ~ 1`

Drawback of Complete Pooling Model

- The posterior mean μ , estimated from this model, provides a single value for the overall mean popularity.
- **Major drawback:** Predictions for new songs from different artists are identical under this model.
- For any artist, the predicted popularity of a new song is the posterior mean:

$$\mathbf{E}(\mu \mid \mathbf{y}) = 58.39.$$

- Using R, we can visualize this limitation:
 - Posterior predictive means for each artist (light blue dots) can be plotted against sample means for each artist (dark blue dots) (see the plot in the next slide)
- **Observations:**
 - The posterior predictive means fail to capture inter-artist variability.
 - This demonstrates the model's inability to reflect actual differences in artist popularity — a significant limitation.

Posterior Predictive Intervals of Popularity for Each Artist - Pooled Model

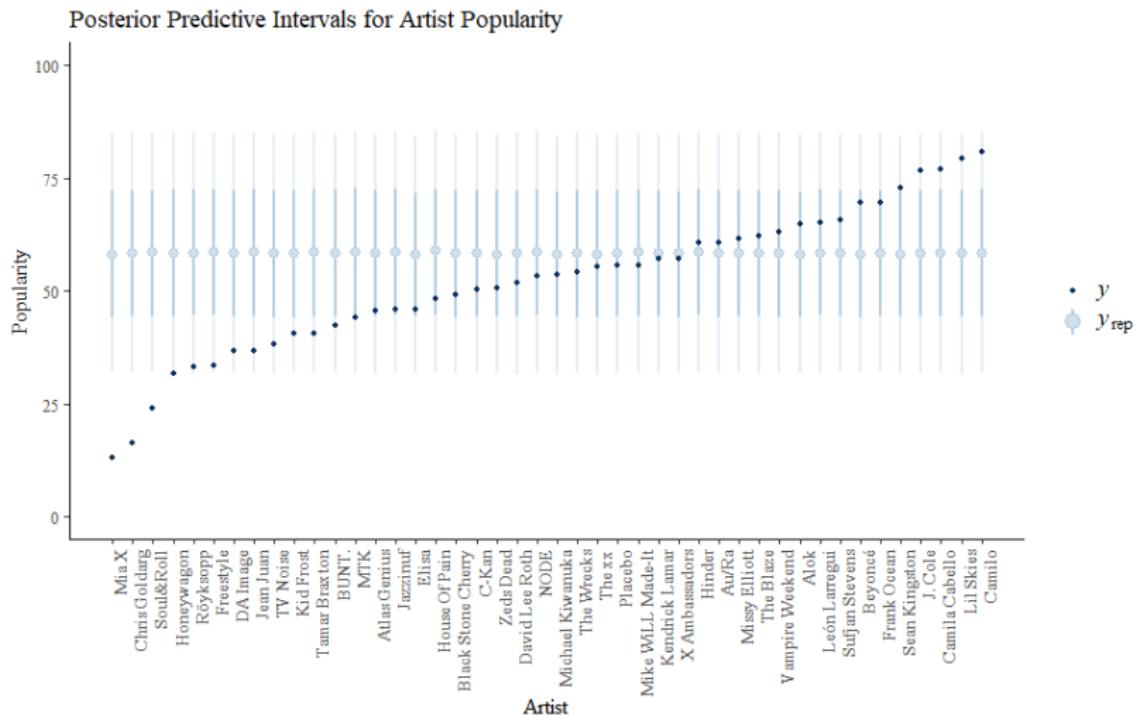


Figure 2: Posterior predictive intervals for artist song popularity, as calculated from a complete pooled model.

No Pooled Model

- The **no pooling** approach allows each artist to have a distinct mean popularity, μ_j :

$$Y_{ij} \mid \mu_j, \sigma \sim N(\mu_j, \sigma^2).$$

- Parameter interpretations:
 - μ_j : Mean song popularity for artist j .
 - σ : Standard deviation in song popularity within each artist.
- Key assumption: σ is same across all artists, meaning the variability in popularity is assumed constant between artists.
- Does this assumption align with reality? (R plot in next slide):
 - Evidence suggests σ might differ across artists.
- Despite potential misalignment, we proceed with this model for simplicity, as a shared σ reduces model complexity.

