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An Example of Hierarchical Data

� This section focuses on the spotify dataset available in the

bayesrules R package.

� The dataset is a subset of a comprehensive collection of

Spotify songs compiled by Kaylin Pavlik in 2019.

� The response variable of interest is the popularity score of 350

songs.

� Songs are grouped by artist (bands or solo performers),

creating a hierarchical (clustered) data structure.

� Popularity scores for songs by the same artist exhibit potential

intra-group correlation, reflecting shared characteristics or

fanbase influence.
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Complete Pooled Approach

� Initially, we analyze the data under the complete pooling

assumption, disregarding the hierarchical grouping structure.

� Notation:

� Yij represents the popularity of the i-th song for the j-th artist.

� nj denotes the number of songs attributed to artist j in the

dataset.

� For example, the first artist, Mia X, has 4 songs, implying

n1 = 4.

� The total sample size is computed as:

n =
44∑
j=1

nj = n1 + n2 + · · ·+ n44 = 350.
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Complete Pooled Data Model

� Ignoring the grouping structure, we assume the popularity

values follow a normal distribution:

Yij | µ, σ2 ∼ N(µ, σ2).

� To assess the assumption of normality, we examine the

estimated density of the popularity variable (see next slide).

� Formal Bayesian Normal-Normal model specification:

µ ∼ N(50, 522), σ ∼ Exp(0.048).

� Key assumptions:

� The prior for µ centers around 50, reflecting the plausible

range of popularity values (0 to 100).

� A weakly informative prior is imposed on σ to allow flexibility

in variance estimation.
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Estimated Density of Popularity

Figure 1: A density plot of the variability in popularity from song to

song (with artists pooled). 7



Meaning of Model Parameters

� In this model, the parameters µ and σ are global
parameters:

� They remain constant across all artists in the dataset.

� Interpretation of the parameters:

� µ: Global mean popularity.

� σ: Global standard deviation in popularity across songs.

� This model is mathematically equivalent to a normal

regression model without predictors:

Yij = β0 + εij , εij ∼ N(0, σ2).

� Estimation can be performed using stan glm with the

formula:

popularity ∼ 1
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Drawback of Complete Pooling Model

� The posterior mean µ, estimated from this model, provides a

single value for the overall mean popularity.

� Major drawback: Predictions for new songs from different

artists are identical under this model.

� For any artist, the predicted popularity of a new song is the

posterior mean:

E(µ | y) = 58.39.

� Using R, we can visualize this limitation:
� Posterior predictive means for each artist (light blue dots) can

be plotted against sample means for each artist (dark blue

dots) (see the plot in the next slide)

� Observations:
� The posterior predictive means fail to capture inter-artist

variability.

� This demonstrates the model’s inability to reflect actual

differences in artist popularity — a significant limitation. 9



Posterior Predictive Intervals of Popularity for Each Artist -

Pooled Model

Figure 2: Posterior predictive intervals for artist song popularity, as

calculated from a complete pooled model.
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No Pooled Model

� The no pooling approach allows each artist to have a distinct

mean popularity, µj :

Yij | µj , σ ∼ N(µj , σ
2).

� Parameter interpretations:

� µj : Mean song popularity for artist j .

� σ: Standard deviation in song popularity within each artist.

� Key assumption: σ is same across all artists, meaning the

variability in popularity is assumed constant between artists.

� Does this assumption align with reality? (R plot in next slide):

� Evidence suggests σ might differ across artists.

� Despite potential misalignment, we proceed with this model

for simplicity, as a shared σ reduces model complexity.
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Density Plots of Popularity by Artist

Figure 3: Density plots of the variability in popularity from song to song,

by artist.
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Formal No Pooling Model

� The no pooling model introduces a large number of

parameters, specifically 44 + 1 = 45:

Yij | µj , σ
2 ∼ N(µj , σ

2),

µj ∼ N(50, s2), σ ∼ Exp(0.048).