Density Plots of Popularity by Artist

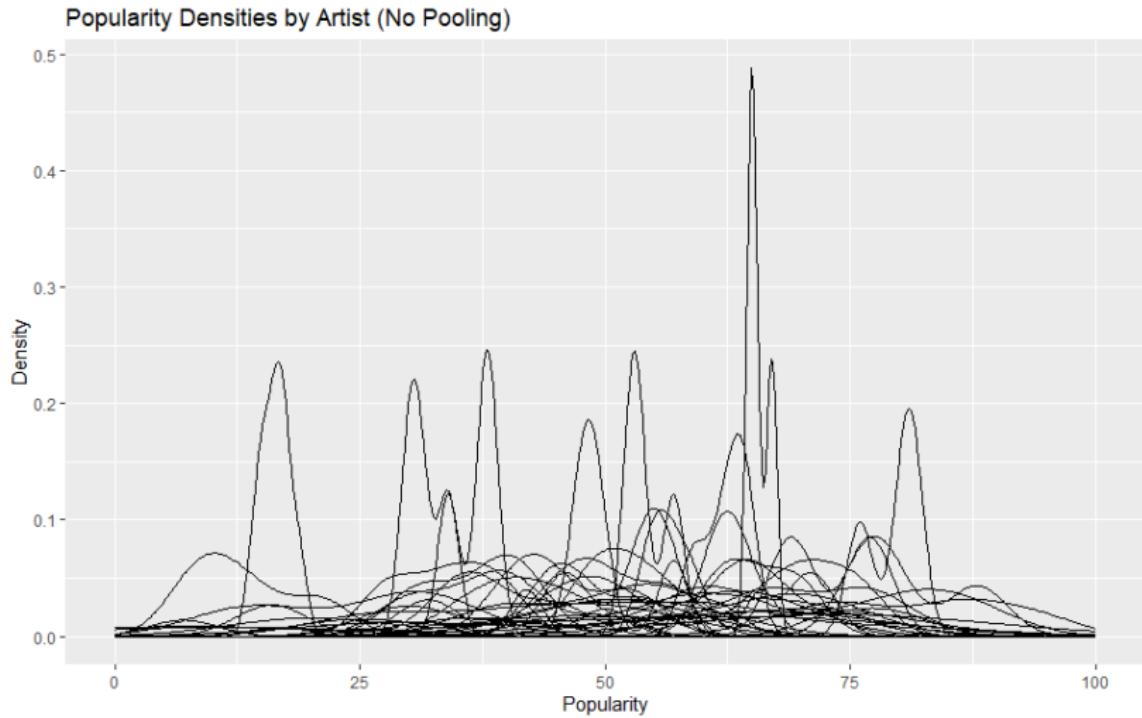


Figure 3: Density plots of the variability in popularity from song to song, by artist.

Formal No Pooling Model

- The **no pooling model** introduces a large number of parameters, specifically $44 + 1 = 45$:

$$Y_{ij} \mid \mu_j, \sigma^2 \sim N(\mu_j, \sigma^2),$$
$$\mu_j \sim N(50, s^2), \quad \sigma \sim \text{Exp}(0.048).$$

- Estimation approach:
 - A regression model with separate coefficients for each artist and no intercept can be specified as:
$$\text{popularity} \sim \text{artist} - 1.$$
- Prior specification:
 - The priors on μ_j are weakly informative, centered at 50.
 - Weak priors allow the data to dominate, leading to posterior means closely reflecting sample means.
- **Result:** The posterior predictive distribution of popularity for each artist aligns closely with their respective sample means (see R plot).

Posterior Predictive Intervals of Popularity for Each Artist - Non-Pooled Model

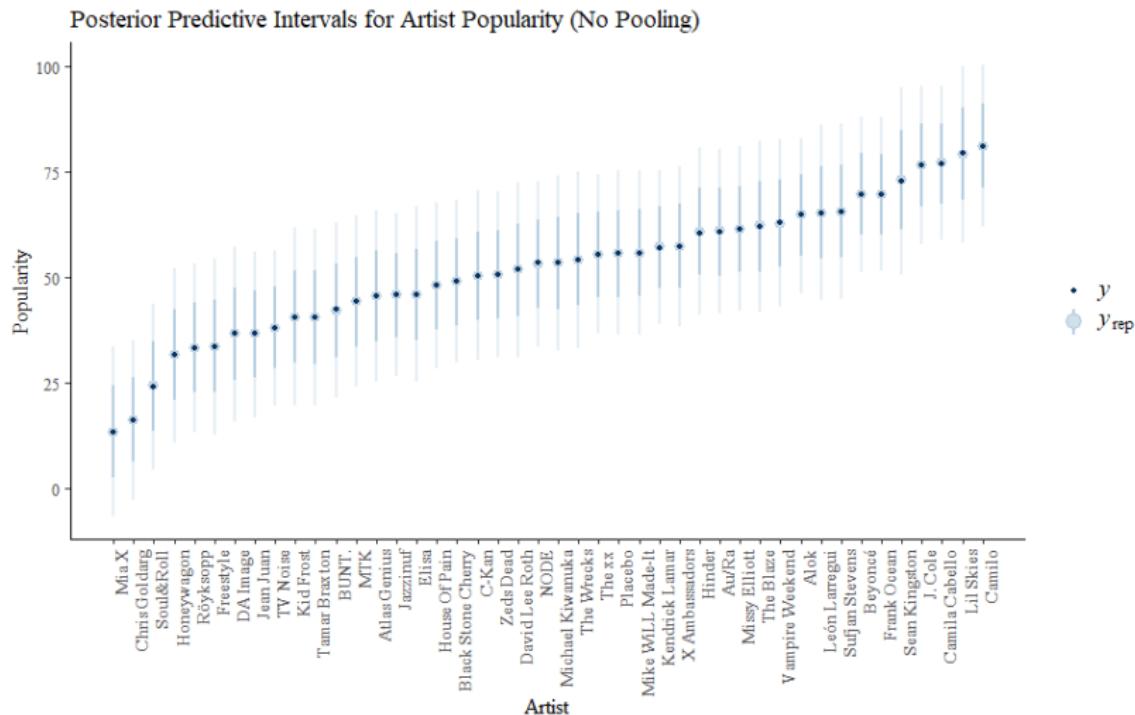


Figure 4: Posterior predictive intervals for artist song popularity, as calculated from a no pooled model.

Drawbacks of the No-Pooling Model

- **Limited Data Sharing:** This model assumes no information is shared across groups (artists), meaning:
 - Data from one artist cannot inform estimates for another artist.
- **Small Sample Size Limitation:**
 - For groups with small sample sizes (e.g., artists with few songs), estimates of mean popularity are imprecise.
- **Lack of Generalizability:**
 - The model cannot predict the mean popularity for an artist outside the sample (e.g., Taylor Swift).
- **Sample-Restricted Inference:**
 - Inferences are limited to the artists included in the dataset, offering no insight into the broader population of artists.

A Better Approach: Hierarchical Model

- A hierarchical model provides a more robust framework for handling this dataset by incorporating three layers:
 1. **Within-group variability:** Describes how song popularity varies within each artist j .
 2. **Between-group variability:** Models how the artist-specific mean song popularity, μ_j , varies across artists.
 3. **Global priors:** Specifies prior distributions for the global parameters μ , σ_y , and σ_μ .
- This approach leverages the hierarchical structure of the data, allowing partial pooling of information across artists while preserving individual characteristics.

Outline

Normal Hierarchical Models

To Pool or Not To Pool

Bayesian Version of ANOVA

Posterior Inference and Prediction

Shrinkage

Within-Group Normal Model

- Assume the data values within each group (artist j) follow a normal distribution:

$$Y_{ij} \mid \mu_j, \sigma_y \sim N(\mu_j, \sigma_y^2).$$

- Key features of the model:**

- Each artist is allowed to have their own mean song popularity, μ_j , similar to the no-pooling model.
- σ_y represents the within-group variability, measuring the standard deviation of popularity from song to song for a given artist.

- Assumption:**

- The within-group variability σ_y is assumed to be constant across all artists.
- This assumption may not hold in reality; always verify through diagnostic plots of the data.