� Estimation approach:
� A regression model with separate coefficients for each artist

and no intercept can be specified as:

popularity ∼ artist− 1.

� Prior specification:
� The priors on µj are weakly informative, centered at 50.

� Weak priors allow the data to dominate, leading to posterior

means closely reflecting sample means.

� Result: The posterior predictive distribution of popularity for

each artist aligns closely with their respective sample means

(see R plot).
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Posterior Predictive Intervals of Popularity for Each Artist -

Non-Pooled Model

Figure 4: Posterior predictive intervals for artist song popularity, as

calculated from a no pooled model.
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Drawbacks of the No-Pooling Model

� Limited Data Sharing: This model assumes no information
is shared across groups (artists), meaning:

� Data from one artist cannot inform estimates for another artist.

� Small Sample Size Limitation:

� For groups with small sample sizes (e.g., artists with few

songs), estimates of mean popularity are imprecise.

� Lack of Generalizability:

� The model cannot predict the mean popularity for an artist

outside the sample (e.g., Taylor Swift).

� Sample-Restricted Inference:

� Inferences are limited to the artists included in the dataset,

offering no insight into the broader population of artists.
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A Better Approach: Hierarchical Model

� A hierarchical model provides a more robust framework for
handling this dataset by incorporating three layers:

1. Within-group variability: Describes how song popularity

varies within each artist j .

2. Between-group variability: Models how the artist-specific

mean song popularity, µj , varies across artists.

3. Global priors: Specifies prior distributions for the global

parameters µ, σy , and σµ.

� This approach leverages the hierarchical structure of the data,

allowing partial pooling of information across artists while

preserving individual characteristics.
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Within-Group Normal Model

� Assume the data values within each group (artist j) follow a

normal distribution:

Yij | µj , σy ∼ N(µj , σ
2
y ).

� Key features of the model:
� Each artist is allowed to have their own mean song popularity,

µj , similar to the no-pooling model.

� σy represents the within-group variability, measuring the

standard deviation of popularity from song to song for a given

artist.

� Assumption:
� The within-group variability σy is assumed to be constant

across all artists.

� This assumption may not hold in reality; always verify through

diagnostic plots of the data.
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Between-Group Layer

� Unlike the no-pooling model, the hierarchical model

incorporates a between-group layer, recognizing that all

sampled artists are drawn from a single population.

� Variability in the artist-specific mean popularities, µj , is

modeled as: µj | µ, σµ ∼ N(µ, σ2
µ).

� Parameter interpretations:
� µ: The global average of mean song popularity (µj) across all

artists.

� σµ: The between-group variability, representing the standard

deviation of µj among artists.

� Assumption:
� Normality is assumed for µj .

� While µj is not directly observable, the sample mean song

popularity for each artist serves as an estimate.

� Diagnostic Check:
� A density plot of the artist sample means (R code) suggests

the normality assumption is reasonable (see next slide).
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Density Plots of Mean Popularity of Artists

Figure 5: A density plot of the variability in mean song popularity from

artist to artist.
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Priors on the Global Parameters

� To complete the Bayesian model, priors must be specified for

the global parameters µ, σy , and σµ.

� Following textbook recommendations:

� Prior for µ: µ ∼ N(50, 522).

� The mean of 50 reflects plausible popularity values.

� The large variance indicates prior uncertainty.

� Prior for σy : σy ∼ Exp(0.048).

� This choice captures uncertainty about the within-group

variability.

� Other distributions on (0,∞), such as Gamma or

Inverse-Gamma, could also be used.

� Prior for σµ: σµ ∼ Exp(1).

Reflects uncertainty in between-group variability.
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Analysis of Variance (ANOVA)

� This hierarchical model represents a Bayesian version of the

classical One-Way Analysis of Variance (ANOVA) model.
� Objective: Compare the means of multiple groups by
analyzing the relationship between:

� Within-group variability (σ2
y ).