Between-Group Layer

- Unlike the no-pooling model, the hierarchical model incorporates a **between-group layer**, recognizing that all sampled artists are drawn from a single population.
- Variability in the artist-specific mean popularities, μ_j , is modeled as: $\mu_j \mid \mu, \sigma_\mu \sim N(\mu, \sigma_\mu^2)$.
- **Parameter interpretations:**
 - μ : The global average of mean song popularity (μ_j) across all artists.
 - σ_μ : The between-group variability, representing the standard deviation of μ_j among artists.
- **Assumption:**
 - Normality is assumed for μ_j .
 - While μ_j is not directly observable, the sample mean song popularity for each artist serves as an estimate.
- **Diagnostic Check:**
 - A density plot of the artist sample means (R code) suggests the normality assumption is reasonable (see next slide).

Density Plots of Mean Popularity of Artists

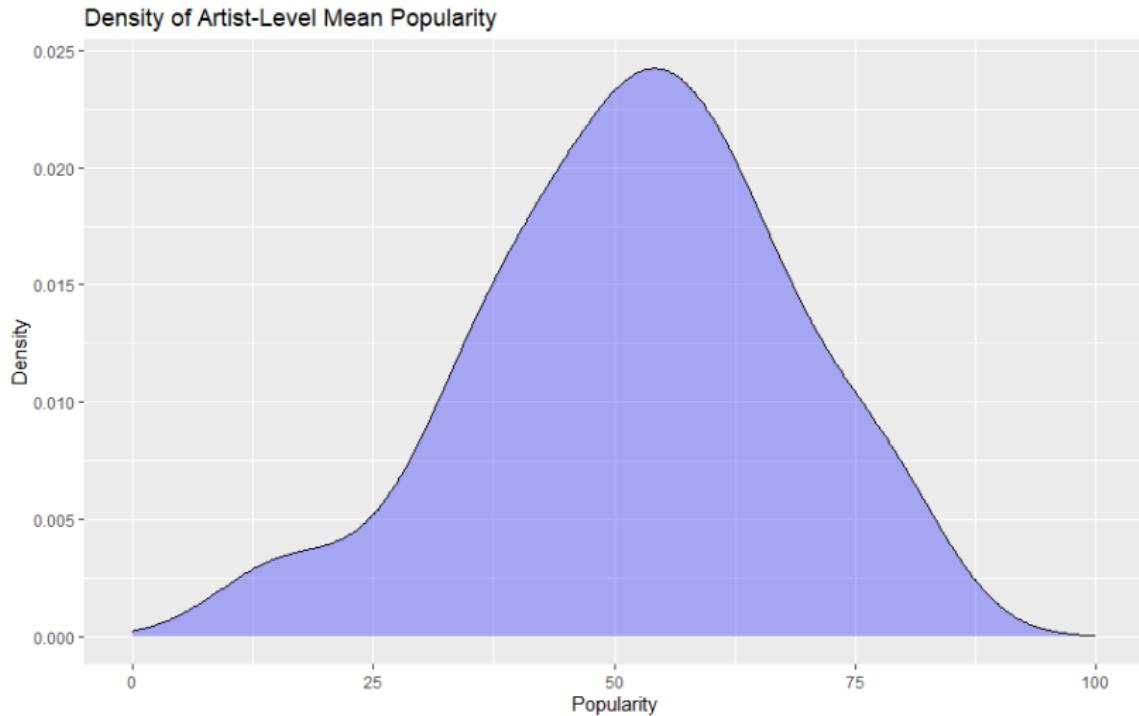


Figure 5: A density plot of the variability in mean song popularity from artist to artist.

Priors on the Global Parameters

- To complete the Bayesian model, priors must be specified for the global parameters μ , σ_y , and σ_μ .
- Following textbook recommendations:
 - **Prior for μ :** $\mu \sim N(50, 52^2)$.
 - The mean of 50 reflects plausible popularity values.
 - The large variance indicates prior uncertainty.
 - **Prior for σ_y :** $\sigma_y \sim \text{Exp}(0.048)$.
 - This choice captures uncertainty about the within-group variability.
 - Other distributions on $(0, \infty)$, such as Gamma or Inverse-Gamma, could also be used.
 - **Prior for σ_μ :** $\sigma_\mu \sim \text{Exp}(1)$.
Reflects uncertainty in between-group variability.

Analysis of Variance (ANOVA)

- This hierarchical model represents a **Bayesian version** of the classical One-Way Analysis of Variance (ANOVA) model.
- **Objective:** Compare the means of multiple groups by analyzing the relationship between:
 - **Within-group variability** (σ_y^2).
 - **Between-group variability** (σ_μ^2).
- In this example:
 - Groups are defined by the artists.
 - The goal is to estimate the 44 artist-level means μ_1, \dots, μ_{44} .
- **Variance decomposition:**

$$\text{Var}(Y_{ij}) = \sigma_y^2 + \sigma_\mu^2,$$

- σ_y^2 : Within-group variance (popularity variability for songs by the same artist).
- σ_μ^2 : Between-group variance (variability in mean popularity across artists).

Proportion of Variance Explained

- The proportion of total variance in Y_{ij} explained by within-group and between-group differences is given by:
 - **Within-group variance:** $\frac{\sigma_y^2}{\sigma_\mu^2 + \sigma_y^2}$: Proportion of $\text{Var}(Y_{ij})$ explained by differences within each group (artist).
 - **Between-group variance:** $\frac{\sigma_\mu^2}{\sigma_\mu^2 + \sigma_y^2}$: Proportion of $\text{Var}(Y_{ij})$ explained by differences between groups (artists).
- The term $\frac{\sigma_\mu^2}{\sigma_\mu^2 + \sigma_y^2}$ also measures the **within-group correlation**, such as the correlation between the popularity of songs by the same artist.
- **Model implication:** The model forces this correlation to be positive, which is reasonable for most real-world scenarios.

Fitting the Bayesian Model

- **Posterior analysis** is performed using the `stan_glmer` function.
- **Formula syntax:**
 - Unlike `stan_glm`, the grouping variable (`artist`) is specified using:
$$\text{popularity} \sim (1 \mid \text{artist}).$$
 - This accounts for the hierarchical structure of the data.
- **Model fit assessment:**
 - The `pp_check` function compares the posterior predictive density with the observed data density.
 - This diagnostic tool helps evaluate the adequacy of the model fit (refer to R code).
- **Fit quality:** The Normal hierarchical model provides a reasonable fit to the data, though not perfect (see next slide).