� Between-group variability (σ2
µ).

� In this example:
� Groups are defined by the artists.

� The goal is to estimate the 44 artist-level means µ1, . . . , µ44.

� Variance decomposition:

Var(Yij) = σ2
y + σ2

µ,

� σ2
y : Within-group variance (popularity variability for songs by

the same artist).

� σ2
µ: Between-group variance (variability in mean popularity

across artists). 22



Proportion of Variance Explained

� The proportion of total variance in Yij explained by
within-group and between-group differences is given by:

� Within-group variance:
σ2
y

σ2
µ + σ2

y

: Proportion of Var(Yij)

explained by differences within each group (artist).

� Between-group variance:
σ2
µ

σ2
µ + σ2

y

: Proportion of Var(Yij)

explained by differences between groups (artists).

� The term
σ2
µ

σ2
µ + σ2

y

also measures the within-group

correlation, such as the correlation between the popularity of

songs by the same artist.

� Model implication: The model forces this correlation to be

positive, which is reasonable for most real-world scenarios.
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Fitting the Bayesian Model

� Posterior analysis is performed using the stan glmer

function.

� Formula syntax:

� Unlike stan glm, the grouping variable (artist) is specified

using:

popularity ∼ (1 | artist).

� This accounts for the hierarchical structure of the data.

� Model fit assessment:

� The pp check function compares the posterior predictive

density with the observed data density.

� This diagnostic tool helps evaluate the adequacy of the model

fit (refer to R code).

� Fit quality: The Normal hierarchical model provides a

reasonable fit to the data, though not perfect (see next slide).
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Density Plots of Simulated and Observed Popularity

Figure 6: 100 posterior simulated datasets of song popularity (light

blue) along with the actual observed popularity data (dark blue).
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Posterior Inference about Model Parameters

� Posterior inference for global parameters, such as point

estimates and credible intervals, can be computed easily in R.

� Example results:

� Posterior point estimate for µ: µ̂ = 52.5.

� 80% credible interval for µ: (49.3, 55.7).

� Posterior estimates for standard deviations:

σ̂µ = 15.1, σ̂y = 14.0.

� Estimated within-group correlation:

σ̂2
µ

σ̂2
µ + σ̂2

y

=
15.12

15.12 + 14.02
= 0.54.

� Interpretation: This indicates a moderate positive linear

association in popularity values for songs from the same artist.
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Posterior Inference about Group-Specific Parameters

� Posterior inference for group-specific parameters, µj (e.g.,

artist-level mean popularity), includes point and interval

estimates.

� Example results:

� For Beyoncé:

Point estimate: µ̂Beyoncé = 69.1,

80% credible interval: (65.6, 72.7).

� For Vampire Weekend:

Point estimate: µ̂Vampire Weekend = 61.6,

80% credible interval: (54.8, 68.5).

� Observation:

� Credible interval widths vary across artists (see next slide).

� Artists with smaller sample sizes have wider credible intervals,

reflecting greater uncertainty (e.g., Frank Ocean vs. Lil Skies).
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Posterior Credible Intervals for Popularity

Figure 7: 80% posterior credible intervals for each artist’s mean song

popularity.
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Posterior Prediction for an Artist in the Sample

� To predict the popularity of a new song by an artist in the
sample (e.g., Vampire Weekend):

� An 80% prediction interval for the popularity of a new song is:

(42.5, 80.8).

� Key observation:
� The prediction interval is significantly wider than the 80%

credible interval for Vampire Weekend’s mean popularity, µj .

� Why?
� The credible interval reflects uncertainty in the mean

popularity µj , averaged across all songs.

� The prediction interval accounts for the additional variability in

individual song popularity within the group, making it naturally

wider.