Density Plots of Simulated and Observed Popularity

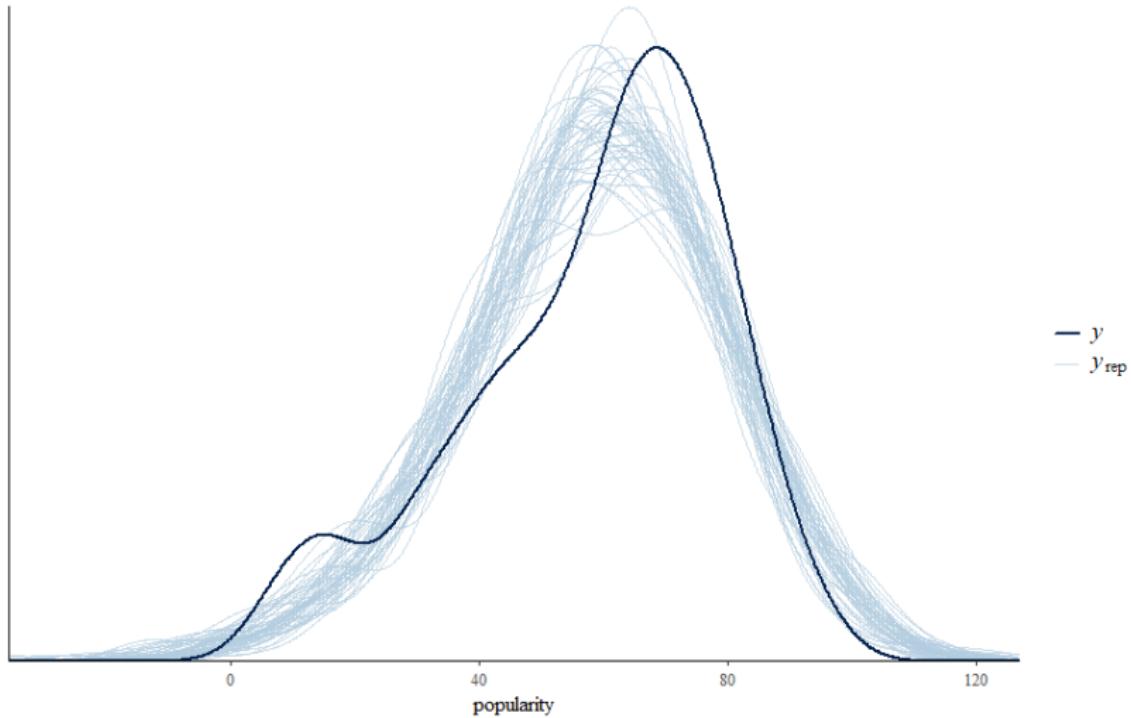


Figure 6: 100 posterior simulated datasets of song popularity (light blue) along with the actual observed popularity data (dark blue).

Outline

Normal Hierarchical Models

To Pool or Not To Pool

Bayesian Version of ANOVA

Posterior Inference and Prediction

Shrinkage

Posterior Inference about Model Parameters

- **Posterior inference** for global parameters, such as point estimates and credible intervals, can be computed easily in R.
- **Example results:**
 - Posterior point estimate for μ : $\hat{\mu} = 52.5$.
 - 80% credible interval for μ : $(49.3, 55.7)$.
 - Posterior estimates for standard deviations:
 $\hat{\sigma}_\mu = 15.1$, $\hat{\sigma}_y = 14.0$.
- **Estimated within-group correlation:**

$$\frac{\hat{\sigma}_\mu^2}{\hat{\sigma}_\mu^2 + \hat{\sigma}_y^2} = \frac{15.1^2}{15.1^2 + 14.0^2} = 0.54.$$

- **Interpretation:** This indicates a moderate positive linear association in popularity values for songs from the same artist.

Posterior Inference about Group-Specific Parameters

- Posterior inference for group-specific parameters, μ_j (e.g., artist-level mean popularity), includes point and interval estimates.
- **Example results:**
 - For Beyoncé:
Point estimate: $\hat{\mu}_{\text{Beyoncé}} = 69.1$,
80% credible interval: (65.6, 72.7).
 - For Vampire Weekend:
Point estimate: $\hat{\mu}_{\text{Vampire Weekend}} = 61.6$,
80% credible interval: (54.8, 68.5).
- **Observation:**
 - Credible interval widths vary across artists (see next slide).
 - Artists with smaller sample sizes have wider credible intervals, reflecting greater uncertainty (e.g., Frank Ocean vs. Lil Skies).

Posterior Credible Intervals for Popularity

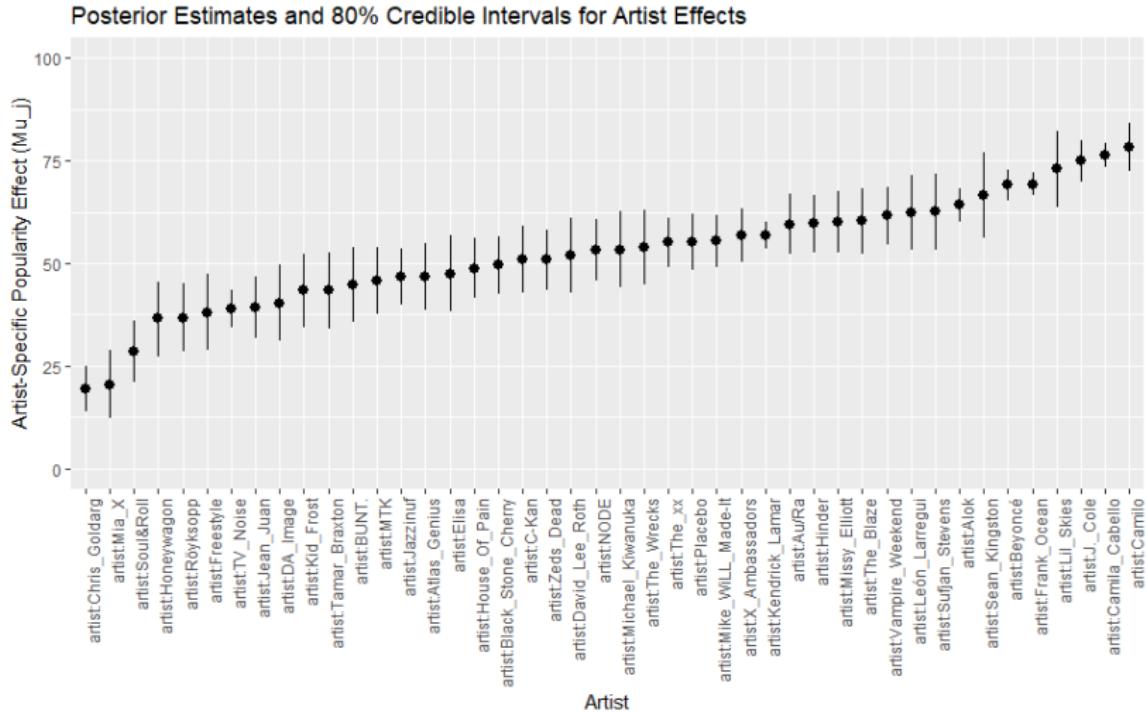


Figure 7: 80% posterior credible intervals for each artist's mean song popularity.

Posterior Prediction for an Artist in the Sample

- To predict the popularity of a new song by an artist in the sample (e.g., Vampire Weekend):
 - An 80% prediction interval for the popularity of a new song is:
$$(42.5, 80.8).$$
- **Key observation:**
 - The prediction interval is significantly wider than the 80% credible interval for Vampire Weekend's mean popularity, μ_j .
- **Why?**
 - The credible interval reflects uncertainty in the mean popularity μ_j , averaged across all songs.
 - The prediction interval accounts for the additional variability in individual song popularity within the group, making it naturally wider.
- **Conclusion:** It is logical that we can estimate an artist's mean popularity with more precision than the popularity of a single song.

Posterior Prediction for an Artist Not in the Sample

- Predicting the popularity of a new song by an artist not in the sample (e.g., Taylor Swift) is possible with the hierarchical model:
 - Recall: The no-pooling model could not accommodate this scenario.
 - The hierarchical model leverages information about the broader population to make predictions.
- **Steps in the prediction process:**
 1. Simulate values for μ_j (Taylor Swift's mean popularity) from: $\mu_j \sim N(\mu, \sigma_\mu^2)$, while allowing μ and σ_μ to vary according to their posterior distributions.
 2. Simulate song popularity values, Y , from: $Y \sim N(\mu_j, \sigma_y^2)$, while varying σ_y according to its posterior distribution.
- **Result:**
 - An 80% prediction interval for Taylor Swift's new song popularity: (25.9, 78.9).

Is This Prediction Accurate?

- **Real-world applicability:**
 - Do we truly believe the prediction interval for Taylor Swift's new song popularity? **Probably not.**
 - If the “new artist” were someone with no prior fame, the interval might be reasonable.
 - However, Taylor Swift is one of the most globally recognized and successful artists, so her song's popularity would likely fall in the higher range.
- **Improving the model:**
 - To better capture Taylor's exceptional status, a more realistic model could include artist-level covariates, such as:
 - Number of past Grammy nominations.
 - Historical radio airplay or streaming metrics.
 - Including such predictors could refine the model's predictions for artists with unique characteristics.
- **Next steps:** Chapter 17 explores hierarchical models augmented with predictor variables, offering a more nuanced approach to modeling.

Outline

Normal Hierarchical Models

To Pool or Not To Pool

Bayesian Version of ANOVA

Posterior Inference and Prediction

Shrinkage

Shrinkage

- We visualize predictions for new song popularities for all 44 artists (see next slide):
 - Light blue: Point and interval predictions from the hierarchical model; Dark blue: Sample mean popularity for each artist.
- **Observation:**
 - The plot demonstrates the phenomenon of **shrinkage**.
 - Hierarchical model predictions shrink (or pull) the artist-specific sample means toward the global sample mean.
- **Model comparison:**
 - **Complete-pooling model:** Predicts song popularity using the global mean.
 - **No-pooling model:** Predicts song popularity using the artist's own mean.
 - **Hierarchical model:** Balances these extremes, combining global and group-specific information.
- Shrinkage reflects the hierarchical model's ability to pool information across artists while respecting individual group differences.