� Conclusion: It is logical that we can estimate an artist’s

mean popularity with more precision than the popularity of a

single song.
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Posterior Prediction for an Artist Not in the Sample

� Predicting the popularity of a new song by an artist not in the
sample (e.g., Taylor Swift) is possible with the hierarchical
model:

� Recall: The no-pooling model could not accommodate this

scenario.

� The hierarchical model leverages information about the

broader population to make predictions.

� Steps in the prediction process:
1. Simulate values for µj (Taylor Swift’s mean popularity) from:

µj ∼ N(µ, σ2
µ), while allowing µ and σµ to vary according to

their posterior distributions.

2. Simulate song popularity values, Y , from: Y ∼ N(µj , σ
2
y ),

while varying σy according to its posterior distribution.

� Result:
� An 80% prediction interval for Taylor Swift’s new song

popularity: (25.9, 78.9).
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Is This Prediction Accurate?

� Real-world applicability:
� Do we truly believe the prediction interval for Taylor Swift’s

new song popularity? Probably not.

� If the “new artist” were someone with no prior fame, the

interval might be reasonable.

� However, Taylor Swift is one of the most globally recognized

and successful artists, so her song’s popularity would likely fall

in the higher range.

� Improving the model:
� To better capture Taylor’s exceptional status, a more realistic

model could include artist-level covariates, such as:

� Number of past Grammy nominations.

� Historical radio airplay or streaming metrics.

� Including such predictors could refine the model’s predictions

for artists with unique characteristics.
� Next steps: Chapter 17 explores hierarchical models

augmented with predictor variables, offering a more nuanced

approach to modeling.
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Shrinkage

� We visualize predictions for new song popularities for all 44
artists (see next slide):

� Light blue: Point and interval predictions from the hierarchical

model; Dark blue: Sample mean popularity for each artist.

� Observation:
� The plot demonstrates the phenomenon of shrinkage.

� Hierarchical model predictions shrink (or pull) the

artist-specific sample means toward the global sample mean.

� Model comparison:
� Complete-pooling model: Predicts song popularity using the

global mean.

� No-pooling model: Predicts song popularity using the artist’s

own mean.

� Hierarchical model: Balances these extremes, combining

global and group-specific information.

� Shrinkage reflects the hierarchical model’s ability to pool information

across artists while respecting individual group differences. 34



Posterior Credible Intervals for Popularity + Observed Mean

Popularity

Figure 8: Posterior predictive intervals for artist song popularity, as

calculated from a hierarchical model. The horizontal dashed line

represents the average popularity across all songs. 35



How Much Shrinkage?

� Key observation:

� Artists with the smallest sample sizes experience the most

shrinkage toward the global mean.

� These artists also have the widest credible intervals for their

µj estimates, reflecting greater uncertainty.

� Rationale:

� With less data for an artist, the model borrows information

from other artists in the population to improve predictions.

� For artists with large sample sizes (e.g., Frank Ocean), the

model relies more on their own data, reducing shrinkage.
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How Much Shrinkage?

� Free throw analogy:

� Consider two basketball players:

� Player A: Made 98 out of 100 free throws.

� Player B: Made 3 out of 3 free throws.

� Which player would you predict has a higher probability of

making their next free throw?

� Intuitively, Player A’s estimate is more reliable due to the

larger sample size, demonstrating the concept of shrinkage in

practice.
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Grouping Variable or Predictor?

� Why treat “artist” as a grouping variable instead of a
categorical predictor?

� If all levels of the variable in the sample are the only levels of

interest, it should be included as a predictor.

� Example: In a Poisson model for academic awards, the variable

“track” (academic, vocational, general) represented all

possible levels and was treated as a predictor.

� Spotify example:
� The artists in the dataset are a random sample from a larger

population of artists.

� Treating “artist” as a grouping variable allows the model to

generalize to the entire population of artists, including those

not in the sample.

� Key distinction:
� This aligns with the classical distinction between:

� Fixed effects: Used when all levels of the variable are of

interest; Random effects: Used when levels represent a

random sample from a larger population.
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