Posterior Credible Intervals for Popularity + Observed Mean Popularity

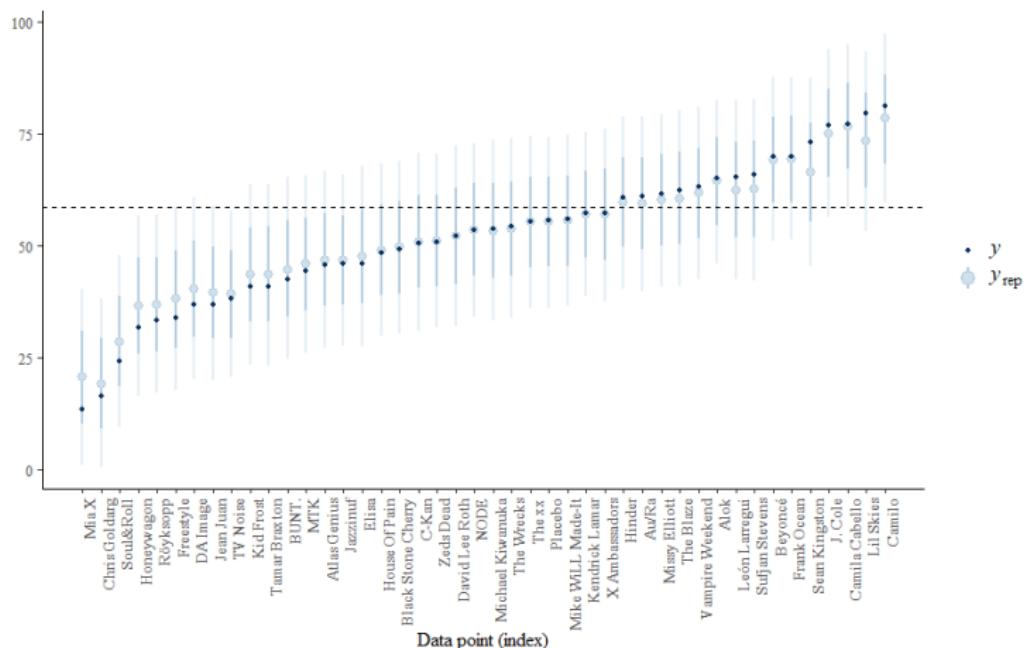


Figure 8: Posterior predictive intervals for artist song popularity, as calculated from a hierarchical model. The horizontal dashed line represents the average popularity across all songs.

How Much Shrinkage?

- **Key observation:**
 - Artists with the **smallest sample sizes** experience the most shrinkage toward the global mean.
 - These artists also have the **widest credible intervals** for their μ_j estimates, reflecting greater uncertainty.
- **Rationale:**
 - With less data for an artist, the model borrows information from other artists in the population to improve predictions.
 - For artists with large sample sizes (e.g., Frank Ocean), the model relies more on their own data, reducing shrinkage.

How Much Shrinkage?

- **Free throw analogy:**
 - Consider two basketball players:
 - Player A: Made 98 out of 100 free throws.
 - Player B: Made 3 out of 3 free throws.
 - Which player would you predict has a higher probability of making their next free throw?
 - Intuitively, Player A's estimate is more reliable due to the larger sample size, demonstrating the concept of shrinkage in practice.

Grouping Variable or Predictor?

- Why treat “artist” as a grouping variable instead of a categorical predictor?
 - If all levels of the variable in the sample are the only levels of interest, it should be included as a **predictor**.
 - Example: In a Poisson model for academic awards, the variable “track” (academic, vocational, general) represented all possible levels and was treated as a predictor.
- Spotify example:
 - The artists in the dataset are a **random sample** from a larger population of artists.
 - Treating “artist” as a grouping variable allows the model to generalize to the entire population of artists, including those not in the sample.
- Key distinction:
 - This aligns with the classical distinction between:
 - **Fixed effects:** Used when all levels of the variable are of interest; **Random effects:** Used when levels represent a random sample from a larger population.